Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lymphoma

Genomic analyses reveal global functional alterations that promote tumor growth and novel tumor suppressor genes in natural killer-cell malignancies

Abstract

Natural killer (NK)-cell malignancies are among the most aggressive lymphoid neoplasms with very poor prognosis. We performed array comparative genomic hybridization analysis on a number of NK cell lines and primary tumors to gain better understanding of the pathogenesis and tumor biology of these malignancies. We also obtained transcriptional profiles of genes residing in these regions and compared them with normal and activated NK cells. Only 30–50% of the genes residing in the gained or deleted regions showed corresponding increased or decreased expression. However, many of the upregulated genes in regions of gain are functionally important for the proliferation and growth of the neoplastic population. Genes downregulated in regions of loss included many transcription factors or repressors, tumor suppressors or negative regulators of the cell cycle. The minimal common region of deletion in 6q21 included three known genes (PRDM1, ATG5 and AIM1) showing generally low expression. Mutations resulting in truncated PRDM1 and changes in conserved amino-acid sequences of AIM1 were detected. Highly methylated CpG islands 5′ of PRDM1 and AIM1 correlated with low expression of the transcripts. Reversal of methylation by Decitabine induced expression of PRDM1 and cell death. In conclusion, we have shown a general tumor-promoting effect of genetic alterations and have identified PRDM1 as the most likely target gene in del6q21. ATG5, an essential gene for autophagy and AIM1, a gene implicated in melanoma, may also participate in the functional abnormalities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Harris NL, Stein H, Vardiman JW (eds). Pathology and Genetics of Tumors of the Haematopoietic and Lymphoid Tissues. World Health Organization Classification of Tumors Lyon: International Agency for Research on Cancer, 2001.

    Google Scholar 

  2. Kwong YL . Natural killer-cell malignancies: diagnosis and treatment. Leukemia 2005; 19: 2186–2194.

    Article  CAS  PubMed  Google Scholar 

  3. Chan JK . Natural killer cell neoplasms. Anat Pathol 1998; 3: 77–145.

    CAS  PubMed  Google Scholar 

  4. Ko YH, Choi KE, Han JH, Kim JM, Ree HJ . Comparative genomic hybridization study of nasal-type NK/T-cell lymphoma. Cytometry 2001; 46: 85–91.

    Article  CAS  PubMed  Google Scholar 

  5. MacLeod RA, Nagel S, Kaufmann M, Greulich-Bode K, Drexler HG . Multicolor-FISH analysis of a natural killer cell line (NK-92). Leuk Res 2002; 26: 1027–1033.

    Article  CAS  PubMed  Google Scholar 

  6. Nakashima Y, Tagawa H, Suzuki R, Karnan S, Karube K, Ohshima K et al. Genome-wide array-based comparative genomic hybridization of natural killer cell lymphoma/leukemia: different genomic alteration patterns of aggressive NK-cell leukemia and extranodal Nk/T-cell lymphoma, nasal type. Genes Chromosomes Cancer 2005; 44: 247–255.

    Article  CAS  PubMed  Google Scholar 

  7. Siu LL, Chan V, Chan JK, Wong KF, Liang R, Kwong YL . Consistent patterns of allelic loss in natural killer cell lymphoma. Am J Pathol 2000; 157: 1803–1809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Siu LL, Wong KF, Chan JK, Kwong YL . Comparative genomic hybridization analysis of natural killer cell lymphoma/leukemia. Recognition of consistent patterns of genetic alterations. Am J Pathol 1999; 155: 1419–1425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wong KF . Genetic changes in natural killer cell neoplasms. Leuk Res 2002; 26: 977–978.

    Article  CAS  PubMed  Google Scholar 

  10. Wong KF, Chan JK, Kwong YL . Identification of del(6)(q21q25) as a recurring chromosomal abnormality in putative NK cell lymphoma/leukaemia. Br J Haematol 1997; 98: 922–926.

    Article  CAS  PubMed  Google Scholar 

  11. Yoon J, Ko YH . Deletion mapping of the long arm of chromosome 6 in peripheral T and NK cell lymphomas. Leuk Lymphoma 2003; 44: 2077–2082.

    Article  CAS  PubMed  Google Scholar 

  12. Suzuki R . Leukemia and Lymphoma of Natural Killer Cells. J Clin Exp Hematopathol 2005; 45: 51–70.

    Article  Google Scholar 

  13. Snijders AM, Nowak N, Segraves R, Blackwood S, Brown N, Conroy J et al. Assembly of microarrays for genome-wide measurement of DNA copy number. Nat Genet 2001; 29: 263–264.

    Article  CAS  PubMed  Google Scholar 

  14. Ishkanian AS, Malloff CA, Watson SK, DeLeeuw RJ, Chi B, Coe BP et al. A tiling resolution DNA microarray with complete coverage of the human genome. Nat Genet 2004; 36: 299–303.

    Article  CAS  PubMed  Google Scholar 

  15. Sambrook J, Russell DW . Molecular Cloning: A Laboratory Manual, 3rd edn, vol. 1. CSHL Press: Cold Spring Harbor Laboratory Press: Cold Spring Harbor, New York, 2001.

    Google Scholar 

  16. Watson SK, deLeeuw RJ, Ishkanian AS, Malloff CA, Lam WL . Methods for high throughput validation of amplified fragment pools of BAC DNA for constructing high resolution CGH arrays. BMC Genomics [Electronic Resource] 2004; 5: 6.

    Google Scholar 

  17. de Leeuw RJ, Davies JJ, Rosenwald A, Bebb G, Gascoyne RD, Dyer MJ et al. Comprehensive whole genome array CGH profiling of mantle cell lymphoma model genomes. Hum Mol Genet 2004; 13: 1827–1837.

    Article  CAS  PubMed  Google Scholar 

  18. Jong K, Marchori E, van der Vaart A, Ylstra B, Weiss M, Meijer G (eds). Chromosomal breakpoint detection in human cancer. In Applications of Evolutionary Computing. EvoBIO: Evolutionary Computation and Bioinformatics. Springer LNCS: Springer Berlin/Heidelberg, 2003, pp 54–65.

    Google Scholar 

  19. Dybkaer K, Iqbal J, Zhou G, Geng H, Xiao L, Schmitz A et al. Genome wide transcriptional analysis of resting and IL2 activated human natural killer cells: gene expression signatures indicative of novel molecular signaling pathways. BMC Genomics [Electronic Resource] 2007; 8: 230.

    Google Scholar 

  20. Simon R, Peng A . BRB-ArrayTools User Guide, version 3.6.0. Biometric Research Branch, National Cancer Institute. [cited; Available from: http://linus.nci.nih.gov/BRB-ArrayTools.html:Year 2008].

  21. Ohshima K, Haraokaa S, Ishihara S, Ohgami A, Yoshioka S, Suzumiya J et al. Analysis of chromosome 6q deletion in EBV-associated NK cell leukaemia/lymphoma. Leuk Lymphoma 2002; 43: 293–300.

    Article  CAS  PubMed  Google Scholar 

  22. Tam W, Gomez M, Chadburn A, Lee JW, Chan WC, Knowles DM . Mutational analysis of PRDM1 indicates a tumor-suppressor role in diffuse large B-cell lymphomas. Blood 2006; 107: 4090–4100.

    Article  CAS  PubMed  Google Scholar 

  23. Radhakrishnan P, Basma H, Klinkebiel D, Christman J, Cheng PW . Cell type-specific activation of the cytomegalovirus promoter by dimethylsulfoxide and 5-aza-2′-deoxycytidine. Int J Biochem Cell Biol 2008; 40: 1944–1955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Radhakrishnan P, Basma H, Klinkebiel D, Christman J, Cheng PW . Cell type-specific activation of the cytomegalovirus promoter by dimethylsulfoxide and 5-Aza-2′-deoxycytidine. Int J Biochem Cell Biol 2008; 40: 1944–1955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tam W, Gomez M, Nie K . Significance of PRDM1beta expression as a prognostic marker in diffuse large B-cell lymphomas. Blood 2008; 111: 2488–2489; author reply 2489–2490.

    Article  CAS  PubMed  Google Scholar 

  26. Wong KK, Deleeuw RJ, Dosanjh NS, Kimm LR, Cheng Z, Horsman DE et al. A comprehensive analysis of common copy-number variations in the human genome. Am J Hum Genet 2007; 80: 91–104.

    Article  CAS  PubMed  Google Scholar 

  27. Wang S, Nath N, Adlam M, Chellappan S . Prohibitin, a potential tumor suppressor, interacts with RB and regulates E2F function. Oncogene 1999; 18: 3501–3510.

    Article  CAS  PubMed  Google Scholar 

  28. Chen IF, Ou-Yang F, Hung JY, Liu JC, Wang H, Wang SC et al. AIM2 suppresses human breast cancer cell proliferation in vitro and mammary tumor growth in a mouse model. Mol Cancer Ther 2006; 5: 1–7.

    Article  CAS  PubMed  Google Scholar 

  29. Nava VE, Jaffe ES . The pathology of NK-cell lymphomas and leukemias. Adv Anat Pathol 2005; 12: 27–34.

    Article  PubMed  Google Scholar 

  30. Wong N, Wong KF, Chan JK, Johnson PJ . Chromosomal translocations are common in natural killer-cell lymphoma/leukemia as shown by spectral karyotyping. Hum Pathol 2000; 31: 771–774.

    Article  CAS  PubMed  Google Scholar 

  31. Wong KF, Zhang YM, Chan JK . Cytogenetic abnormalities in natural killer cell lymphoma/leukaemia—is there a consistent pattern? Leuk Lymphoma 1999; 34: 241–250.

    Article  CAS  PubMed  Google Scholar 

  32. Ghadimi BM, Schrock E, Walker RL, Wangsa D, Jauho A, Meltzer PS et al. Specific chromosomal aberrations and amplification of the AIB1 nuclear receptor coactivator gene in pancreatic carcinomas. Am J Pathol 1999; 154: 525–536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Macville M, Schrock E, Padilla-Nash H, Keck C, Ghadimi BM, Zimonjic D et al. Comprehensive and definitive molecular cytogenetic characterization of HeLa cells by spectral karyotyping. Cancer Res 1999; 59: 141–150.

    CAS  PubMed  Google Scholar 

  34. Medema RH, Kops GJ, Bos JL, Burgering BM . AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature 2000; 404: 782–787.

    Article  CAS  PubMed  Google Scholar 

  35. Su GH, Hilgers W, Shekher MC, Tang DJ, Yeo CJ, Hruban RH et al. Alterations in pancreatic, biliary, and breast carcinomas support MKK4 as a genetically targeted tumor suppressor gene. Cancer Res 1998; 58: 2339–2342.

    CAS  PubMed  Google Scholar 

  36. Baek SH, Ohgi KA, Rose DW, Koo EH, Glass CK, Rosenfeld MG . Exchange of N-CoR corepressor and Tip60 coactivator complexes links gene expression by NF-kappaB and beta-amyloid precursor protein. Cell 2002; 110: 55–67.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang J, Kalkum M, Chait BT, Roeder RG . The N-CoR-HDAC3 nuclear receptor corepressor complex inhibits the JNK pathway through the integral subunit GPS2. Mol Cell 2002; 9: 611–623.

    Article  CAS  PubMed  Google Scholar 

  38. Teng DH, Perry III WL, Hogan JK, Baumgard M, Bell R, Berry S et al. Human mitogen-activated protein kinase kinase 4 as a candidate tumor suppressor. Cancer Res 1997; 57: 4177–4182.

    CAS  PubMed  Google Scholar 

  39. Sun HS, Su IJ, Lin YC, Chen JS, Fang SY . A 2.6 Mb interval on chromosome 6q25.2–q25.3 is commonly deleted in human nasal natural killer/T-cell lymphoma. Br J Haematol 2003; 122: 590–599.

    Article  CAS  PubMed  Google Scholar 

  40. Ray ME, Wistow G, Su YA, Meltzer PS, Trent JM . AIM1, a novel non-lens member of the betagamma-crystallin superfamily, is associated with the control of tumorigenicity in human malignant melanoma. Pro Natl Acad Sci USA 1997; 94: 3229–3234.

    Article  CAS  Google Scholar 

  41. Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 2003; 112: 1809–1820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T et al. The role of autophagy during the early neonatal starvation period. Nature 2004; 432: 1032–1036.

    Article  CAS  PubMed  Google Scholar 

  43. Hippert MM, O'Toole PS, Thorburn A . Autophagy in cancer: good, bad, or both? Cancer Res 2006; 66: 9349–9351.

    Article  CAS  PubMed  Google Scholar 

  44. Turner Jr CA, Mack DH, Davis MM . Blimp-1, a novel zinc finger-containing protein that can drive the maturation of B lymphocytes into immunoglobulin-secreting cells. Cell 1994; 77: 297–306.

    Article  CAS  PubMed  Google Scholar 

  45. Kallies A, Hawkins ED, Belz GT, Metcalf D, Hommel M, Corcoran LM et al. Transcriptional repressor Blimp-1 is essential for T cell homeostasis and self-tolerance. Nat Immunol 2006; 7: 466–474.

    Article  CAS  PubMed  Google Scholar 

  46. Pasqualucci L, Compagno M, Houldsworth J, Monti S, Grunn A, Nandula SV et al. Inactivation of the PRDM1/BLIMP1 gene in diffuse large B cell lymphoma. J Exp Med 2006; 203: 311–317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Iguchi-Ariga SM, Schaffner W . CpG methylation of the cAMP-responsive enhancer/promoter sequence TGACGTCA abolishes specific factor binding as well as transcriptional activation. Genes Dev 1989; 3: 612–619.

    Article  CAS  PubMed  Google Scholar 

  48. Maier H, Colbert J, Fitzsimmons D, Clark DR, Hagman J . Activation of the early B-cell-specific mb-1 (Ig-alpha) gene by Pax-5 is dependent on an unmethylated Ets binding site. Mol Cell Biol 2003; 23: 1946–1960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Harrington MA, Jones PA, Imagawa M, Karin M . Cytosine methylation does not affect binding of transcription factor Sp1. Pro Natl Acad Sci USA 1988; 85: 2066–2070.

    Article  CAS  Google Scholar 

  50. Holler M, Westin G, Jiricny J, Schaffner W . Sp1 transcription factor binds DNA and activates transcription even when the binding site is CpG methylated. Genes Dev 1988; 2: 1127–1135.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported in part by a NCI Grant (5U01/CA114778) and funds from Genome center Canada/British Columbia. We thank Dr Junjiro Tsuchiyama and Dr Yoshitoyo Kagami for NK-YS and HANK-1 cell lines, respectively. The UNMC Microarray Core Facility Dr James Eudy supported partially by NIH Grant P20 RR016469 from the INBRE Program of the National Center for Research Resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W C Chan.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iqbal, J., Kucuk, C., deLeeuw, R. et al. Genomic analyses reveal global functional alterations that promote tumor growth and novel tumor suppressor genes in natural killer-cell malignancies. Leukemia 23, 1139–1151 (2009). https://doi.org/10.1038/leu.2009.3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2009.3

Keywords

This article is cited by

Search

Quick links