Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lymphoma

Wnt signaling pathway is epigenetically regulated by methylation of Wnt antagonists in acute myeloid leukemia

Abstract

Activation of the Wnt signaling pathway has been implicated recently in the pathogenesis of leukemia. We studied the function of epigenetic regulation of the Wnt pathway and its prognostic relevance in acute myelogenous leukemia (AML). We used a methylation-specific polymerase chain reaction approach to analyze the promoter methylation status of a panel of Wnt antagonists including sFRP1, sFRP2, sFRP4, sFRP5, DKK1 and DKK3. Aberrant methylation of Wnt antagonists was detected in four AML cell lines and in up to 64% of AML marrow samples. Treatment of the cell lines with 5-aza-2′-deoxycytidine induced reexpression of methylated Wnt antagonists and inactivation of the Wnt pathway by downregulating the Wnt pathway genes cyclin D1, TCF1 and LEF1 and reducing nuclear localization of β-catenin. In a subgroup of patients 60 years and younger with newly diagnosed AML and intermediate-risk cytogenetics, abnormal methylation of Wnt antagonists was associated with decreased 4-year relapse-free survival (28 vs 61%, respectively, P=0.03). Our results indicate a function of the epigenetic regulation of the Wnt pathway in predicting relapse in a subgroup of AML patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. O’Sullivan MJ, McCarthy TV, Doyle CT . Familial adenomatous polyposis: from bedside to benchside. Am J Clin Pathol 1998; 109: 521–526.

    Article  Google Scholar 

  2. Taniguchi K, Roberts LR, Aderca IN, Dong X, Oian C, Murphy LM et al. Mutational spectrum of beta-catenin, AXIN1, and AXIN2 in hepatocellular carcinomas and hepatoblastomas. Oncogene 2002; 21: 4863–4871.

    Article  CAS  Google Scholar 

  3. Kikuchi A . Tumor formation by genetic mutations in the components of the Wnt signaling pathway. Cancer Sci 2003; 94: 225–229.

    Article  CAS  Google Scholar 

  4. Müller-Tidow C, Steffen B, Cauvet T, Tickenbrock L, Ji P, Diederichs S et al. Translocation products in acute myeloid leukemia activate the Wnt signaling pathway in hematopoietic cells. Mol Cell Biol 2004; 24: 2890–2904.

    Article  Google Scholar 

  5. Tickenbrock L, Schwäble J, Wiedehage M, Steffen B, Sargin B, Choudhary C et al. Flt3 tandem duplication mutations cooperate with Wnt signaling in leukemic signal transduction. Blood 2005; 105: 3699–3706.

    Article  CAS  Google Scholar 

  6. Wodarz A, Nusse R . Mechanisms of Wnt signaling in development. Ann Rev Cell Dev Biol 1998; 14: 59–88.

    Article  CAS  Google Scholar 

  7. Kawano Y, Kypta R . Secreted antagonists of the Wnt signalling pathway. J Cell Sci 2003; 116: 2627–2634.

    Article  CAS  Google Scholar 

  8. Suzuki H, Watkins DN, Jair KW, Schuebel KE, Markowitz SD, Chen WD . Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Nat Genet 2004; 36: 417–422.

    Article  CAS  Google Scholar 

  9. Román-Gómez J, Cordeu L, Agirre X, Jiménez-Velasco A, San José-Eneriz E, Garate L et al. Epigenetic regulation of Wnt-signaling pathway in acute lymphoblastic leukemia. Blood 2007; 109: 3462–3469.

    Article  Google Scholar 

  10. Liu TH, Raval A, Chen SS, Matkovic JJ, Byrd JC, Plass C . CpG island methylation and expression of the secreted frizzled-related protein gene family in chronic lymphocytic leukemia. Cancer Res 2006; 66: 653–658.

    Article  CAS  Google Scholar 

  11. Chim CS, Chan WW, Pang A, Kwong YL . Preferential methylation of Wnt inhibitory factor-1 in acute promyelocytic leukemia: an independent poor prognostic factor. Leukemia 2006; 20: 907–909.

    Article  CAS  Google Scholar 

  12. Suzuki R, Onizuka M, Kojima M, Shimada M, Fukagawa S, Tsuboi K et al. Preferential hypermethylation of the Dickkopf-1 promoter in core-binding factor leukaemia. Br J Haematol 2007; 138: 624–631.

    Article  CAS  Google Scholar 

  13. Jost E, Schmid J, Wilop S, Schubert C, Suzuki H, Herman JG et al. Epigenetic inactivation of secreted Frizzled-related proteins in acute myeloid leukaemia. Br J Haematol 2008; 142: 745–753.

    Article  CAS  Google Scholar 

  14. Benett JM, Catovsky D, Daniel MT, Flandrin G, Galton DAG, Gralnick HR et al. Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French–American–British Cooperative Group. Br J Haematol 1976; 33: 451–458.

    Article  Google Scholar 

  15. ISCN. Guidelines for Cancer Cytogenetics. Supplement to: An International System for Human Cytogenetic Nomenclature, (Shaffer LG, Tommerup N, eds) Karger: Basel, 2005.

  16. Nakao M, Yokota S, Iwai T, Kaneko H, Horiike S, Kashima K et al. Internal tandem duplications of the FLT3 gene found in acute myeloid leukemia. Leukemia 1996; 10: 1911–1918.

    CAS  Google Scholar 

  17. Schnittger S, Schoch C, Kern W, Mecucci C, Tschulik C, Martelli MF et al. Nucleophosmin gene mutations are predictors of favorable prognosis in acute myelogenous leukemia with a normal karyotype. Blood 2005; 106: 3733–3739.

    Article  CAS  Google Scholar 

  18. Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB . Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA 1996; 93: 9821–9826.

    Article  CAS  Google Scholar 

  19. Roman-Gomez J, Jimenez-Velasco A, Agirre X, Castillejo JA, Navarro G, Barrios M et al. Transcriptional silencing of the Dickkopfs-3 (Dkk-3) gene by CpG hypermethylation in acute lymphoblastic leukaemia. Br J Cancer 2004; 91: 707–713.

    Article  CAS  Google Scholar 

  20. Kaplan EL, Meier P . Nonparametric estimations from incomplete observations. J Am Stat Assoc 1958; 53: 457–481.

    Article  Google Scholar 

  21. Mantel N . Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemother Rep 1966; 50: 163–170.

    CAS  PubMed  Google Scholar 

  22. Cheson BD, Bennett JM, Kopecky KJ, Büchner T, Willman CL, Estey EH et al. Revised recommendations of the International Working Group for Diagnosis, Standardization of Response Criteria, Treatment Outcomes, and Reporting Standards for Therapeutic Trials in Acute Myeloid Leukemia. J Clin Oncol 2003; 21: 4642–4649.

    Article  Google Scholar 

  23. Reya T, Duncan AW, Ailles L, Domen J, Scherer DC, Willert K et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 2003; 423: 409–414.

    Article  CAS  Google Scholar 

  24. Weerkamp F, van Dongen JJ, Staal FJ . Notch and Wnt signaling in T-lymphocyte development and acute lymphoblastic leukemia. Leukemia 2006; 20: 1197–1205.

    Article  CAS  Google Scholar 

  25. Simon M, Grandage VL, Linch DC, Khwaja A . Constitutive activation of the Wnt/beta-catenin signalling pathway in acute myeloid leukaemia. Oncogene 2005; 24: 2410–2420.

    Article  CAS  Google Scholar 

  26. Kajiguchi T, Chung EJ, Lee S, Stine A, Kiyoi H, Naoe T et al. FLT3 regulates beta-catenin tyrosine phosphorylation, nuclear localization, and transcriptional activity in acute myeloid leukemia cells. Leukemia 2007; 21: 2476–2484.

    Article  CAS  Google Scholar 

  27. Ysebaert L, Chicanne G, Demur C, De Toni F, Prade-Houdellier N, Ruidavets JB . Expression of beta-catenin by acute myeloid leukemia cells predicts enhanced clonogenic capacities and poor prognosis. Leukemia 2006; 20: 1211–1216.

    Article  CAS  Google Scholar 

  28. Mikesch JH, Steffen B, Berdel WE, Serve H, Müller-Tidow C . The emerging role of Wnt signaling in the pathogenesis of acute myeloid leukemia. Leukemia 2007; 21: 1638–1647.

    Article  CAS  Google Scholar 

  29. Galm O, Wilop S, Lüders C, Jost E, Gehbauer G, Herman JG . Clinical implications of aberrant DNA methylation patterns in acute myelogenous leukemia. Ann Hematol 2005; 84: 39–46.

    Article  CAS  Google Scholar 

  30. Roman-Gomez J, Jimenez-Velasco A, Castillejo JA, Agirre X, Barrios M, Navarro G et al. Promoter hypermethylation of cancer-related genes: a strong independent prognostic factor in acute lymphoblastic leukemia. Blood 2004; 104: 2492–2498.

    Article  CAS  Google Scholar 

  31. Veeck J, Geisler C, Noetzel E, Alkaya S, Hartmann A, Knüchel R . Epigenetic inactivation of the secreted frizzled-related protein-5 (SFRP5) gene in human breast cancer is associated with unfavorable prognosis. Carcinogenesis 2008; 29: 991–998.

    Article  CAS  Google Scholar 

  32. Melkonyan HS, Chang WC, Shapiro JP, Mahadevappa M, Fitzpatrick PA, Kiefer MC et al. SARPs: a family of secreted apoptosis related proteins. Proc Natl Acad Sci USA 1997; 94: 13636–13641.

    Article  CAS  Google Scholar 

  33. Stambolic V, Ruel L, Woodgett JR . Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Curr Biol 1996; 6: 1664–1668.

    Article  CAS  Google Scholar 

  34. Lu Z, Ghosh S, Wang Z, Hunter T . Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of beta-catenin, and enhanced tumor cell invasion. Cancer Cell 2003; 4: 499–515.

    Article  CAS  Google Scholar 

  35. Palii SS, Van Emburgh BO, Sankpal UT, Brown KD, Robertson KD . DNA methylation inhibitor 5-Aza-2′-deoxycytidine induces reversible genome-wide DNA damage that is distinctly influenced by DNA methyltransferases 1 and 3B. Mol Cell Biol 2008; 28: 752–771.

    Article  CAS  Google Scholar 

  36. Schmelz K, Wagner M, Dörken B, Tamm I . Aza-2′-deoxycytidine induces p21WAF expression by demethylation of p73 leading to p53-independent apoptosis in myeloid leukemia. Int J Cancer 2005; 114: 683–695.

    Article  CAS  Google Scholar 

  37. Moreno I, Martín G, Bolufer P, Barragán E, Rueda E, Román J et al. Incidence and prognostic value of FLT3 internal tandem duplication and D835 mutations in acute myeloid leukaemia. Haematologica 2003; 88: 19–24.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Instituto de Salud Carlos III grants RD06/0020/0031 and PI 06/0657 and the Asociación para la Lucha contra la Leucemia de la Comunidad Valenciana (ASLEUVAL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M A Sanz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valencia, A., Román-Gómez, J., Cervera, J. et al. Wnt signaling pathway is epigenetically regulated by methylation of Wnt antagonists in acute myeloid leukemia. Leukemia 23, 1658–1666 (2009). https://doi.org/10.1038/leu.2009.86

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2009.86

Keywords

This article is cited by

Search

Quick links