Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Transcriptional Control and Signal Transduction

Constitutive JunB expression, associated with the JAK2 V617F mutation, stimulates proliferation of the erythroid lineage

Abstract

The JAK2 V617F mutation, present in the majority of polycythemia vera (PV) patients, causes constitutive activation of JAK2 and seems to be responsible for the PV phenotype. However, the transcriptional changes triggered by the mutation have not yet been totally characterized. In this study, we performed a large-scale gene expression study using serial analysis of gene expression in bone marrow cells of a newly diagnosed PV patient harboring the JAK2 V617F mutation and in normal bone marrow cells of healthy donors. JUNB was one of the genes upregulated in PV, and we confirmed, by quantitative real-time PCR, an overexpression of JUNB in hematopoietic cells of other JAK2 V617F PV patients. Using Ba/F3-EPOR cell lines and primary human erythroblast cultures, we found that JUNB was transcriptionally induced after erythropoietin addition and that JAK2 V617F constitutively induced JunB protein expression. Furthermore, JUNB knockdown reduced not only the growth of Ba/F3 cells by inducing apoptosis, but also the clonogenic and proliferative potential of human erythroid progenitors. These results establish a role for JunB in normal erythropoiesis and indicate that JunB may play a major role in the development of JAK2 V617F myeloproliferative disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. James C, Ugo V, Le Couedic JP, Staerk J, Delhommeau F, Lacout C et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 2005; 434: 1144–1148.

    Article  CAS  Google Scholar 

  2. Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 2005; 365: 1054–1061.

    Article  CAS  Google Scholar 

  3. Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 2005; 352: 1779–1790.

    Article  CAS  Google Scholar 

  4. Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 2005; 7: 387–397.

    Article  CAS  Google Scholar 

  5. Zhao R, Xing S, Li Z, Fu X, Li Q, Krantz SB et al. Identification of an acquired JAK2 mutation in polycythemia vera. J Biol Chem 2005; 280: 22788–22792.

    Article  CAS  Google Scholar 

  6. Jones AV, Kreil S, Zoi K, Waghorn K, Curtis C, Zhang L et al. Widespread occurrence of the JAK2 V617F mutation in chronic myeloproliferative disorders. Blood 2005; 106: 2162–2168.

    Article  CAS  Google Scholar 

  7. Lu X, Levine R, Tong W, Wernig G, Pikman Y, Zarnegar S et al. Expression of a homodimeric type I cytokine receptor is required for JAK2V617F-mediated transformation. Proc Natl Acad Sci USA 2005; 102: 18962–18967.

    Article  CAS  Google Scholar 

  8. Lacout C, Pisani DF, Tulliez M, Gachelin FM, Vainchenker W, Villeval JL . JAK2V617F expression in murine hematopoietic cells leads to MPD mimicking human PV with secondary myelofibrosis. Blood 2006; 108: 1652–1660.

    Article  CAS  Google Scholar 

  9. Wernig G, Mercher T, Okabe R, Levine RL, Lee BH, Gilliland DG . Expression of Jak2V617F causes a polycythemia vera-like disease with associated myelofibrosis in a murine bone marrow transplant model. Blood 2006; 107: 4274–4281.

    Article  CAS  Google Scholar 

  10. Shide K, Shimoda HK, Kumano T, Karube K, Kameda T, Takenaka K et al. Development of ET, primary myelofibrosis and PV in mice expressing JAK2 V617F. Leukemia 2008; 22: 87–95.

    Article  CAS  Google Scholar 

  11. Tiedt R, Hao-Shen H, Sobas MA, Looser R, Dirnhofer S, Schwaller J et al. Ratio of mutant JAK2-V617F to wild-type Jak2 determines the MPD phenotypes in transgenic mice. Blood 2008; 111: 3931–3940.

    Article  CAS  Google Scholar 

  12. Silva M, Richard C, Benito A, Sanz C, Olalla I, Fernandez-Luna JL . Expression of Bcl-x in erythroid precursors from patients with polycythemia vera. N Engl J Med 1998; 338: 564–571.

    Article  CAS  Google Scholar 

  13. Garcon L, Rivat C, James C, Lacout C, Camara-Clayette V, Ugo V et al. Constitutive activation of STAT5 and Bcl-xL overexpression can induce endogenous erythroid colony formation in human primary cells. Blood 2006; 108: 1551–1554.

    Article  CAS  Google Scholar 

  14. Zeuner A, Pedini F, Signore M, Ruscio G, Messina C, Tafuri A et al. Increased death receptor resistance and FLIPshort expression in polycythemia vera erythroid precursor cells. Blood 2006; 107: 3495–3502.

    Article  CAS  Google Scholar 

  15. Walz C, Crowley BJ, Hudon HE, Gramlich JL, Neuberg DS, Podar K et al. Activated Jak2 with the V617F point mutation promotes G1/S phase transition. J Biol Chem 2006; 281: 18177–18183.

    Article  CAS  Google Scholar 

  16. Lelievre H, Cervera N, Finetti P, Delhommeau F, Vainchenker W, Bertucci F et al. Oncogenic kinases of myeloproliferative disorders induce both protein synthesis and G1 activators. Leukemia 2006; 20: 1885–1888.

    Article  CAS  Google Scholar 

  17. Shaulian E, Karin M . AP-1 in cell proliferation and survival. Oncogene 2001; 20: 2390–2400.

    Article  CAS  Google Scholar 

  18. Shaulian E, Karin M . AP-1 as a regulator of cell life and death. Nat Cell Biol 2002; 4: E131–E136.

    Article  CAS  Google Scholar 

  19. Karin M . The regulation of AP-1 activity by mitogen-activated protein kinases. J Biol Chem 1995; 270: 16483–16486.

    Article  CAS  Google Scholar 

  20. Karin M, Liu Z, Zandi E . AP-1 function and regulation. Curr Opin Cell Biol 1997; 9: 240–246.

    Article  CAS  Google Scholar 

  21. Ryder K, Lau LF, Nathans D . A gene activated by growth factors is related to the oncogene v-jun. Proc Natl Acad Sci USA 1988; 85: 1487–1491.

    Article  CAS  Google Scholar 

  22. Perez-Albuerne ED, Schatteman G, Sanders LK, Nathans D . Transcriptional regulatory elements downstream of the JunB gene. Proc Natl Acad Sci USA 1993; 90: 11960–11964.

    Article  CAS  Google Scholar 

  23. Kang LY, Yang YC . Activation of junB and c-myc primary response genes by interleukin 9 in a human factor-dependent cell line. J Cell Physiol 1995; 163: 623–630.

    Article  CAS  Google Scholar 

  24. Adachi K, Saito H . Induction of junB expression, but not c-jun, by granulocyte colony-stimulating factor or macrophage colony-stimulating factor in the proliferative response of human myeloid leukemia cells. J Clin Invest 1992; 89: 1657–1661.

    Article  CAS  Google Scholar 

  25. Jacobs-Helber SM, Abutin RM, Tian C, Bondurant M, Wickrema A, Sawyer ST . Role of JunB in erythroid differentiation. J Biol Chem 2002; 277: 4859–4866.

    Article  CAS  Google Scholar 

  26. Lord KA, Abdollahi A, Hoffman-Liebermann B, Liebermann DA . Dissection of the immediate early response of myeloid leukemia cells to terminal differentiation and growth inhibitory stimuli. Cell Growth Differ 1990; 1: 637–645.

    CAS  PubMed  Google Scholar 

  27. Staber PB, Vesely P, Haq N, Ott RG, Funato K, Bambach I et al. The oncoprotein NPM-ALK of anaplastic large-cell lymphoma induces JUNB transcription via ERK1/2 and JunB translation via mTOR signaling. Blood 2007; 110: 3374–3383.

    Article  CAS  Google Scholar 

  28. Passegue E, Jochum W, Schorpp-Kistner M, Mohle-Steinlein U, Wagner EF . Chronic myeloid leukemia with increased granulocyte progenitors in mice lacking junB expression in the myeloid lineage. Cell 2001; 104: 21–32.

    Article  CAS  Google Scholar 

  29. Passegue E, Jochum W, Behrens A, Ricci R, Wagner EF . JunB can substitute for Jun in mouse development and cell proliferation. Nat Genet 2002; 30: 158–166.

    Article  CAS  Google Scholar 

  30. Kenner L, Hoebertz A, Beil T, Keon N, Karreth F, Eferl R et al. Mice lacking JunB are osteopenic due to cell-autonomous osteoblast and osteoclast defects. J Cell Biol 2004; 164: 613–623.

    Article  CAS  Google Scholar 

  31. Szabowski A, Maas-Szabowski N, Andrecht S, Kolbus A, Schorpp-Kistner M, Fusenig NE et al. c-Jun and JunB antagonistically control cytokine-regulated mesenchymal–epidermal interaction in skin. Cell 2000; 103: 745–755.

    Article  CAS  Google Scholar 

  32. Szremska AP, Kenner L, Weisz E, Ott RG, Passegue E, Artwohl M et al. JunB inhibits proliferation and transformation in B-lymphoid cells. Blood 2003; 102: 4159–4165.

    Article  CAS  Google Scholar 

  33. Passegue E, Wagner EF . JunB suppresses cell proliferation by transcriptional activation of p16(INK4a) expression. EMBO J 2000; 19: 2969–2979.

    Article  CAS  Google Scholar 

  34. Bakiri L, Lallemand D, Bossy-Wetzel E, Yaniv M . Cell cycle-dependent variations in c-Jun and JunB phosphorylation: a role in the control of cyclin D1 expression. EMBO J 2000; 19: 2056–2068.

    Article  CAS  Google Scholar 

  35. Andrecht S, Kolbus A, Hartenstein B, Angel P, Schorpp-Kistner M . Cell cycle promoting activity of JunB through cyclin A activation. J Biol Chem 2002; 277: 35961–35968.

    Article  CAS  Google Scholar 

  36. Jacobs-Helber SM, Wickrema A, Birrer MJ, Sawyer ST . AP1 regulation of proliferation and initiation of apoptosis in erythropoietin-dependent erythroid cells. Mol Cell Biol 1998; 18: 3699–3707.

    Article  CAS  Google Scholar 

  37. Ugo V, Marzac C, Teyssandier I, Larbret F, Lecluse Y, Debili N et al. Multiple signaling pathways are involved in erythropoietin-independent differentiation of erythroid progenitors in polycythemia vera. Exp Hematol 2004; 32: 179–187.

    Article  CAS  Google Scholar 

  38. Fiedler W, Henke RP, Ergun S, Schumacher U, Gehling UM, Vohwinkel G et al. Derivation of a new hematopoietic cell line with endothelial features from a patient with transformed myeloproliferative syndrome: a case report. Cancer 2000; 88: 344–351.

    Article  CAS  Google Scholar 

  39. Quentmeier H, MacLeod RA, Zaborski M, Drexler HG . JAK2 V617F tyrosine kinase mutation in cell lines derived from myeloproliferative disorders. Leukemia 2006; 20: 471–476.

    Article  CAS  Google Scholar 

  40. Berthebaud M, Riviere C, Jarrier P, Foudi A, Zhang Y, Compagno D et al. RGS16 is a negative regulator of SDF-1-CXCR4 signaling in megakaryocytes. Blood 2005; 106: 2962–2968.

    Article  CAS  Google Scholar 

  41. Jedidi A, Oligo C, Marty C, Jeanson-Leh L, Ribeil JA, Casadevall N et al. Selective suppression of JAKV617F-dependent cell growth by siRNA and shRNA. (Submitted). 2008.

  42. Audic S, Claverie JM . The significance of digital gene expression profiles. Genome Res 1997; 7: 986–995.

    Article  CAS  Google Scholar 

  43. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 2002; 3: RESEARCH0034.

    Article  Google Scholar 

  44. Sakai I, Nabell L, Kraft AS . Signal transduction by a CD16/CD7/Jak2 fusion protein. J Biol Chem 1995; 270: 18420–18427.

    Article  CAS  Google Scholar 

  45. Guglielmelli P, Zini R, Bogani C, Salati S, Pancrazzi A, Bianchi E et al. Molecular profiling of CD34+ cells in idiopathic myelofibrosis identifies a set of disease-associated genes and reveals the clinical significance of Wilms' tumor gene 1 (WT1). Stem Cells 2007; 25: 165–173.

    Article  CAS  Google Scholar 

  46. Jones LC, Tefferi A, Vuong PT, Desmond JC, Hofmann WK, Koeffler HP . Detection of aberrant gene expression in CD34+ hematopoietic stem cells from patients with agnogenic myeloid metaplasia using oligonucleotide microarrays. Stem Cells 2005; 23: 631–637.

    Article  CAS  Google Scholar 

  47. Pellagatti A, Vetrie D, Langford CF, Gama S, Eagleton H, Wainscoat JS et al. Gene expression profiling in polycythemia vera using cDNA microarray technology. Cancer Res 2003; 63: 3940–3944.

    CAS  PubMed  Google Scholar 

  48. Goerttler PS, Kreutz C, Donauer J, Faller D, Maiwald T, Marz E et al. Gene expression profiling in polycythaemia vera: overexpression of transcription factor NF-E2. Br J Haematol 2005; 129: 138–150.

    Article  CAS  Google Scholar 

  49. Kralovics R, Teo SS, Buser AS, Brutsche M, Tiedt R, Tichelli A et al. Altered gene expression in myeloproliferative disorders correlates with activation of signaling by the V617F mutation of Jak2. Blood 2005; 106: 3374–3376.

    Article  CAS  Google Scholar 

  50. Muszynski KW, Ohashi T, Hanson C, Ruscetti SK . Both the polycythemia- and anemia-inducing strains of Friend spleen focus-forming virus induce constitutive activation of the Raf-1/mitogen-activated protein kinase signal transduction pathway. J Virol 1998; 72: 919–925.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Ruscetti SK, Janesch NJ, Chakraborti A, Sawyer ST, Hankins WD . Friend spleen focus-forming virus induces factor independence in an erythropoietin-dependent erythroleukemia cell line. J Virol 1990; 64: 1057–1062.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Passegue E, Wagner EF, Weissman IL . JunB deficiency leads to a myeloproliferative disorder arising from hematopoietic stem cells. Cell 2004; 119: 431–443.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Frédéric Larbret and Yann Lécluse for cell sorting experiments, to Nicola Conran and Françoise Wendling for English revision and to Ramon Vidal and Fabio Parente for help with the figures. We are grateful to AstraZeneca (Waltham, MA, USA) for the generous gift of the JAK2-specific inhibitor (AZD1480). We also thank all the patients and the controls who participated in the study. This work was supported by CAPES, FAPESP, FRM, Ligue Nationale Contre le Cancer (équipe labellisée 2006), INCa (projets libres 2006) and INSERM. IP is a recipient from FRM and INCa.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to W Vainchenker or F F Costa.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Costa Reis Monte-Mór, B., Plo, I., da Cunha, A. et al. Constitutive JunB expression, associated with the JAK2 V617F mutation, stimulates proliferation of the erythroid lineage. Leukemia 23, 144–152 (2009). https://doi.org/10.1038/leu.2008.275

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2008.275

Keywords

This article is cited by

Search

Quick links