Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Molecular Targets for Therapy

MEK inhibitors potentiate dexamethasone lethality in acute lymphoblastic leukemia cells through the pro-apoptotic molecule BIM

Abstract

Glucocorticoids (GCs) are common components of many chemotherapeutic regimens for lymphoid malignancies. GC-induced apoptosis involves an intrinsic mitochondria-dependent pathway. We and others have shown that BIM (BCL-2 interacting mediator of cell death), a BH3-only pro-apoptotic protein, is up-regulated by dexamethasone (Dex) treatment in acute lymphoblastic leukemia (ALL) cells and plays an essential role in Dex-induced apoptosis. Furthermore, BIM is inactivated by extracellular signal-regulated kinase (ERK)-mediated phosphorylation. We therefore hypothesized co-treatment with Dex and MEK/ERK inhibitors would promote apoptosis in ALL cells through BIM up-regulation and activation. We show here that MEK inhibitors (PD184352 and PD98059) synergistically enhance Dex lethality in a variety of ALL cells and in two primary ALL specimens. Co-treatment with Dex and PD184352 results in BIM accumulation, pro-apoptotic BAX/BAK activation, and cytochrome c release from mitochondria. Down-regulation of BIM by short-hairpin RNA (shRNA) in ALL cells suppressed BAX/BAK activation, cytochrome c release, and cell death by Dex/PD184352 co-treatment. BIM accumulated by this treatment sequesters anti-apoptotic BCL-XLMCL-1, resulting in the release of BAK from these anti-apoptotic molecules. This study provides a rational foundation for future attempts to improve the activity of GCs with clinically relevant pharmacologic MEK inhibitors in the treatment of ALL and possibly other hematologic malignancies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Planey SL, Litwack G . Glucocorticoid-induced apoptosis in lymphocytes. Biochem Biophys Res Commun 2000; 279: 307–312.

    Article  CAS  Google Scholar 

  2. Distelhorst CW . Recent insights into the mechanism of glucocorticosteroid-induced apoptosis. Cell Death Differ 2002; 9: 6–19.

    Article  CAS  Google Scholar 

  3. Tissing WJ, Meijerink JP, den Boer ML, Pieters R . Molecular determinants of glucocorticoid sensitivity and resistance in acute lymphoblastic leukemia. Leukemia 2003; 17: 17–25.

    Article  CAS  Google Scholar 

  4. Frankfurt O, Rosen ST . Mechanisms of glucocorticoid-induced apoptosis in hematologic malignancies: updates. Curr Opin Oncol 2004; 16: 553–563.

    Article  CAS  Google Scholar 

  5. Pui CH, Relling MV, Downing JR . Acute lymphoblastic leukemia. N Engl J Med 2004; 350: 1535–1548.

    Article  CAS  Google Scholar 

  6. Schmidt S, Rainer J, Ploner C, Presul E, Riml S, Kofler R . Glucocorticoid-induced apoptosis and glucocorticoid resistance: molecular mechanisms and clinical relevance. Cell Death Differ 2004; 11 (Suppl 1): S45–S55.

    Article  CAS  Google Scholar 

  7. Danial NN, Korsmeyer SJ . Cell death: critical control points. Cell 2004; 116: 205–219.

    Article  CAS  Google Scholar 

  8. Adams JM, Cory S . The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 2007; 26: 1324–1337.

    Article  CAS  Google Scholar 

  9. O'Connor L, Strasser A, O'Reilly LA, Hausmann G, Adams JM, Cory S et al. Bim: a novel member of the Bcl-2 family that promotes apoptosis. EMBO J 1998; 17: 384–395.

    Article  CAS  Google Scholar 

  10. Ley R, Ewings KE, Hadfield K, Cook SJ . Regulatory phosphorylation of Bim: sorting out the ERK from the JNK. Cell Death Differ 2005; 12: 1008–1014.

    Article  CAS  Google Scholar 

  11. Strasser A . The role of BH3-only proteins in the immune system. Nat Rev Immunol 2005; 5: 189–200.

    Article  CAS  Google Scholar 

  12. Harada H, Quearry B, Ruiz-Vela A, Korsmeyer SJ . Survival factor-induced extracellular signal-regulated kinase phosphorylates BIM, inhibiting its association with BAX and proapoptotic activity. Proc Natl Acad Sci USA 2004; 101: 15313–15317.

    Article  CAS  Google Scholar 

  13. Letai A, Bassik MC, Walensky LD, Sorcinelli MD, Weiler S, Korsmeyer SJ . Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2002; 2: 183–192.

    Article  CAS  Google Scholar 

  14. Chen L, Willis SN, Wei A, Smith BJ, Fletcher JI, Hinds MG et al. Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol Cell 2005; 17: 393–403.

    Article  CAS  Google Scholar 

  15. Kuwana T, Bouchier-Hayes L, Chipuk JE, Bonzon C, Sullivan BA, Green DR et al. BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol Cell 2005; 17: 525–535.

    Article  CAS  Google Scholar 

  16. Bouillet P, Metcalf D, Huang DC, Tarlinton DM, Kay TW, Kontgen F et al. Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science 1999; 286: 1735–1738.

    Article  CAS  Google Scholar 

  17. Jeffers JR, Parganas E, Lee Y, Yang C, Wang J, Brennan J et al. Puma is an essential mediator of p53-dependent and -independent apoptotic pathways. Cancer Cell 2003; 4: 321–328.

    Article  CAS  Google Scholar 

  18. Villunger A, Michalak EM, Coultas L, Mullauer F, Bock G, Ausserlechner MJ et al. p53- and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa. Science 2003; 302: 1036–1038.

    Article  CAS  Google Scholar 

  19. Rathmell JC, Lindsten T, Zong WX, Cinalli RM, Thompson CB . Deficiency in Bak and Bax perturbs thymic selection and lymphoid homeostasis. Nat Immunol 2002; 3: 932–939.

    Article  CAS  Google Scholar 

  20. Lu J, Quearry B, Harada H . p38-MAP kinase activation followed by BIM induction is essential for glucocorticoid-induced apoptosis in lymphoblastic leukemia cells. FEBS Lett 2006; 580: 3539–3544.

    Article  CAS  Google Scholar 

  21. Bachmann PS, Gorman R, Mackenzie KL, Lutze-Mann L, Lock RB . Dexamethasone resistance in B-cell precursor childhood acute lymphoblastic leukemia occurs downstream of ligand-induced nuclear translocation of the glucocorticoid receptor. Blood 2005; 105: 2519–2526.

    Article  CAS  Google Scholar 

  22. Schmidt S, Rainer J, Riml S, Ploner C, Jesacher S, Achmuller C et al. Identification of glucocorticoid-response genes in children with acute lymphoblastic leukemia. Blood 2006; 107: 2061–2069.

    Article  CAS  Google Scholar 

  23. Chang L, Karin M . Mammalian MAP kinase signalling cascades. Nature 2001; 410: 37–40.

    Article  CAS  Google Scholar 

  24. English JM, Cobb MH . Pharmacological inhibitors of MAPK pathways. Trends Pharmacol Sci 2002; 23: 40–45.

    Article  CAS  Google Scholar 

  25. Lee Jr JT, McCubrey JA . The Raf/MEK/ERK signal transduction cascade as a target for chemotherapeutic intervention in leukemia. Leukemia 2002; 16: 486–507.

    Article  CAS  Google Scholar 

  26. Platanias LC . Map kinase signaling pathways and hematologic malignancies. Blood 2003; 101: 4667–4679.

    Article  CAS  Google Scholar 

  27. O'Neill E, Kolch W . Conferring specificity on the ubiquitous Raf/MEK signalling pathway. Br J Cancer 2004; 90: 283–288.

    Article  CAS  Google Scholar 

  28. Allen LF, Sebolt-Leopold J, Meyer MB . CI-1040 (PD184352), a targeted signal transduction inhibitor of MEK (MAPKK). Semin Oncol 2003; 30: 105–116.

    Article  CAS  Google Scholar 

  29. Lorusso PM, Adjei AA, Varterasian M, Gadgeel S, Reid J, Mitchell DY et al. Phase I and pharmacodynamic study of the oral MEK inhibitor CI-1040 in patients with advanced malignancies. J Clin Oncol 2005; 23: 5281–5293.

    Article  CAS  Google Scholar 

  30. Wang JY, Wilcoxen KM, Nomoto K, Wu S . Recent advances of MEK inhibitors and their clinical progress. Curr Top Med Chem 2007; 7: 1364–1378.

    Article  CAS  Google Scholar 

  31. Bonni A, Brunet A, West AE, Datta SR, Takasu MA, Greenberg ME . Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science 1999; 286: 1358–1362.

    Article  CAS  Google Scholar 

  32. Racke FK, Lewandowska K, Goueli S, Goldfarb AN . Sustained activation of the extracellular signal-regulated kinase/mitogen-activated protein kinase pathway is required for megakaryocytic differentiation of K562 cells. J Biol Chem 1997; 272: 23366–23370.

    Article  CAS  Google Scholar 

  33. Davies SP, Reddy H, Caivano M, Cohen P . Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 2000; 351: 95–105.

    Article  CAS  Google Scholar 

  34. Ohren JF, Chen H, Pavlovsky A, Whitehead C, Zhang E, Kuffa P et al. Structures of human MAP kinase kinase 1 (MEK1) and MEK2 describe novel noncompetitive kinase inhibition. Nat Struct Mol Biol 2004; 11: 1192–1197.

    Article  CAS  Google Scholar 

  35. Willis SN, Chen L, Dewson G, Wei A, Naik E, Fletcher JI et al. Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins. Genes Dev 2005; 19: 1294–1305.

    Article  CAS  Google Scholar 

  36. She QB, Solit DB, Ye Q, O'Reilly KE, Lobo J, Rosen N . The BAD protein integrates survival signaling by EGFR/MAPK and PI3K/Akt kinase pathways in PTEN-deficient tumor cells. Cancer Cell 2005; 8: 287–297.

    Article  CAS  Google Scholar 

  37. Allan LA, Morrice N, Brady S, Magee G, Pathak S, Clarke PR . Inhibition of caspase-9 through phosphorylation at Thr 125 by ERK MAPK. Nat Cell Biol 2003; 5: 647–654.

    Article  CAS  Google Scholar 

  38. Letai AG . Diagnosing and exploiting cancer's addiction to blocks in apoptosis. Nat Rev Cancer 2008; 8: 121–132.

    Article  CAS  Google Scholar 

  39. Chipuk JE, Green DR . How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol 2008; 18: 157–164.

    Article  CAS  Google Scholar 

  40. Bachmann PS, Gorman R, Papa RA, Bardell JE, Ford J, Kees UR et al. Divergent mechanisms of glucocorticoid resistance in experimental models of pediatric acute lymphoblastic leukemia. Cancer Res 2007; 67: 4482–4490.

    Article  CAS  Google Scholar 

  41. Kuribara R, Honda H, Matsui H, Shinjyo T, Inukai T, Sugita K et al. Roles of Bim in apoptosis of normal and Bcr-Abl-expressing hematopoietic progenitors. Mol Cell Biol 2004; 24: 6172–6183.

    Article  CAS  Google Scholar 

  42. Essafi A, Fernandez de Mattos S, Hassen YA, Soeiro I, Mufti GJ, Thomas NS et al. Direct transcriptional regulation of Bim by FoxO3a mediates STI571-induced apoptosis in Bcr-Abl-expressing cells. Oncogene 2005; 24: 2317–2329.

    Article  CAS  Google Scholar 

  43. Kuroda J, Puthalakath H, Cragg MS, Kelly PN, Bouillet P, Huang DC et al. Bim and Bad mediate imatinib-induced killing of Bcr/Abl+ leukemic cells, and resistance due to their loss is overcome by a BH3 mimetic. Proc Natl Acad Sci USA 2006; 103: 14907–14912.

    Article  CAS  Google Scholar 

  44. Zhao Y, Tan J, Zhuang L, Jiang X, Liu ET, Yu Q . Inhibitors of histone deacetylases target the Rb-E2F1 pathway for apoptosis induction through activation of proapoptotic protein Bim. Proc Natl Acad Sci USA 2005; 102: 16090–16095.

    Article  CAS  Google Scholar 

  45. Gillespie S, Borrow J, Zhang XD, Hersey P . Bim plays a crucial role in synergistic induction of apoptosis by the histone deacetylase inhibitor SBHA and TRAIL in melanoma cells. Apoptosis 2006; 11: 2251–2265.

    Article  CAS  Google Scholar 

  46. Yu C, Dasmahapatra G, Dent P, Grant S . Synergistic interactions between MEK1/2 and histone deacetylase inhibitors in BCR/ABL+ human leukemia cells. Leukemia 2005; 19: 1579–1589.

    Article  CAS  Google Scholar 

  47. Ozaki K, Minoda A, Kishikawa F, Kohno M . Blockade of the ERK pathway markedly sensitizes tumor cells to HDAC inhibitor-induced cell death. Biochem Biophys Res Commun 2006; 339: 1171–1177.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of Dr Grant's lab for valuable advice and discussion. This work was supported by the Leukemia Research Foundation (to HH) and NIH RO1CA100866 (to SG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Harada.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rambal, A., Panaguiton, Z., Kramer, L. et al. MEK inhibitors potentiate dexamethasone lethality in acute lymphoblastic leukemia cells through the pro-apoptotic molecule BIM. Leukemia 23, 1744–1754 (2009). https://doi.org/10.1038/leu.2009.80

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2009.80

Keywords

This article is cited by

Search

Quick links