Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Immunology

HLA-DP as specific target for cellular immunotherapy in HLA class II-expressing B-cell leukemia

Abstract

Mismatching for human leukocyte antigen (HLA)-DPB1 in unrelated donor hematopoietic stem cell transplantation (URD-SCT) has been associated with a decreased risk of disease relapse, indicating that HLA-DP may represent a target for graft-versus-leukemia (GVL) reactivity in HLA class II-expressing hematological malignancies. To investigate whether HLA-DP-specific T cells could mediate GVL reactivity following HLA-DPB1-mismatched URD-SCT and donor lymphocyte infusion (DLI), we analyzed the immune response in a patient with leukemic lymphoplasmacytic lymphoma responding to DLI without graft-versus-host disease. The emergence of leukemia-reactive CD4+ T cells during the clinical immune response was demonstrated by interferon-γ (IFN-γ) enzyme-linked immunosorbent spot(ELISPOT)analysis. Following clonal isolation of these leukemia-reactive CD4+ T cells, blocking studies, panel studies and retroviral transduction experiments of both mismatched HLA-DPB1 alleles identified HLA-DPB1*0201 and HLA-DPB1*0301 as the targets of this immune response. The HLA-DPB1-specific CD4+ T-cell clones were capable of recognizing and lysing several HLA-DP-expressing myeloid and lymphoid hematological malignant cells. Since HLA-DP expression is mainly restricted to hematopoietic cells, HLA-DP may be used as a specific target for immunotherapy following T-cell-depleted URD-SCT. Therefore, in patients with HLA class II-expressing hematological malignancies HLA-DP-mismatched SCT may be preferable over fully matched SCT allowing DLI to induce a GVL effect.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Apperley JF, Jones L, Hale G, Waldmann H, Hows J, Rombos Y et al. Bone marrow transplantation for patients with chronic myeloid leukaemia: T-cell depletion with Campath-1 reduces the incidence of graft-versus-host disease but may increase the risk of leukaemic relapse. Bone Marrow Transplant 1986; 1: 53–66.

    CAS  PubMed  Google Scholar 

  2. Goldman JM, Gale RP, Horowitz MM, Biggs JC, Champlin RE, Gluckman E et al. Bone marrow transplantation for chronic myelogenous leukemia in chronic phase. Increased risk for relapse associated with T-cell depletion. Ann Intern Med 1988; 108: 806–814.

    Article  CAS  PubMed  Google Scholar 

  3. Kolb HJ, Schattenberg A, Goldman JM, Hertenstein B, Jacobsen N, Arcese W et al. Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. Blood 1995; 86: 2041–2050.

    CAS  PubMed  Google Scholar 

  4. Riddell SR, Berger C, Murata M, Randolph S, Warren EH . The graft versus leukemia response after allogeneic hematopoietic stem cell transplantation. Blood Rev 2003; 17: 153–162.

    Article  PubMed  Google Scholar 

  5. Beatty PG, Hansen JA, Longton GM, Thomas ED, Sanders JE, Martin PJ et al. Marrow transplantation from HLA-matched unrelated donors for treatment of hematologic malignancies. Transplantation 1991; 51: 443–447.

    Article  CAS  PubMed  Google Scholar 

  6. de Bueger M, Bakker A, van Rood JJ, Van der WF, Goulmy E . Tissue distribution of human minor histocompatibility antigens. Ubiquitous versus restricted tissue distribution indicates heterogeneity among human cytotoxic T lymphocyte-defined non-MHC antigens. J Immunol 1992; 149: 1788–1794.

    CAS  PubMed  Google Scholar 

  7. Falkenburg JH, van de Corput L, Marijt EW, Willemze R . Minor histocompatibility antigens in human stem cell transplantation. Exp Hematol 2003; 31: 743–751.

    Article  CAS  PubMed  Google Scholar 

  8. Marijt WA, Heemskerk MH, Kloosterboer FM, Goulmy E, Kester MG, van der Hoorn MA et al. Hematopoiesis-restricted minor histocompatibility antigens HA-1- or HA-2-specific T cells can induce complete remissions of relapsed leukemia. Proc Natl Acad Sci USA 2003; 100: 2742–2747.

    Article  CAS  PubMed  Google Scholar 

  9. Vogt MH, van den Muijsenberg JW, Goulmy E, Spierings E, Kluck P, Kester MG et al. The DBY gene codes for an HLA-DQ5-restricted human male-specific minor histocompatibility antigen involved in graft-versus-host disease. Blood 2002; 99: 3027–3032.

    Article  CAS  PubMed  Google Scholar 

  10. Sherman LA, Chattopadhyay S . The molecular basis of allorecognition. Annu Rev Immunol 1993; 11: 385–402.

    Article  CAS  PubMed  Google Scholar 

  11. Basham TY, Nickoloff BJ, Merigan TC, Morhenn VB . Recombinant gamma interferon induces HLA-DR expression on cultured human keratinocytes. J Invest Dermatol 1984; 83: 88–90.

    Article  CAS  PubMed  Google Scholar 

  12. Collins T, Korman AJ, Wake CT, Boss JM, Kappes DJ, Fiers W et al. Immune interferon activates multiple class II major histocompatibility complex genes and the associated invariant chain gene in human endothelial cells and dermal fibroblasts. Proc Natl Acad Sci USA 1984; 81: 4917–4921.

    Article  CAS  PubMed  Google Scholar 

  13. Ferrara JL . Cytokine dysregulation as a mechanism of graft versus host disease. Curr Opin Immunol 1993; 5: 794–799.

    Article  CAS  PubMed  Google Scholar 

  14. Lee SJ, Klein J, Haagenson M, Baxter-Lowe LA, Confer DL, Eapen M et al. High-resolution donor-recipient HLA matching contributes to the success of unrelated donor marrow transplantation. Blood 2007; 110: 4576–4583.

    Article  CAS  PubMed  Google Scholar 

  15. Loiseau P, Esperou H, Busson M, Sghiri R, Tamouza R, Hilarius M et al. DPB1 disparities contribute to severe GVHD and reduced patient survival after unrelated donor bone marrow transplantation. Bone Marrow Transplant 2002; 30: 497–502.

    Article  CAS  PubMed  Google Scholar 

  16. Moreau P, Cesbron A . HLA-DP and allogeneic bone marrow transplantation. Bone Marrow Transplant 1994; 13: 675–681.

    CAS  PubMed  Google Scholar 

  17. Petersdorf EW, Smith AG, Mickelson EM, Longton GM, Anasetti C, Choo SY et al. The role of HLA-DPB1 disparity in the development of acute graft-versus-host disease following unrelated donor marrow transplantation. Blood 1993; 81: 1923–1932.

    CAS  PubMed  Google Scholar 

  18. Petersdorf EW, Gooley T, Malkki M, Anasetti C, Martin P, Woolfrey A et al. The biological significance of HLA-DP gene variation in haematopoietic cell transplantation. Br J Haematol 2001; 112: 988–994.

    Article  CAS  PubMed  Google Scholar 

  19. Varney MD, Lester S, McCluskey J, Gao X, Tait BD . Matching for HLA DPA1 and DPB1 alleles in unrelated bone marrow transplantation. Hum Immunol 1999; 60: 532–538.

    Article  CAS  PubMed  Google Scholar 

  20. Ringden O, Schaffer M, Le Blanc K, Persson U, Hauzenberger D, Abedi MR et al. Which donor should be chosen for hematopoietic stem cell transplantation among unrelated HLA-A, -B, and -DRB1 genomically identical volunteers? Biol Blood Marrow Transplant 2004; 10: 128–134.

    Article  PubMed  Google Scholar 

  21. Shaw BE, Marsh SG, Mayor NP, Russell NH, Madrigal JA . HLA-DPB1 matching status has significant implications for recipients of unrelated donor stem cell transplants. Blood 2006; 107: 1220–1226.

    Article  CAS  PubMed  Google Scholar 

  22. Barge RM, Osanto S, Marijt WA, Starrenburg CW, Fibbe WE, Nortier JW et al. Minimal GVHD following in-vitro T cell-depleted allogeneic stem cell transplantation with reduced-intensity conditioning allowing subsequent infusions of donor lymphocytes in patients with hematological malignancies and solid tumors. Exp Hematol 2003; 31: 865–872.

    Article  CAS  PubMed  Google Scholar 

  23. Kloosterboer FM, Luxemburg-Heijs SA, van Soest RA, Barbui AM, van Egmond HM, Strijbosch MP et al. Direct cloning of leukemia-reactive T cells from patients treated with donor lymphocyte infusion shows a relative dominance of hematopoiesis-restricted minor histocompatibility antigen HA-1 and HA-2 specific T cells. Leukemia 2004; 18: 798–808.

    Article  CAS  PubMed  Google Scholar 

  24. Jedema I, van der Werff NM, Barge RM, Willemze R, Falkenburg JH . New CFSE-based assay to determine susceptibility to lysis by cytotoxic T cells of leukemic precursor cells within a heterogeneous target cell population. Blood 2004; 103: 2677–2682.

    Article  CAS  PubMed  Google Scholar 

  25. Heemskerk MH, Hoogeboom M, de Paus RA, Kester MG, van der Hoorn MA, Goulmy E et al. Redirection of antileukemic reactivity of peripheral T lymphocytes using gene transfer of minor histocompatibility antigen HA-2-specific T-cell receptor complexes expressing a conserved alpha joining region. Blood 2003; 102: 3530–3540.

    Article  CAS  PubMed  Google Scholar 

  26. Janssen EM, Lemmens EE, Wolfe T, Christen U, von Herrath MG, Schoenberger SP . CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature 2003; 421: 852–856.

    Article  CAS  PubMed  Google Scholar 

  27. Shedlock DJ, Shen H . Requirement for CD4 T cell help in generating functional CD8 T cell memory. Science 2003; 300: 337–339.

    Article  CAS  PubMed  Google Scholar 

  28. Dodi IA, Van Rhee F, Forde HC, Roura-Mir C, Jaraquemada D, Goldman JM et al. CD4(+) bias in T cells cloned from a CML patient with active graft versus leukemia effect. Cytotherapy 2002; 4: 353–363.

    Article  CAS  PubMed  Google Scholar 

  29. Kloosterboer FM, Luxemburg-Heijs SA, van Soest RA, van Egmond HM, Barbui AM, Strijbosch MP et al. Minor histocompatibility antigen-specific T cells with multiple distinct specificities can be isolated by direct cloning of IFNgamma-secreting T cells from patients with relapsed leukemia responding to donor lymphocyte infusion. Leukemia 2005; 19: 83–90.

    Article  CAS  PubMed  Google Scholar 

  30. Matsushita M, Yamazaki R, Ikeda H, Mori T, Sumimoto H, Fujita T et al. Possible involvement of allogeneic antigens recognised by donor-derived CD4 cytotoxic T cells in selective GVL effects after stem cell transplantation of patients with haematological malignancy. Br J Haematol 2006; 132: 56–65.

    Article  CAS  PubMed  Google Scholar 

  31. Falkenburg JH, Wafelman AR, Joosten P, Smit WM, van Bergen CA, Bongaerts R et al. Complete remission of accelerated phase chronic myeloid leukemia by treatment with leukemia-reactive cytotoxic T lymphocytes. Blood 1999; 94: 1201–1208.

    CAS  PubMed  Google Scholar 

  32. Gonwa TA, Peterlin BM, Stobo JD . Human-Ir genes: structure and function. Adv Immunol 1983; 34: 71–96.

    Article  CAS  PubMed  Google Scholar 

  33. Ibisch C, Gallot G, Vivien R, Diez E, Jotereau F, Garand R et al. Recognition of leukemic blasts by HLA-DPB1-specific cytotoxic T cell clones: a perspective for adjuvant immunotherapy post-bone marrow transplantation. Bone Marrow Transplant 1999; 23: 1153–1159.

    Article  CAS  PubMed  Google Scholar 

  34. Nicholson I, Varney M, Kanaan C, Grigg A, Szer J, Tiedemann K et al. Alloresponses to HLA-DP detected in the primary MLR: correlation with a single amino acid difference. Hum Immunol 1997; 55: 163–169.

    Article  CAS  PubMed  Google Scholar 

  35. Zino E, Frumento G, Marktel S, Sormani MP, Ficara F, Di Terlizzi S et al. A T-cell epitope encoded by a subset of HLA-DPB1 alleles determines nonpermissive mismatches for hematologic stem cell transplantation. Blood 2004; 103: 1417–1424.

    Article  CAS  PubMed  Google Scholar 

  36. Cesbron A, Moreau P, Cheneau ML, Cury S, Milpied N, Muller JY et al. Crucial role of the third and fourth hypervariable regions of HLA-DPB1 allelic sequences in primary mixed-lymphocyte reaction: application in allogeneic bone marrow transplantation. Transplant Proc 1993; 25 (1 Part 2): 1232–1233.

    CAS  PubMed  Google Scholar 

  37. Naruse TK, Nose Y, Kagiya M, Liao G, Nabeya N, Kimura M et al. Cloned primed lymphocyte test cells recognize the fourth, fifth, and sixth hypervariable regions at amino acid positions 65–87 of the DPB1 molecule. Hum Immunol 1995; 42: 123–130.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank E van der Meijden for technical assistance with molecular work and R van der Linden and G de Roo for technical assistance with the flow cytometric isolation. We also thank Dr A Mulder for kindly providing the moAbs used for blocking experiments in this study. This work has been supported by a grant from the Dutch Cancer Society (grant no. 05-3267) and by a grant from the European Union 6th Framework Programme (Allostem project no. 503319).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C E Rutten.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rutten, C., van Luxemburg-Heijs, S., Griffioen, M. et al. HLA-DP as specific target for cellular immunotherapy in HLA class II-expressing B-cell leukemia. Leukemia 22, 1387–1394 (2008). https://doi.org/10.1038/leu.2008.90

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2008.90

Keywords

This article is cited by

Search

Quick links