Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Experimental non-ATP-competitive therapies for chronic myelogenous leukemia

Abstract

Chronic myelogenous leukemia (CML) is a hematopoietic stem cell malignancy driven by the BCR-ABL fusion tyrosine kinase. The central role played by BCR-ABL1 in the pathogenesis of CML facilitated the development of the tyrosine kinase inhibitor (TKI) imatinib mesylate, the first actual targeted therapy in cancer history. Imatinib competes with ATP at the active site of BCR-ABL1 kinase. Despite outstanding clinical results, imatinib as well as other BCR-ABL1 TKIs have been associated with limited rates of complete molecular response and the development of mutations within the kinase domain of BCR-ABL1 that impairs TKI binding. To override such drawbacks, an array of novel non-ATP-competitive therapies with distinct mechanisms of action is undergoing preclinical, and in some cases, early clinical stages of development. This review focuses on the most promising among such therapeutics.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Ren R . Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nat Rev Cancer 2005; 5: 172–183.

    Article  CAS  Google Scholar 

  2. Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 1996; 2: 561–566.

    CAS  Google Scholar 

  3. Scappini B, Onida F, Kantarjian HM, Dong L, Verstovsek S, Keating MJ et al. In vitro effects of STI 571-containing drug combinations on the growth of Philadelphia-positive chronic myelogenous leukemia cells. Cancer 2002; 94: 2653–2662.

    CAS  Google Scholar 

  4. Gambacorti-Passerini C, le Coutre P, Mologni L, Fanelli M, Bertazzoli C, Marchesi E et al. Inhibition of the ABL kinase activity blocks the proliferation of BCR/ABL+ leukemic cells and induces apoptosis. Blood Cells Mol Dis 1997; 23: 380–394.

    CAS  Google Scholar 

  5. Druker BJ, Guilhot F, O'Brien SG, Gathmann I, Kantarjian H, Gattermann N et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 2006; 355: 2408–2417.

    CAS  Google Scholar 

  6. Azam M, Latek RR, Daley GQ . Mechanisms of autoinhibition and STI-571/imatinib resistance revealed by mutagenesis of BCR-ABL. Cell 2003; 112: 831–843.

    CAS  Google Scholar 

  7. Shah NP, Nicoll JM, Nagar B, Gorre ME, Paquette RL, Kuriyan J et al. Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell 2002; 2: 117–125.

    CAS  Google Scholar 

  8. Hochhaus A, La Rosee P . Imatinib therapy in chronic myelogenous leukemia: strategies to avoid and overcome resistance. Leukemia 2004; 18: 1321–1331.

    CAS  Google Scholar 

  9. Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 2001; 293: 876–880.

    Article  CAS  Google Scholar 

  10. Lowenberg B . Minimal residual disease in chronic myeloid leukemia. N Engl J Med 2003; 349: 1399–1401.

    Google Scholar 

  11. Corbin AS, La Rosee P, Stoffregen EP, Druker BJ, Deininger MW . Several Bcr-Abl kinase domain mutants associated with imatinib mesylate resistance remain sensitive to imatinib. Blood 2003; 101: 4611–4614.

    CAS  Google Scholar 

  12. Gambacorti-Passerini CB, Gunby RH, Piazza R, Galietta A, Rostagno R, Scapozza L . Molecular mechanisms of resistance to imatinib in Philadelphia-chromosome-positive leukaemias. Lancet Oncol 2003; 4: 75–85.

    Google Scholar 

  13. Schindler T, Bornmann W, Pellicena P, Miller WT, Clarkson B, Kuriyan J . Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science 2000; 289: 1938–1942.

    CAS  Google Scholar 

  14. Nagar B, Bornmann WG, Pellicena P, Schindler T, Veach DR, Miller WT et al. Crystal structures of the kinase domain of c-Abl in complex with the small molecule inhibitors PD173955 and imatinib (STI-571). Cancer Res 2002; 62: 4236–4243.

    CAS  Google Scholar 

  15. Hantschel O, Nagar B, Guettler S, Kretzschmar J, Dorey K, Kuriyan J et al. A myristoyl/phosphotyrosine switch regulates c-Abl. Cell 2003; 112: 845–857.

    CAS  Google Scholar 

  16. Weisberg E, Manley PW, Breitenstein W, Bruggen J, Cowan-Jacob SW, Ray A et al. Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell 2005; 7: 129–141.

    CAS  Google Scholar 

  17. Kantarjian H, Giles F, Wunderle L, Bhalla K, O'Brien S, Wassmann B et al. Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALL. N Engl J Med 2006; 354: 2542–2551.

    Google Scholar 

  18. Talpaz M, Shah NP, Kantarjian H, Donato N, Nicoll J, Paquette R et al. Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N Engl J Med 2006; 354: 2531–2541.

    CAS  Google Scholar 

  19. Lombardo LJ, Lee FY, Chen P, Norris D, Barrish JC, Behnia K et al. Discovery of N-(2-chloro-6-methyl- phenyl)-2-(6-(4-(2-hydroxyethyl)- piperazin-1-yl)-2-methylpyrimidin-4-ylamino)thiazole-5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays. J Med Chem 2004; 47: 6658–6661.

    CAS  Google Scholar 

  20. Shah NP, Tran C, Lee FY, Chen P, Norris D, Sawyers CL . Overriding imatinib resistance with a novel ABL kinase inhibitor. Science 2004; 305: 399–401.

    CAS  Google Scholar 

  21. Adrian FJ, Ding Q, Sim T, Velentza A, Sloan C, Liu Y et al. Allosteric inhibitors of Bcr-abl-dependent cell proliferation. Nat Chem Biol 2006; 2: 95–102.

    CAS  Google Scholar 

  22. Powers J, Azam M, Gray NS, Daley GQ . Dissection of BCR-ABL structural domains relating to kinase auto-inhibition using a forward mutational screen with the non-ATP competitive inhibitor GNF-2. Blood 2007; 110, abstract 1021.

  23. Van Etten R, Chan WW, Zaleskas VM, Evangelista P, Lazarides K, Peng C et al. DCC-2036: a novel switch pocket inhibitor of ABL tyrosine kinase with therapeutic efficacy against BCR-ABL T315I in vitro and in a CML mouse model. Blood 2007; 110, abstract 463.

  24. Gumireddy K, Baker SJ, Cosenza SC, John P, Kang AD, Robell KA et al. A non-ATP-competitive inhibitor of BCR-ABL overrides imatinib resistance. Proc Natl Acad Sci USA 2005; 102: 1992–1997.

    CAS  Google Scholar 

  25. Hannon G . RNA interference. Nature 2002; 418: 244–251.

    CAS  Google Scholar 

  26. Zamore P . Ancient pathways programmed by small RNAs. Science 2002; 296: 1265–1269.

    CAS  Google Scholar 

  27. Bernstein E, Caudy AA, Hammond SM, Hannon GJ . Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 2001; 409: 363–366.

    CAS  Google Scholar 

  28. Scherr M, Battmer K, Winkler T, Heidenreich O, Ganser A, Eder M . Specific inhibition of bcr-abl gene expression by small interfering RNA. Blood 2003; 101: 1566–1569.

    CAS  Google Scholar 

  29. Wohlbold L, van der Kuip H, Miething C, Vornlocher HP, Knabbe C, Duyster J et al. Inhibition of bcr-abl gene expression by small interfering RNA sensitizes for imatinib mesylate (STI571). Blood 2003; 102: 2236–2239.

    CAS  Google Scholar 

  30. Withey JM, Marley SB, Kaeda J, Harvey AJ, Crompton MR, Gordon MY . Targeting primary human leukaemia cells with RNA interference: Bcr-Abl targeting inhibits myeloid progenitor self-renewal in chronic myeloid leukaemia cells. Br J Haematol 2005; 129: 377–380.

    CAS  Google Scholar 

  31. Wilda M, Fuchs U, Wossmann W, Borkhardt A . Killing of leukemic cells with a BCR/ABL fusion gene by RNA interference (RNAi). Oncogene 2002; 21: 5716–5724.

    CAS  Google Scholar 

  32. McLaughlin J, Cheng D, Singer O, Lukacs RU, Radu CG, Verma IM et al. Sustained suppression of Bcr-Abl-driven lymphoid leukemia by microRNA mimics. Proc Natl Acad Sci USA 2007; 104: 20501–20506.

    CAS  Google Scholar 

  33. Yang L, Bailey L, Baltimore D, Wang P . Targeting lentiviral vectors to specific cell types in vivo. Proc Natl Acad Sci USA 2006; 103: 11479–11484.

    CAS  Google Scholar 

  34. Gresch O, Engel FB, Nesic D, Tran TT, England HM, Hickman ES et al. New non-viral method for gene transfer into primary cells. Methods 2004; 33: 151–163.

    CAS  Google Scholar 

  35. Scherer L, Rossi JJ . Approaches for the sequence-specific knockdown of mRNA. Nat Biotechnol 2003; 21: 1457–1465.

    CAS  Google Scholar 

  36. Snyder DS, Wu Y, Wang JL, Rossi JJ, Swiderski P, Kaplan BE et al. Ribozyme-mediated inhibition of bcr-abl gene expression in a Philadelphia chromosome-positive cell line. Blood 1993; 82: 600–605.

    CAS  Google Scholar 

  37. Crooke ST . Molecular mechanisms of action of antisense drugs. Biochim Biophys Acta 1999; 1489: 31–44.

    CAS  Google Scholar 

  38. Skorski T, Nieborowska-Skorska M, Nicolaides NC, Szczylik C, Iversen P, Iozzo RV et al. Suppression of Philadelphia1 leukemia cell growth in mice by BCR-ABL antisense oligodeoxynucleotide. Proc Natl Acad Sci USA 1994; 91: 4504–4508.

    CAS  Google Scholar 

  39. Larsen HJ, Bentin T, Nielsen PE . Antisense properties of peptide nucleic acid. Biochim Biophys Acta 1999; 1489: 159–166.

    CAS  Google Scholar 

  40. Janowski BA, Kaihatsu K, Huffman KE, Schwartz JC, Ram R, Hardy D et al. Inhibiting transcription of chromosomal DNA with antigene peptide nucleic acids. Nat Chem Biol 2005; 1: 210–215.

    CAS  Google Scholar 

  41. Nielsen PE, Egholm M, Berg RH, Buchardt O . Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 1991; 254: 1497–1500.

    CAS  Google Scholar 

  42. Rapozzi V, Burm BE, Cogoi S, van der Marel GA, van Boom JH, Quadrifoglio F et al. Antiproliferative effect in chronic myeloid leukaemia cells by antisense peptide nucleic acids. Nucleic Acids Res 2002; 30: 3712–3721.

    CAS  Google Scholar 

  43. Lim SH, Coleman S . Chronic myeloid leukemia as an immunological target. Am J Hematol 1997; 54: 61–67.

    CAS  Google Scholar 

  44. Bocchia M, Korontsvit T, Xu Q, Mackinnon S, Yang SY, Sette A et al. Specific human cellular immunity to bcr-abl oncogene-derived peptides. Blood 1996; 87: 3587–3592.

    CAS  Google Scholar 

  45. Guilhot F, Lacotte-Thierry L . Interferon-alpha: mechanisms of action in chronic myelogenous leukemia in chronic phase. Hematol Cell Ther 1998; 40: 237–239.

    CAS  Google Scholar 

  46. Barrett J . Allogeneic stem cell transplantation for chronic myeloid leukemia. Semin Hematol 2003; 40: 59–71.

    Google Scholar 

  47. Molldrem JJ, Lee PP, Wang C, Felio K, Kantarjian HM, Champlin RE et al. Evidence that specific T lymphocytes may participate in the elimination of chronic myelogenous leukemia. Nat Med 2000; 6: 1018–1023.

    CAS  Google Scholar 

  48. Molldrem JJ, Lee PP, Kant S, Wieder E, Jiang W, Lu S et al. Chronic myelogenous leukemia shapes host immunity by selective deletion of high-avidity leukemia-specific T cells. J Clin Invest 2003; 111: 639–647.

    CAS  Google Scholar 

  49. Qazilbash M, Wieder E, Rios R, Lu S, Kant S, Giralt S et al. Vaccination with the PR1 leukemia-associated antigen can induce complete remission in patients with myeloid leukemia. Blood 2004; 104: 77a.

    Google Scholar 

  50. Yotnda P, Firat H, Garcia-Pons F, Garcia Z, Gourru G, Vernant JP et al. Cytotoxic T cell response against the chimeric p210 BCR-ABL protein in patients with chronic myelogenous leukemia. J Clin Invest 1998; 101: 2290–2296.

    CAS  Google Scholar 

  51. Bocchia M, Gentili S, Abruzzese E, Fanelli A, Iuliano F, Tabilio A et al. Effect of a p210 multipeptide vaccine associated with imatinib or interferon in patients with chronic myeloid leukaemia and persistent residual disease: a multicentre observational trial. Lancet 2005; 365: 657–662.

    CAS  Google Scholar 

  52. Li Z, Qiao Y, Liu B, Laska EJ, Chakravarthi P, Kulko JM et al. Combination of imatinib mesylate with autologous leukocyte-derived heat shock protein and chronic myelogenous leukemia. Clin Cancer Res 2005; 11: 4460–4468.

    CAS  Google Scholar 

  53. Maslak P, Krug L, Chanel S, Dao T, James L, Tyson L et al. Pilot study of a Wilms tumor protein (WT1) heteroclitic peptide vaccine in patients with myeloid and thoracic neoplasms. Blood 2007; 110, abstract 903.

  54. Smith B, Kasamon Y, Miller C, Chia C, Gocke C, Kowalski J et al. K562/GM-CSF vaccination reduces tumor burden, including achieving molecular remissions, in chronic myeloid leukemia (CML) in patients (Pts) with residual disease on imatinib mesylate (IM). Abstract #6509. Proc Am Soc Clin Oncol 2006, abstract 6509.

  55. Rezvani K, Yong AS, Mielke S, Savani BN, Musse L, Superata J et al. Leukemia-associated antigen specific T-cell responses following combined PR1 and WT1 peptide vaccination in patients with myeloid malignancies. Blood 2008; 111: 236–242.

    CAS  Google Scholar 

  56. Gorre ME, Ellwood-Yen K, Chiosis G, Rosen N, Sawyers CL . BCR-ABL point mutants isolated from patients with imatinib mesylate-resistant chronic myeloid leukemia remain sensitive to inhibitors of the BCR-ABL chaperone heat shock protein 90. Blood 2002; 100: 3041–3044.

    CAS  Google Scholar 

  57. Nimmanapalli R, O'Bryan E, Bhalla K . Geldanamycin and its analogue 17-allylamino-17-demethoxygeldanamycin lowers Bcr-Abl levels and induces apoptosis and differentiation of Bcr-Abl-positive human leukemic blasts. Cancer Res 2001; 61: 1799–1804.

    CAS  Google Scholar 

  58. George P, Bali P, Annavarapu S, Scuto A, Fiskus W, Guo F et al. Combination of the histone deacetylase inhibitor LBH589 and the hsp90 inhibitor 17-AAG is highly active against human CML-BC cells and AML cells with activating mutation of FLT-3. Blood 2005; 105: 1768–1776.

    CAS  Google Scholar 

  59. Grem JL, Morrison G, Guo XD, Agnew E, Takimoto CH, Thomas R et al. Phase I and pharmacologic study of 17-(allylamino)-17-demethoxygeldanamycin in adult patients with solid tumors. J Clin Oncol 2005; 23: 1885–1893.

    CAS  Google Scholar 

  60. Lancet J, Gojo I, Baer M, Burton M, Klein M, Nowadly C et al. Phase 1, pharmacokinetic (PK) and pharmacodynamic (PD) study of of the Hsp-90 inhibitor, KOS-1022 (17-DMAG), in patients with refractory hematological malignancies. Proc Am Soc Clin Oncol 2006; 24, abstract 2081.

  61. Zhang X, Subrahmanyam R, Wong R, Gross AW, Ren R . The NH(2)-terminal coiled-coil domain and tyrosine 177 play important roles in induction of a myeloproliferative disease in mice by Bcr-Abl. Mol Cell Biol 2001; 21: 840–853.

    CAS  Google Scholar 

  62. Million RP, Van Etten RA . The Grb2 binding site is required for the induction of chronic myeloid leukemia-like disease in mice by the Bcr/Abl tyrosine kinase. Blood 2000; 96: 664–670.

    CAS  Google Scholar 

  63. Sattler M, Mohi MG, Pride YB, Quinnan LR, Malouf NA, Podar K et al. Critical role for Gab2 in transformation by BCR/ABL. Cancer Cell 2002; 1: 479–492.

    CAS  Google Scholar 

  64. Sekulic A, Hudson CC, Homme JL, Yin P, Otterness DM, Karnitz LM et al. A direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and the mammalian target of rapamycin in mitogen-stimulated and transformed cells. Cancer Res 2000; 60: 3504–3513.

    CAS  Google Scholar 

  65. Mohi MG, Boulton C, Gu TL, Sternberg DW, Neuberg D, Griffin JD et al. Combination of rapamycin and protein tyrosine kinase (PTK) inhibitors for the treatment of leukemias caused by oncogenic PTKs. Proc Natl Acad Sci USA 2004; 101: 3130–3135.

    CAS  Google Scholar 

  66. Mayerhofer M, Aichberger KJ, Florian S, Krauth MT, Hauswirth AW, Derdak S et al. Identification of mTOR as a novel bifunctional target in chronic myeloid leukemia: dissection of growth-inhibitory and VEGF-suppressive effects of rapamycin in leukemic cells. FASEB J 2005; 19: 960–962.

    CAS  Google Scholar 

  67. Burchert A, Wang Y, Cai D, von Bubnoff N, Paschka P, Muller-Brusselbach S et al. Compensatory PI3-kinase/Akt/mTor activation regulates imatinib resistance development. Leukemia 2005; 19: 1774–1782.

    CAS  Google Scholar 

  68. Skorski T, Kanakaraj P, Ku DH, Nieborowska-Skorska M, Canaani E, Zon G et al. Negative regulation of p120GAP GTPase promoting activity by p210bcr/abl: implication for RAS-dependent Philadelphia chromosome positive cell growth. J Exp Med 1994; 179: 1855–1865.

    CAS  Google Scholar 

  69. Beaupre DM, Kurzrock R . RAS and leukemia: from basic mechanisms to gene-directed therapy. J Clin Oncol 1999; 17: 1071–1079.

    CAS  Google Scholar 

  70. Alvarado Y, Giles FJ . Ras as a therapeutic target in hematologic malignancies. Expert Opin Emerg Drugs 2007; 12: 271–284.

    CAS  Google Scholar 

  71. Borthakur G, Kantarjian H, Daley G, Talpaz M, O'Brien S, Garcia-Manero G et al. Pilot study of lonafarnib, a farnesyl transferase inhibitor, in patients with chronic myeloid leukemia in the chronic or accelerated phase that is resistant or refractory to imatinib therapy. Cancer 2006; 106: 346–352.

    CAS  Google Scholar 

  72. Cortes J, Quintas-Cardama A, Garcia-Manero G, O'Brien S, Jones D, Faderl S et al. Phase 1 study of tipifarnib in combination with imatinib for patients with chronic myelogenous leukemia in chronic phase after imatinib failure. Cancer 2007; 110: 2000–2006.

    CAS  Google Scholar 

  73. Cortes J, Jabbour E, Daley GQ, O'Brien S, Verstovsek S, Ferrajoli A et al. Phase 1 study of lonafarnib (SCH 66336) and imatinib mesylate in patients with chronic myeloid leukemia who have failed prior single-agent therapy with imatinib. Cancer 2007; 110: 1295–1302.

    CAS  Google Scholar 

  74. Lee F, Wen ML, Camuso A, Castaneda S, Fager K, Flefleh C et al. Quiescent chronic myelogenous leukemia (CML) cells are resistant to BCR-ABL inhibitors but preferentially sensitive to BMS-214662, a farnesyltransferase inhibitor (FTI) with unique quiescent-cell selective cytotoxicity. Blood 2005; 106, abstract 1993.

  75. Rahmani M, Nguyen TK, Dent P, Grant S . The multikinase inhibitor sorafenib induces apoptosis in highly imatinib mesylate-resistant bcr/abl+ human leukemia cells in association with signal transducer and activator of transcription 5 inhibition and myeloid cell leukemia-1 down-regulation. Mol Pharmacol 2007; 72: 788–795.

    CAS  Google Scholar 

  76. Kang CD, Yoo SD, Hwang BW, Kim KW, Kim DW, Kim CM et al. The inhibition of ERK/MAPK not the activation of JNK/SAPK is primarily required to induce apoptosis in chronic myelogenous leukemic K562 cells. Leuk Res 2000; 24: 527–534.

    CAS  Google Scholar 

  77. Yu C, Krystal G, Varticovksi L, McKinstry R, Rahmani M, Dent P et al. Pharmacologic mitogen-activated protein/extracellular signal-regulated kinase kinase/mitogen-activated protein kinase inhibitors interact synergistically with STI571 to induce apoptosis in Bcr/Abl-expressing human leukemia cells. Cancer Res 2002; 62: 188–199.

    CAS  Google Scholar 

  78. Cancelas JA, Lee AW, Prabhakar R, Stringer KF, Zheng Y, Williams DA . Rac GTPases differentially integrate signals regulating hematopoietic stem cell localization. Nat Med 2005; 11: 886–891.

    CAS  Google Scholar 

  79. Thomas EK, Cancelas JA, Chae HD, Cox AD, Keller PJ, Perrotti D et al. Rac guanosine triphosphatases represent integrating molecular therapeutic targets for BCR-ABL-induced myeloproliferative disease. Cancer Cell 2007; 12: 467–478.

    CAS  Google Scholar 

  80. Nightingale KP, O'Neill LP, Turner BM . Histone modifications: signalling receptors and potential elements of a heritable epigenetic code. Curr Opin Genet Dev 2006; 16: 125–136.

    CAS  Google Scholar 

  81. Nimmanapalli R, Fuino L, Bali P, Gasparetto M, Glozak M, Tao J et al. Histone deacetylase inhibitor LAQ824 both lowers expression and promotes proteasomal degradation of Bcr-Abl and induces apoptosis of imatinib mesylate-sensitive or -refractory chronic myelogenous leukemia-blast crisis cells. Cancer Res 2003; 63: 5126–5135.

    CAS  Google Scholar 

  82. Nimmanapalli R, Fuino L, Stobaugh C, Richon V, Bhalla K . Cotreatment with the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) enhances imatinib-induced apoptosis of Bcr-Abl-positive human acute leukemia cells. Blood 2003; 101: 3236–3239.

    CAS  Google Scholar 

  83. Fiskus W, Pranpat M, Bali P, Balasis M, Kumaraswamy S, Boyapalle S et al. Combined effects of novel tyrosine kinase inhibitor AMN107 and histone deacetylase inhibitor LBH589 against Bcr-Abl-expressing human leukemia cells. Blood 2006; 108: 645–652.

    CAS  Google Scholar 

  84. Okabe S, Tauchi T, Nakajima A, Sashida G, Gotoh A, Broxmeyer HE et al. Depsipeptide (FK228) preferentially induces apoptosis in BCR/ABL-expressing cell lines and cells from patients with chronic myelogenous leukemia in blast crisis. Stem Cells Dev 2007; 16: 503–514.

    CAS  Google Scholar 

  85. Neviani P, Santhanam R, Trotta R, Notari M, Blaser BW, Liu S et al. The tumor suppressor PP2A is functionally inactivated in blast crisis CML through the inhibitory activity of the BCR/ABL-regulated SET protein. Cancer Cell 2005; 8: 355–368.

    CAS  Google Scholar 

  86. Fujita T, Hirose R, Yoneta M, Sasaki S, Inoue K, Kiuchi M et al. Potent immunosuppressants, 2-alkyl-2-aminopropane-1,3-diols. J Med Chem 1996; 39: 4451–4459.

    CAS  Google Scholar 

  87. Kappos L, Antel J, Comi G, Montalban X, O'Connor P, Polman CH et al. Oral fingolimod (FTY720) for relapsing multiple sclerosis. N Engl J Med 2006; 355: 1124–1140.

    CAS  Google Scholar 

  88. Neviani P, Santhanam R, Oaks JJ, Eiring AM, Notari M, Blaser BW et al. FTY720, a new alternative for treating blast crisis chronic myelogenous leukemia and Philadelphia chromosome-positive acute lymphocytic leukemia. J Clin Invest 2007; 117: 2408–2421.

    CAS  Google Scholar 

  89. Roberts KG, Ashman, LK, Sim ATR, Verrills NM . Altered expression of PP2A regulatory subunits in chronic myelogenous leukemia: identifying targets for improved therapies. Blood 2007; 110, abstract 2925.

  90. McWhirter JR, Wang JY . An actin-binding function contributes to transformation by the Bcr-Abl oncoprotein of Philadelphia chromosome-positive human leukemias. EMBO J 1993; 12: 1533–1546.

    CAS  Google Scholar 

  91. Vigneri P, Wang JY . Induction of apoptosis in chronic myelogenous leukemia cells through nuclear entrapment of BCR-ABL tyrosine kinase. Nat Med 2001; 7: 228–234.

    CAS  Google Scholar 

  92. Aloisi A, Di Gregorio S, Stagno F, Guglielmo P, Mannino F, Sormani MP et al. BCR-ABL nuclear entrapment kills human CML cells: ex vivo study on 35 patients with the combination of imatinib mesylate and leptomycin B. Blood 2006; 107: 1591–1598.

    CAS  Google Scholar 

  93. Melo JV, Barnes DJ . Chronic myeloid leukaemia as a model of disease evolution in human cancer. Nat Rev Cancer 2007; 7: 441–453.

    CAS  Google Scholar 

  94. McCabe N, Turner NC, Lord CJ, Kluzek K, Bialkowska A, Swift S et al. Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition. Cancer Res 2006; 66: 8109–8115.

    CAS  Google Scholar 

  95. O'Hare T, Walters DK, Stoffregen EP, Jia T, Manley PW, Mestan J et al. In vitro activity of Bcr-Abl inhibitors AMN107 and BMS-354825 against clinically relevant imatinib-resistant Abl kinase domain mutants. Cancer Res 2005; 65: 4500–4505.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Quintás-Cardama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quintás-Cardama, A. Experimental non-ATP-competitive therapies for chronic myelogenous leukemia. Leukemia 22, 932–940 (2008). https://doi.org/10.1038/leu.2008.47

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2008.47

Keywords

Search

Quick links