Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Stem Cells

CD34+CD38+CD19+ as well as CD34+CD38−CD19+ cells are leukemia-initiating cells with self-renewal capacity in human B-precursor ALL

Abstract

The presence of rare malignant stem cells supplying a hierarchy of malignant cells has recently been reported. In human acute myelogenous leukemia (AML), the leukemia stem cells (LSCs) have been phenotypically restricted within the CD34+CD38− fraction. To understand the origin of malignant cells in primary human B-precursor acute lymphocytic leukemia (B-ALL), we established a novel in vivo xenotransplantation model. Purified CD34+CD38+CD19+, CD34+CD38−CD19+ and CD34+CD38−CD19− bone marrow (BM) or peripheral blood (PB) cells from three pediatric B-ALL patients were intravenously injected into sublethally irradiated newborn NOD/SCID/IL2rγnull mice. We found that both CD34+CD38+CD19+ and CD34+CD38−CD19+ cells initiate B-ALL in primary recipients, whereas the recipients of CD34+CD38−CD10−CD19− cells showed normal human hematopoietic repopulation. The extent of leukemic infiltration into the spleen, liver and kidney was similar between the recipients transplanted with CD34+CD38+CD19+ cells and those transplanted with CD34+CD38−CD19+ cells. In each of the three cases studied, transplantation of CD34+CD38+CD19+ cells resulted in the development of B-ALL in secondary recipients, demonstrating self-renewal capacity. The identification of CD34+CD38+CD19+ self-renewing B-ALL cells proposes a hierarchy of leukemia-initiating cells (LICs) distinct from that of AML. Recapitulation of patient B-ALL in NOD/SCID/IL2rγnull recipients provides a powerful tool for directly studying leukemogenesis and for developing therapeutic strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Pui CH, Evans WE . Acute lymphoblastic leukemia. N Engl J Med 1998; 339: 605–615.

    Article  CAS  PubMed  Google Scholar 

  2. Pui CH, Evans WE . Treatment of acute lymphoblastic leukemia. N Engl J Med 2006; 354: 166–178.

    Article  CAS  PubMed  Google Scholar 

  3. O’Brien CA, Pollett A, Gallinger S, Dick JE . A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 2007; 445: 106–110.

    Article  PubMed  Google Scholar 

  4. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T et al. Identification of human brain tumour initiating cells. Nature 2004; 432: 396–401.

    Article  CAS  PubMed  Google Scholar 

  5. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF . Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 2003; 100: 3983–3988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994; 367: 645–648.

    Article  CAS  PubMed  Google Scholar 

  7. Bonnet D, Dick JE . Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3: 730–737.

    Article  CAS  PubMed  Google Scholar 

  8. Cox CV, Evely RS, Oakhill A, Pamphilon DH, Goulden NJ, Blair A . Characterization of acute lymphoblastic leukemia progenitor cells. Blood 2004; 104: 2919–2925.

    Article  CAS  PubMed  Google Scholar 

  9. Nijmeijer BA, Mollevanger P, van Zelderen-Bhola SL, Kluin-Nelemans HC, Willemze R, Falkenburg JH . Monitoring of engraftment and progression of acute lymphoblastic leukemia in individual NOD/SCID mice. Exp Hematol 2001; 29: 322–329.

    Article  CAS  PubMed  Google Scholar 

  10. Cobaleda C, Gutierrez-Cianca N, Perez-Losada J, Flores T, Garcia-Sanz R, Gonzalez M et al. A primitive hematopoietic cell is the target for the leukemic transformation in human philadelphia-positive acute lymphoblastic leukemia. Blood 2000; 95: 1007–1013.

    CAS  PubMed  Google Scholar 

  11. Shultz LD, Lyons BL, Burzenski LM, Gott B, Chen X, Chaleff S et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol 2005; 174: 6477–6489.

    Article  CAS  PubMed  Google Scholar 

  12. Ishikawa F, Yasukawa M, Lyons B, Yoshida S, Miyamoto T, Yoshimoto G et al. Development of functional human blood and immune systems in NOD/SCID/IL2 receptor {gamma} chain(null) mice. Blood 2005; 106: 1565–1573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ishikawa F, Yoshida S, Saito Y, Hijikata A, Kitamura H, Tanaka S et al. Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nat Biotechnol 2007; 25: 1315–1321.

    Article  CAS  PubMed  Google Scholar 

  14. Hotfilder M, Rottgers S, Rosemann A, Schrauder A, Schrappe M, Pieters R et al. Leukemic stem cells in childhood high-risk ALL/t(9;22) and t(4;11) are present in primitive lymphoid-restricted CD34+CD19− cells. Cancer Res 2005; 65: 1442–1449.

    Article  CAS  PubMed  Google Scholar 

  15. Castor A, Nilsson L, Astrand-Grundstrom I, Buitenhuis M, Ramirez C, Anderson K et al. Distinct patterns of hematopoietic stem cell involvement in acute lymphoblastic leukemia. Nat Med 2005; 11: 630–637.

    Article  CAS  PubMed  Google Scholar 

  16. George AA, Franklin J, Kerkof K, Shah AJ, Price M, Tsark E et al. Detection of leukemic cells in the CD34(+)CD38(−) bone marrow progenitor population in children with acute lymphoblastic leukemia. Blood 2001; 97: 3925–3930.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Ministry of Education, Culture, Sports, Science and Technology of Japan (FI) and National Institutes of Health (LDS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Ishikawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kong, Y., Yoshida, S., Saito, Y. et al. CD34+CD38+CD19+ as well as CD34+CD38−CD19+ cells are leukemia-initiating cells with self-renewal capacity in human B-precursor ALL. Leukemia 22, 1207–1213 (2008). https://doi.org/10.1038/leu.2008.83

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2008.83

Keywords

This article is cited by

Search

Quick links