Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Molecular Targets for Therapy

Bruton's tyrosine kinase is not essential for Bcr-Abl-mediated transformation of lymphoid or myeloid cells

Abstract

Bcr-Abl, a constitutively active tyrosine kinase, is the cause of chronic myeloid leukemia (CML) and a subset of acute lymphoblastic leukemias (ALL). Bruton's tyrosine kinase (BTK), a member of the Tec family of tyrosine kinases with a crucial role in B-cell development, is consistently tyrosine phosphorylated in Bcr-Abl expressing murine pre B cells. BTK has been implicated in Bcr-Abl-mediated B-cell transformation and resistance to imatinib, implying that inhibiting BTK may be therapeutically beneficial. We decided to test whether BTK is a critical node in Bcr-Abl transformation and potential drug target in imatinib-resistant Bcr-Abl-positive cells. We depleted BTK in Ba/F3 and 32D cells expressing native and kinase domain (KD) mutant (E255K and T315I) Bcr-Abl, using shRNA. BTK levels were reduced to <10% of controls. However, no differences in viability and cell proliferation were observed and the response to imatinib was not altered. Consistent with this, proliferation and viability were unaffected by inhibition of BTK with reversible (PC-005) and irreversible (PCI-31523) small molecule inhibitors. Lastly, BTK inhibition did not affect the ability of Bcr-Abl to transform primary murine hematopoietic cells in colony forming and B-cell transformation assays. Collectively this data argues against a critical role for BTK in Bcr-Abl-mediated leukemogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 2001; 344: 1031–1037.

    Article  CAS  PubMed  Google Scholar 

  2. Daley GQ, Van Etten RA, Baltimore D . Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science 1990; 247: 824–830.

    Article  CAS  PubMed  Google Scholar 

  3. Lugo TG, Pendergast AM, Muller AJ, Witte ON . Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science 1990; 247: 1079–1082.

    Article  CAS  PubMed  Google Scholar 

  4. Huettner CS, Zhang P, Van Etten RA, Tenen DG . Reversibility of acute B-cell leukaemia induced by BCR-ABL1. Nat Genet 2000; 24: 57–60.

    Article  CAS  PubMed  Google Scholar 

  5. Griswold IJ, MacPartlin M, Bumm T, Goss VL, O'Hare T, Lee KA et al. Kinase domain mutants of Bcr-Abl exhibit altered transformation potency, kinase activity, and substrate utilization, irrespective of sensitivity to imatinib. Mol Cell Biol 2006; 26: 6082–6093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Miller AT, Berg LJ . New insights into the regulation and functions of Tec family tyrosine kinases in the immune system. Curr Opin Immunol 2002; 14: 331–340.

    Article  CAS  PubMed  Google Scholar 

  7. Yang WC, Collette Y, Nunes JA, Olive D . Tec kinases: a family with multiple roles in immunity. Immunity 2000; 12: 373–382.

    Article  CAS  PubMed  Google Scholar 

  8. Saouaf SJ, Mahajan S, Rowley RB, Kut SA, Fargnoli J, Burkhardt AL et al. Temporal differences in the activation of three classes of non-transmembrane protein tyrosine kinases following B-cell antigen receptor surface engagement. Proc Natl Acad Sci USA 1994; 91: 9524–9528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rawlings DJ, Scharenberg AM, Park H, Wahl MI, Lin S, Kato RM et al. Activation of BTK by a phosphorylation mechanism initiated by SRC family kinases. Science 1996; 271: 822–825.

    Article  CAS  PubMed  Google Scholar 

  10. Cheng G, Ye ZS, Baltimore D . Binding of Bruton's tyrosine kinase to Fyn, Lyn, or Hck through a Src homology 3 domain-mediated interaction. Proc Natl Acad Sci USA 1994; 91: 8152–8155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Middendorp S, Dingjan GM, Maas A, Dahlenborg K, Hendriks RW . Function of Bruton's tyrosine kinase during B cell development is partially independent of its catalytic activity. J Immunol 2003; 171: 5988–5996.

    Article  CAS  PubMed  Google Scholar 

  12. Guo B, Kato RM, Garcia-Lloret M, Wahl MI, Rawlings DJ . Engagement of the human pre-B cell receptor generates a lipid raft-dependent calcium signaling complex. Immunity 2000; 13: 243–253.

    Article  CAS  PubMed  Google Scholar 

  13. Feng S, Chen JK, Yu H, Simon JA, Schreiber SL . Two binding orientations for peptides to the Src SH3 domain: development of a general model for SH3-ligand interactions. Science 1994; 266: 1241–1247.

    Article  CAS  PubMed  Google Scholar 

  14. Backesjo CM, Vargas L, Superti-Furga G, Smith CI . Phosphorylation of Bruton's tyrosine kinase by c-Abl. Biochem Biophys Res Commun 2002; 299: 510–515.

    Article  CAS  PubMed  Google Scholar 

  15. Feldhahn N, Klein F, Mooster JL, Hadweh P, Sprangers M, Wartenberg M et al. Mimicry of a constitutively active pre-B cell receptor in acute lymphoblastic leukemia cells. J Exp Med 2005; 201: 1837–1852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Villuendas R, Steegmann JL, Pollan M, Tracey L, Granda A, Fernandez-Ruiz E et al. Identification of genes involved in imatinib resistance in CML: a gene-expression profiling approach. Leukemia 2006; 20: 1047–1054.

    Article  CAS  PubMed  Google Scholar 

  17. Pan Z, Scheerens H, Li SJ, Schultz BE, Sprengeler PA, Burrill LC et al. Discovery of selective irreversible inhibitors for Bruton's tyrosine kinase. Chem Med Chem 2007; 2: 58–61.

    Article  CAS  PubMed  Google Scholar 

  18. La Rosee P, Corbin AS, Stoffregen EP, Deininger MW, Druker BJ . Activity of the Bcr-Abl kinase inhibitor PD180970 against clinically relevant Bcr-Abl isoforms that cause resistance to imatinib mesylate (Gleevec, STI571). Cancer Res 2002; 62: 7149–7153.

    CAS  PubMed  Google Scholar 

  19. Pear WS, Nolan GP, Scott ML, Baltimore D . Production of high-titer helper-free retroviruses by transient transfection. Proc Natl Acad Sci USA 1993; 90: 8392–8396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Honigberg LA, Smith AM, Chen J, Thiemann P, Verner E, Renschler M . Targeting Btk in lymphoma: PCI-32765 inhibits tumor growth in mouse lymphoma models and a fluorescent analog of PCI-32765 is an active-site probe that enables assessment of Btk inhibition in vivo. Session Type: Poster Session, Board #746-I. Blood 2007 16 November 2007; 2007. p. 475A.

  21. Zhang X, Ren R . Bcr-Abl efficiently induces a myeloproliferative disease and production of excess interleukin-3 and granulocyte-macrophage colony-stimulating factor in mice: a novel model for chronic myelogenous leukemia. Blood 1998; 92: 3829–3840.

    CAS  PubMed  Google Scholar 

  22. Sattler M, Mohi MG, Pride YB, Quinnan LR, Malouf NA, Podar K et al. Critical role for Gab2 in transformation by BCR/ABL. Cancer Cell 2002; 1: 479–492.

    Article  CAS  PubMed  Google Scholar 

  23. McLaughlin J, Chianese E, Witte ON . In vitro transformation of immature hematopoietic cells by the P210 BCR/ABL oncogene product of the Philadelphia chromosome. Proc Natl Acad Sci USA 1987; 84: 6558–6562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shah NP, Tran C, Lee FY, Chen P, Norris D, Sawyers CL . Overriding imatinib resistance with a novel ABL kinase inhibitor. Science 2004; 305: 399–401.

    Article  CAS  PubMed  Google Scholar 

  25. Smith KM, Yacobi R, Van Etten RA . Autoinhibition of Bcr-Abl through its SH3 domain. Mol Cell 2003; 12: 27–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Talpaz M, Silver RT, Druker BJ, Goldman JM, Gambacorti-Passerini C, Guilhot F et al. Imatinib induces durable hematologic and cytogenetic responses in patients with accelerated phase chronic myeloid leukemia: results of a phase 2 study. Blood 2002; 99: 1928–1937.

    Article  CAS  PubMed  Google Scholar 

  27. Sawyers CL, Hochhaus A, Feldman E, Goldman JM, Miller CB, Ottmann OG et al. Imatinib induces hematologic and cytogenetic responses in patients with chronic myelogenous leukemia in myeloid blast crisis: results of a phase II study. Blood 2002; 99: 3530–3539.

    Article  CAS  PubMed  Google Scholar 

  28. Ottmann OG, Druker BJ, Sawyers CL, Goldman JM, Reiffers J, Silver RT et al. A phase 2 study of imatinib in patients with relapsed or refractory Philadelphia chromosome-positive acute lymphoid leukemias. Blood 2002; 100: 1965–1971.

    Article  CAS  PubMed  Google Scholar 

  29. Al-Ali HK, Heinrich MC, Lange T, Krahl R, Mueller M, Muller C et al. High incidence of BCR-ABL kinase domain mutations and absence of mutations of the PDGFR and KIT activation loops in CML patients with secondary resistance to imatinib. Hematol J 2004; 5: 55–60.

    Article  CAS  PubMed  Google Scholar 

  30. von Bubnoff N, Schneller F, Peschel C, Duyster J . BCR-ABL gene mutations in relation to clinical resistance of Philadelphia-chromosome-positive leukaemia to STI571: a prospective study. Lancet 2002; 359: 487–491.

    Article  CAS  PubMed  Google Scholar 

  31. Hochhaus A, Kreil S, Corbin AS, La Rosee P, Muller MC, Lahaye T et al. Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy. Leukemia 2002; 16: 2190–2196.

    Article  CAS  PubMed  Google Scholar 

  32. Shah NP, Nicoll JM, Nagar B, Gorre ME, Paquette RL, Kuriyan J et al. Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell 2002; 2: 117–125.

    Article  CAS  PubMed  Google Scholar 

  33. Hofmann WK, de Vos S, Elashoff D, Gschaidmeier H, Hoelzer D, Koeffler HP et al. Relation between resistance of Philadelphia-chromosome-positive acute lymphoblastic leukaemia to the tyrosine kinase inhibitor STI571 and gene-expression profiles: a gene-expression study. Lancet 2002; 359: 481–486.

    Article  CAS  PubMed  Google Scholar 

  34. Mahajan S, Ghosh S, Sudbeck EA, Zheng Y, Downs S, Hupke M et al. Rational design and synthesis of a novel anti-leukemic agent targeting Bruton's tyrosine kinase (BTK), LFM-A13 [alpha-cyano-beta-hydroxy-beta-methyl-N-(2, 5-dibromophenyl)propenamide]. J Biol Chem 1999; 274: 9587–9599.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by NHLBI Grant HL082978-01 (MWD) and the Leukemia and Lymphoma Society (MWD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M W Deininger.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacPartlin, M., Smith, A., Druker, B. et al. Bruton's tyrosine kinase is not essential for Bcr-Abl-mediated transformation of lymphoid or myeloid cells. Leukemia 22, 1354–1360 (2008). https://doi.org/10.1038/leu.2008.126

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2008.126

Keywords

This article is cited by

Search

Quick links