Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Normal Hemopoiesis

Dose-dependent repression of T-cell and natural killer cell genes by PU.1 enforces myeloid and B-cell identity

Abstract

The Ets transcription factor PU.1, encoded by the gene Sfpi1, functions in a concentration-dependent manner to promote myeloid and B-cell development and has been implicated in myeloid and lymphoid leukemias. To determine the consequences of reducing PU.1 concentration during hematopoiesis, we analyzed mice with two distinct hypomorphic alleles of Sfpi1 that produce PU.1 at 20% (BN) or 2% (Blac) of wild-type levels. Myeloid development was impaired in these mice, but less severely than in Sfpi1 null mice. To identify the downstream target genes that respond to changes in PU.1 concentration, we analyzed ex vivo interleukin-3 dependent myeloid cell lines established from Sfpi1BN/BN, Sfpi1Blac/Blac and Sfpi1−/− fetal liver cells. Unexpectedly, many T-cell and natural killer cell genes were expressed in Sfpi1−/− cells and repressed in a dose-dependent manner in Sfpi1Blac/Blac and Sfpi1BN/BN cells. This pattern of dose-dependent T/NK-cell gene repression also occurred in ex vivo interleukin-7 dependent progenitor B cell lines. These results suggest that PU.1 functions in a concentration-dependent manner to repress T-cell and natural killer cell fates while promoting myeloid and B-cell fates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Klemsz MJ, McKercher SR, Celada A, Van Beveren C, Maki RA . The macrophage and B cell-specific transcription factor PU.1 is related to the ets oncogene. Cell 1990; 61: 113–124.

    Article  CAS  PubMed  Google Scholar 

  2. McKercher SR, Torbett BE, Anderson KL, Henkel GW, Vestal DJ, Baribault H et al. Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities. EMBO J 1996; 15: 5647–5658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Scott EW, Simon MC, Anastasi J, Singh H . Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Science 1994; 265: 1573–1577.

    Article  CAS  PubMed  Google Scholar 

  4. Spain LM, Guerriero A, Kunjibettu S, Scott EW . T-cell development in PU.1-deficient mice. J Immunol 1999; 163: 2681–2687.

    CAS  PubMed  Google Scholar 

  5. Colucci F, Samson SI, DeKoter RP, Lantz O, Singh H, Di Santo JP . Differential requirement for the transcription factor PU.1 in the generation of natural killer cells versus B and T-cells. Blood 2001; 97: 2625–2632.

    Article  CAS  PubMed  Google Scholar 

  6. Mueller BU, Pabst T, Osato M, Asou N, Johansen LM, Minden MD et al. Heterozygous PU.1 mutations are associated with acute myeloid leukemia. Blood 2002; 100: 998–1007.

    Article  CAS  PubMed  Google Scholar 

  7. Vangala RK, Heiss-Neumann MS, Rangatia JS, Singh SM, Schoch C, Tenen DG et al. The myeloid master regulator transcription factor PU.1 is inactivated by AML1-ETO in t(8;21) myeloid leukemia. Blood 2003; 101: 270–277.

    Article  CAS  PubMed  Google Scholar 

  8. Rosenbauer F, Wagner K, Kutok JL, Iwasaki H, Le Beau MM, Okuno Y et al. Acute myeloid leukemia induced by graded reduction of a lineage-specific transcription factor, PU.1. Nat Genet 2004; 36: 624–630.

    Article  CAS  PubMed  Google Scholar 

  9. Cook WD, McCaw BJ, Herring C, John DL, Foote SJ, Nutt SL et al. PU.1 is a suppressor of myeloid leukemia, inactivated in mice by gene deletion and mutation of its DNA binding domain. Blood 2004; 104: 3437–3444.

    Article  CAS  PubMed  Google Scholar 

  10. Walter MJ, Park JS, Ries RE, Lau SK, McLellan M, Jaeger S et al. Reduced PU.1 expression causes myeloid progenitor expansion and increased leukemia penetrance in mice expressing PML-RARalpha. Proc Natl Acad Sci USA 2005; 102: 12513–12518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Metcalf D, Dakic A, Mifsud S, Di Rago L, Wu L, Nutt S . Inactivation of PU.1 in adult mice leads to the development of myeloid leukemia. Proc Natl Acad Sci USA 2006; 103: 1486–1491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rosenbauer F, Owens BM, Yu L, Tumang JR, Steidl U, Kutok JL et al. Lymphoid cell growth and transformation are suppressed by a key regulatory element of the gene encoding PU.1. Nat Genet 2006; 38: 27–37.

    Article  CAS  PubMed  Google Scholar 

  13. Ross IL, Dunn TL, Yue X, Roy S, Barnett CJ, Hume DA . Comparison of the expression and function of the transcription factor PU.1 (Spi-1 proto-oncogene) between murine macrophages and B lymphocytes. Oncogene 1994; 9: 121–132.

    CAS  PubMed  Google Scholar 

  14. DeKoter RP, Walsh JC, Singh H . PU.1 regulates both cytokine-dependent proliferation and differentiation of granulocyte/macrophage progenitors. EMBO J 1998; 17: 4456–4468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Houston IB, Kamath MB, Schweitzer BL, Chlon TM, Dekoter RP . Reduction in PU.1 activity results in a block to B-cell development, abnormal myeloid proliferation, and neonatal lethality. Exp Hematol 2007; 35: 1056–1068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. DeKoter RP, Singh H . Regulation of B lymphocyte and macrophage development by graded expression of PU.1. Science 2000; 288: 1439–1441.

    Article  CAS  PubMed  Google Scholar 

  17. Dahl R, Walsh JC, Lancki D, Laslo P, Iyer SR, Singh H et al. Regulation of macrophage and neutrophil cell fates by the PU.1:C/EBPalpha ratio and granulocyte colony-stimulating factor. Nat Immunol 2003; 4: 1029–1036.

    Article  CAS  PubMed  Google Scholar 

  18. Laslo P, Spooner CJ, Warmflash A, Lancki DW, Lee HJ, Sciammas R et al. Multilineage transcriptional priming and determination of alternate hematopoietic cell fates. Cell 2006; 126: 755–766.

    Article  CAS  PubMed  Google Scholar 

  19. Back J, Allman D, Chan S, Kastner P . Visualizing PU.1 activity during hematopoiesis. Exp Hematol 2005; 33: 395–402.

    CAS  PubMed  Google Scholar 

  20. Nutt SL, Metcalf D, D’Amico A, Polli M, Wu L . Dynamic regulation of PU.1 expression in multipotent hematopoietic progenitors. J Exp Med 2005; 201: 221–231.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Schuetze S, Stenberg PE, Kabat D . The Ets-related transcription factor PU.1 immortalizes erythroblasts. Mol Cell Biol 1993; 13: 5670–5678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Anderson MK, Weiss AH, Hernandez-Hoyos G, Dionne CJ, Rothenberg EV . Constitutive expression of PU.1 in fetal hematopoietic progenitors blocks T-cell development at the pro-T-cell stage. Immunity 2002; 16: 285–296.

    Article  CAS  PubMed  Google Scholar 

  23. Rekhtman N, Radparvar F, Evans T, Skoultchi AI . Direct interaction of hematopoietic transcription factors PU.1 and GATA-1: functional antagonism in erythroid cells. Genes Dev 1999; 13: 1398–1411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rhodes J, Hagen A, Hsu K, Deng M, Liu TX, Look AT et al. Interplay of pu.1 and gata1 determines myelo-erythroid progenitor cell fate in zebrafish. Dev Cell 2005; 8: 97–108.

    Article  CAS  PubMed  Google Scholar 

  25. Galloway JL, Wingert RA, Thisse C, Thisse B, Zon LI . Loss of gata1 but not gata2 converts erythropoiesis to myelopoiesis in zebrafish embryos. Dev Cell 2005; 8: 109–116.

    Article  CAS  PubMed  Google Scholar 

  26. Stopka T, Amanatullah DF, Papetti M, Skoultchi AI . PU.1 inhibits the erythroid program by binding to GATA-1 on DNA and creating a repressive chromatin structure. EMBO J 2005; 24: 3712–3723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Houston IB, Huang KJ, Jennings SR, DeKoter RP . PU.1 immortalizes hematopoietic progenitors in a GM-CSF-dependent manner. Exp Hematol 2007; 35: 374–384.

    Article  CAS  PubMed  Google Scholar 

  28. Schweitzer BL, DeKoter RP . Analysis of gene expression and Ig transcription in PU.1/Spi-B-deficient progenitor B cell lines. J Immunol 2004; 172: 144–154.

    Article  CAS  PubMed  Google Scholar 

  29. Pfaffl MW . A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001; 29: e45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Markey MP, Bergseid J, Bosco EE, Stengel K, Xu H, Mayhew CN et al. Loss of the retinoblastoma tumor suppressor: differential action on transcriptional programs related to cell cycle control and immune function. Oncogene 2007; 26: 6307–6318.

    Article  CAS  PubMed  Google Scholar 

  31. Huang DW, Sherman BT, Tan Q, Collins JR, Alvord WG, Roayaei J et al. The DAVID gene functional classification tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol 2007; 8: R183.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kodandapani R, Pio F, Ni CZ, Piccialli G, Klemsz M, McKercher S et al. A new pattern for helix-turn-helix recognition revealed by the PU.1 ETS-domain-DNA complex. Nature 1996; 380: 456–460.

    Article  CAS  PubMed  Google Scholar 

  33. Wingender E, Dietze P, Karas H, Knuppel R . TRANSFAC: a database on transcription factors and their DNA binding sites. Nucleic Acids Res 1996; 24: 238–241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hinrichs AS, Karolchik D, Baertsch R, Barber GP, Bejerano G, Clawson H et al. The UCSC Genome Browser Database: update 2006. Nucleic Acids Res 2006; 34 (Database issue): D590–D598.

    Article  CAS  PubMed  Google Scholar 

  35. Schwartz S, Elnitski L, Li M, Weirauch M, Riemer C, Smit A et al. MultiPipMaker and supporting tools: alignments and analysis of multiple genomic DNA sequences. Nucleic Acids Res 2003; 31: 3518–3524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Walsh JC, DeKoter RP, Lee HJ, Smith ED, Lancki DW, Gurish MF et al. Cooperative and antagonistic interplay between PU.1 and GATA-2 in the specification of myeloid cell fates. Immunity 2002; 17: 665–676.

    CAS  PubMed  Google Scholar 

  37. Takemoto CM, Yoon YJ, Fisher DE . The identification and functional characterization of a novel mast cell isoform of the microphthalmia-associated transcription factor. J Biol Chem 2002; 277: 30244–30252.

    Article  CAS  PubMed  Google Scholar 

  38. Nimmerjahn F, Ravetch JV . Fcgamma receptors: old friends and new family members. Immunity 2006; 24: 19–28.

    Article  CAS  PubMed  Google Scholar 

  39. Hu R, Sharma SM, Bronisz A, Srinivasan R, Sankar U, Ostrowski MC . Eos, MITF, and PU.1 recruit corepressors to osteoclast-specific genes in committed myeloid progenitors. Mol Cell Biol 2007; 27: 4018–4027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Halbleib JM, Nelson WJ . Cadherins in development: cell adhesion, sorting, and tissue morphogenesis. Genes Dev 2006; 20: 3199–3214.

    Article  CAS  PubMed  Google Scholar 

  41. Rehli M, Lichanska A, Cassady AI, Ostrowski MC, Hume DA . TFEC is a macrophage-restricted member of the microphthalmia-TFE subfamily of basic helix-loop-helix leucine zipper transcription factors. J Immunol 1999; 162: 1559–1565.

    CAS  PubMed  Google Scholar 

  42. Akagawa E, Muto A, Arai K, Watanabe S . Analysis of the 5′ promoters for human IL-3 and GM-CSF receptor alpha genes. Biochem Biophys Res Commun 2003; 300: 600–608.

    Article  CAS  PubMed  Google Scholar 

  43. Polli M, Dakic A, Light A, Wu L, Tarlinton DM, Nutt SL . The development of functional B lymphocytes in conditional PU.1 knock-out mice. Blood 2005; 106: 2083–2090.

    Article  CAS  PubMed  Google Scholar 

  44. Ye M, Ermakova O, Graf T . PU.1 is not strictly required for B cell development and its absence induces a B-2 to B-1 cell switch. J Exp Med 2005; 202: 1411–1422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Henkel GW, McKercher SR, Maki RA . Identification of three genes up-regulated in PU.1 rescued monocytic precursor cells. Int Immunol 2002; 14: 723–732.

    Article  CAS  PubMed  Google Scholar 

  46. Cattoretti G, Shaknovich R, Smith PM, Jack H-M, Murty VV, Alobeid B . Stages of germinal center transit are defined by B cell transcription factor coexpression and relative abundance. J Immunol 2006; 177: 6930–6939.

    Article  CAS  PubMed  Google Scholar 

  47. Nutt SL, Heavey B, Rolink AG, Busslinger M . Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature 1999; 401: 556–562.

    Article  CAS  PubMed  Google Scholar 

  48. Pongubala JM, Northrup DL, Lancki DW, Medina KL, Treiber T, Bertolino E et al. Transcription factor EBF restricts alternative lineage options and promotes B cell fate commitment independently of Pax5. Nat Immunol 2008; 9: 203–215.

    Article  CAS  PubMed  Google Scholar 

  49. Tydell CC, David-Fung E-S, Moore JE, Rowen L, Taghon T, Rothenberg EV . Molecular dissection of prethymic progenitor entry into the T lymphocyte developmental pathway. J Immunol 2007; 179: 421–438.

    Article  CAS  PubMed  Google Scholar 

  50. Laiosa CV, Stadfeld M, Xie H, de Andres-Aguayo L, Graf T . Reprogramming of committed T-cell progenitors to macrophages and dendritic cells by C/EBPa and PU.1 transcription factors. Immunity 2006; 25: 731–744.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Affymetrix GeneChip Microarray Core (Cincinnati Children's Hospital Medical Center) for processing samples, Phil Sanford of the Gene Targeted Mouse Service (University of Cincinnati) for advice and H Leighton Grimes (Cincinnati Children's Hospital Medical Center) and Brock Schweitzer (University of Cincinnati) for helpful discussions. MBK is a PhD candidate at University of Cincinnati, and this work is submitted in partial fulfillment of the degree requirements. This work was supported by National Institutes of Health grant AI052175 and Ohio Cancer Research Associates grant 5407.

Contribution: MBK, IBH and RPD designed and performed experiments and collected data. AJJ and XZ performed experiments. MBK, SG and AGJ analyzed and interpreted data and performed statistical analyses. MBK and RPD drafted the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R P DeKoter.

Additional information

Conflict of interest/disclosure

The authors declare no competing financial interests.

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamath, M., Houston, I., Janovski, A. et al. Dose-dependent repression of T-cell and natural killer cell genes by PU.1 enforces myeloid and B-cell identity. Leukemia 22, 1214–1225 (2008). https://doi.org/10.1038/leu.2008.67

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2008.67

Keywords

This article is cited by

Search

Quick links