Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Spotlight Review
  • Published:

Chemokine-mobilized adult stem cells; defining a better hematopoietic graft

Abstract

Stem cell research is currently focused on totipotent stem cells and their therapeutic potential, however adult stem cells, while restricted to differentiation within their tissue or origin, also have therapeutic utility. Transplantation with bone marrow hematopoietic stem cells (HSC) has been used for curative therapy for decades. More recently, alternative sources of HSC, particularly those induced to exit marrow or mobilize to peripheral blood by G-CSF, have become the most widely used hematopoietic graft and show significant superiority to marrow HSC. The chemokine/chemokine receptor axis also mobilizes HSC that occurs more rapidly than with G-CSF. In mice, the HSC and progenitor cells (HPC) mobilized by the CXCR2 receptor agonist GROβ can be harvested within minutes of administration and show significantly lower levels of apoptosis, enhanced homing to marrow, expression of more activated integrin receptors and superior repopulation kinetics and more competitive engraftment than the equivalent cells mobilized by G-CSF. These characteristics suggest that chemokine axis-mobilized HSC represent a population of adult stem cells distinct from those mobilized by G-CSF, with superior therapeutic potential. It remains to be determined if the chemokine mobilization axis can be harnessed to mobilize other populations of unique adult stem cells with clinical utility.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Evans MJ, Kaufman MH . Establishment in culture of pluripotential cells from mouse embryos. Nature 1981; 292: 154–156.

    CAS  Google Scholar 

  2. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS et al. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282: 1145–1147.

    Article  CAS  Google Scholar 

  3. Smith AG . Embryo-derived stem cells of mice and men. Annu Rev Cell Dev Biol 2000; 17: 435–462.

    Google Scholar 

  4. Pera MF, Reubinoff B, Trounson A . Human embryonic stem cells. J Cell Sci 2000; 113: 5–10.

    CAS  Google Scholar 

  5. Dexter TM, Allen TD, Lajtha LG . Conditions controlling the proliferation of haemopoietic stem cells in vitro. J Cell Physiol 1977; 91: 335–344.

    CAS  Google Scholar 

  6. Dexter TM, Wright EG, Krizsa F, Lajtha LG . Regulation of haemopoietic stem cell proliferation in long term bone marrow cultures. Biomedicine 1977; 27: 344–349.

    CAS  Google Scholar 

  7. Serafini M, Verfaillie CM . Pluripotency in adult stem cells: state of the art. Semin Reprod Med 2006; 24: 379–388.

    CAS  Google Scholar 

  8. Kucia M, Reca R, Campbell FR, Zuba-Surma E, Majka M, Ratajczak J et al. A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow. Leukemia 2006; 20: 857–869.

    CAS  Google Scholar 

  9. Kucia M, Halasa M, Wysoczynski M, Baskiewicz-Masiuk M, Moldenhawer S, Zuba-Surma E et al. Morphological and molecular characterization of novel population of CXCR4+ SSEA-4+ Oct-4+ very small embryonic-like cells purified from human cord blood: preliminary report. Leukemia 2007; 21: 297–303.

    CAS  Google Scholar 

  10. Prockop DJ, Gregory CA, Spees JL . One strategy for cell and gene therapy: harnessing the power of adult stem cells to repair tissues. Proc Natl Acad Sci USA 2003; 100 (Suppl 1): 11917–11923.

    CAS  Google Scholar 

  11. Ye L, Haider HK, Sim EK . Adult stem cells for cardiac repair: a choice between skeletal myoblasts and bone marrow stem cells. Exp Biol Med 2006; 231: 8–19.

    CAS  Google Scholar 

  12. Prockop DJ, Olson SD . Clinical trials with adult stem/progenitor cells for tissue repair: let's not overlook some essential precautions. Blood 2007; 109: 3147–3151.

    CAS  Google Scholar 

  13. Gage FH, Verma IM . Stem cells at the dawn of the 21st century. Proc Natl Acad Sci USA 2003; 100 (Suppl 1): 11817–11818.

    CAS  Google Scholar 

  14. Mauro A . Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 1961; 9: 493–495.

    CAS  Google Scholar 

  15. Goldring K, Partridge T, Watt D . Muscle stem cells. J Pathol 2002; 197: 457–467.

    Google Scholar 

  16. Asakura A, Komaki M, Rudnicki M . Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic, and adipogenic differentiation. Differentiation 2001; 68: 245–253.

    CAS  Google Scholar 

  17. Wada MR, Inagawa-Ogashiwa M, Shimizu S, Yasumoto S, Hashimoto N . Generation of different fates from multipotent muscle stem cells. Development 2002; 129: 2987–2995.

    CAS  Google Scholar 

  18. Jackson KA, Mi T, Goodell MA . Hematopoietic potential of stem cells isolated from murine skeletal muscle. Proc Natl Acad Sci USA 1999; 96: 14482–14486.

    CAS  Google Scholar 

  19. Gussoni E, Soneoka Y, Strickland CD, Buzney EA, Khan MK, Flint AF et al. Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 1999; 401: 390–394.

    CAS  Google Scholar 

  20. McKinney-Freeman SL, Jackson KA, Camargo FD, Ferrari G, Mavilio F, Goodell MA . Muscle-derived hematopoietic stem cells are hematopoietic in origin. Proc Natl Acad Sci USA 2002; 99: 1341–1346.

    CAS  Google Scholar 

  21. Kawada H, Ogawa M . Bone marrow origin of hematopoietic progenitors and stem cells in murine muscle. Blood 2001; 98: 2008–2013.

    CAS  Google Scholar 

  22. McKay R . Stem cells in the central nervous system. Science 1997; 276: 66–71.

    CAS  Google Scholar 

  23. Gage FH . Mammalian neural stem cells. Science 2000; 287: 1433–1438.

    CAS  Google Scholar 

  24. Shih CC, Weng Y, Mamelak A, LeBon T, Hu MC, Forman SJ . Identification of a candidate human neurohematopoietic stem-cell population. Blood 2001; 98: 2412–2422.

    CAS  Google Scholar 

  25. Bjornson CR, Rietze RL, Reynolds BA, Magli MC, Vescovi AL . Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science 1999; 283: 534–537.

    CAS  Google Scholar 

  26. Morshead CM, Benveniste P, Iscove NN, van der KD . Hematopoietic competence is a rare property of neural stem cells that may depend on genetic and epigenetic alterations. Nat Med 2002; 8: 268–273.

    CAS  Google Scholar 

  27. Prockop DJ . Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 1997; 276: 71–74.

    Article  CAS  Google Scholar 

  28. Bianco P, Gehron RP . Marrow stromal stem cells. J Clin Invest 2000; 105: 1663–1668.

    CAS  Google Scholar 

  29. Jori FP, Napolitano MA, Melone MA, Cipollaro M, Cascino A, Altucci L et al. Molecular pathways involved in neural in vitro differentiation of marrow stromal stem cells. J Cell Biochem 2005; 94: 645–655.

    CAS  Google Scholar 

  30. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143–147.

    CAS  Google Scholar 

  31. Krause DS, Theise ND, Collector MI, Henegariu O, Hwang S, Gardner R et al. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 2001; 105: 369–377.

    CAS  Google Scholar 

  32. Grant MB, May WS, Caballero S, Brown GA, Guthrie SM, Mames RN et al. Adult hematopoietic stem cells provide functional hemangioblast activity during retinal neovascularization. Nat Med 2002; 8: 607–612.

    CAS  Google Scholar 

  33. Gothot A, van der Loo JC, Clapp DW, Srour EF . Cell cycle-related changes in repopulating capacity of human mobilized peripheral blood CD34(+) cells in non-obese diabetic/severe combined immune-deficient mice. Blood 1998; 92: 2641–2649.

    CAS  Google Scholar 

  34. Ramshaw HS, Rao SS, Crittenden RB, Peters SO, Weier HU, Quesenberry PJ . Engraftment of bone marrow cells into normal unprepared hosts: effects of 5-fluorouracil and cell cycle status. Blood 1995; 86: 924–929.

    CAS  Google Scholar 

  35. Schuchert MJ, Wright RD, Colson YL . Characterization of a newly discovered T-cell receptor beta-chain heterodimer expressed on a CD8+ bone marrow subpopulation that promotes allogeneic stem cell engraftment. Nat Med 2000; 6: 904–909.

    CAS  Google Scholar 

  36. Gandy KL, Domen J, Aguila H, Weissman IL . CD8+TCR+ and CD8+TCR- cells in whole bone marrow facilitate the engraftment of hematopoietic stem cells across allogeneic barriers. Immunity 1999; 11: 579–590.

    CAS  Google Scholar 

  37. Christopherson II KW, Hangoc G, Mantel CR, Broxmeyer HE . Modulation of hematopoietic stem cell homing and engraftment by CD26. Science 2004; 305: 1000–1003.

    CAS  Google Scholar 

  38. Peled A, Petit I, Kollet O, Magid M, Ponomaryov T, Byk T et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science 1999; 283: 845–848.

    CAS  Google Scholar 

  39. McCredie KB, Hersch EM, Freireich EJ . Cells capable of colony formation in the peripheral blood of man. Science 1971; 171: 293–294.

    CAS  Google Scholar 

  40. Kurnick JE, Robinson WA . Colony growth of human peripheral white blood cells in vitro. Blood 1971; 37: 136–141.

    CAS  Google Scholar 

  41. Chervenick PA, Boggs DR . In vitro growth of granulocytic and mononuclear cell colonies from blood of normal individuals. Blood 1971; 37: 131–135.

    CAS  Google Scholar 

  42. To LB, Haylock DN, Simmons PJ, Juttner CA . The biology and clinical uses of blood stem cells. Blood 1997; 89: 2233–2258.

    CAS  Google Scholar 

  43. Papayannopoulou T . Current mechanistic scenarios in hematopoietic stem/progenitor cell mobilization. Blood 2004; 103: 1580–1585.

    CAS  Google Scholar 

  44. Fruehauf S, Seggewiss R . Its moving day: factors affecting peripheral blood stem cell mobilization and strategies for improvement. Br J Haematol 2003; 122: 360–375.

    CAS  Google Scholar 

  45. Thomas J, Liu F, Link DC . Mechanisms of mobilization of hematopoietic progenitors with granulocyte colony-stimulating factor. Curr Opin Hematol 2002; 9: 183–189.

    Google Scholar 

  46. Goldman JM, Horowitz MM . The international bone marrow registry. Int J Hematol 2002; 76: 393–397.

    Google Scholar 

  47. Ringden O, Remberger M, Runde V, Bornhausser M, Blau IW, Basara N et al. Faster engraftment of neutrophils and platelets with peripheral blood stem cells from unrelated donors: a comparison with marrow transplantation. Bone Marrow Transplant 2000; 26: 6–8.

    Google Scholar 

  48. Benito AI, Diaz MA, Gonzales-Vicent M, Sevilla J, Madero L . Hematopoietic stem cell transplantation using umbilical cord blood progenitors: review of current clinical results. Bone Marrow Transplant 2004; 33: 675–690.

    CAS  Google Scholar 

  49. Bensinger W, Singer J, Appelbaum FR, Lilleby K, Longin K, Rowley S et al. Autologous transplantation with peripheral blood mononuclear cells collected after administration of recombinant granulocyte stimulating factor. Blood 1993; 81: 3158–3163.

    CAS  Google Scholar 

  50. Blume KG, Thomas ED . A review of autologous hematopoietic cell transplantation. Biol Blood Marrow Transplant 2000; 6: 1–12.

    CAS  Google Scholar 

  51. Kennedy J . Peripheral blood progenitor cell mobilization: a clinical review. Pharmacotherapy 1998; 18: 3–8.

    Google Scholar 

  52. Welte K, Gabrilove J, Bronchud MH, Platzer E, Morstyn G . Filgrastim (r-metHuG-CSF): The first 10 years. Blood 1996; 88: 1907–1929.

    CAS  Google Scholar 

  53. Heldal D, Tjonnfjord G, Brinch L, Albrechsten D, Egeland T, Steen R et al. A randomized study of allogeneic transplantation with stem cells from blood or bone marrow. Bone Marrow Transplant 2000; 25: 1129–1136.

    CAS  Google Scholar 

  54. Bensinger WI, Martin PJ, Storer B, Clift R, Forman SJ, Negrin R et al. Transplantation of bone marrow as compared with peripheral-blood cells from HLA-identical relatives in patients with hematologic cancers. N Engl J Med 2001; 344: 175–181.

    CAS  Google Scholar 

  55. Hassan HT, Zeller W, Stockschlader M, Kruger W, Hoffknecht MM, Zander AR . Comparison between bone marrow and G-CSF-mobilized peripheral blood allografts undergoing clinical scale CD34+ cell selection. Stem Cells 1996; 14: 419–429.

    CAS  Google Scholar 

  56. Tricot G, Jagannath S, Vesole D, Nelson J, Tindle S, Miller L et al. Peripheral blood stem cell transplants for multiple myeloma: identification of favorable variables for rapid engraftment in 225 patients. Blood 1995; 85: 588–596.

    CAS  Google Scholar 

  57. Verfaillie CM, Almeida-Porada G, Wissink S, Zanjani ED . Kinetics of engraftment of CD34(-) and CD34(+) cells from mobilized blood differs from that of CD34(-) and CD34(+) cells from bone marrow. Exp Hematol 2000; 28: 1071–1079.

    CAS  Google Scholar 

  58. Bonig H, Priestley GV, Oehler V, Papayannopoulou T . Hematopoietic progenitor cells (HPC) from mobilized peripheral blood display enhanced migration and marrow homing compared to steady-state bone marrow HPC. Exp Hematol 2007; 35: 326–334.

    CAS  Google Scholar 

  59. Kim CH, Broxmeyer HE . In vitro behavior of hematopoietic progenitor cells under the influence of chemoattractants: stromal cell-derived factor-1, steel factor, and the bone marrow environment. Blood 1998; 91: 100–110.

    CAS  Google Scholar 

  60. Mohle R, Bautz F, Rafii S, Moore MA, Brugger W, Kanz L . The chemokine receptor CXCR-4 is expressed on CD34+ hematopoietic progenitors and leukemic cells and mediates transendothelial migration induced by stromal cell-derived factor-1. Blood 1998; 91: 4523–4530.

    CAS  Google Scholar 

  61. Lapidot T, Kollet O . The essential roles of the chemokine SDF-1 and its receptor CXCR4 in human stem cell homing and repopulation of transplanted immune-deficient NOD/SCID and NOD/SCID/B2m(null) mice. Leukemia 2002; 16: 1992–2003.

    CAS  Google Scholar 

  62. Lord BI, Woolford LB, Wood LM, Czaplewski LG, McCourt M, Hunter MG et al. Mobilization of early hematopoietic progenitor cells with BB-10010: a genetically engineered variant of human macrophage inflammatory protein-1 alpha. Blood 1995; 85: 3412–3415.

    CAS  Google Scholar 

  63. Broxmeyer HE, Orazi A, Hague NL, Sledge Jr GW, Rasmussen H, Gordon MS . Myeloid progenitor cell proliferation and mobilization effects of BB10010, a genetically engineered variant of human macrophage inflammatory protein-1alpha, in a phase I clinical trial in patients with relapsed/refractory breast cancer. Blood Cells Mol Dis 1998; 24: 14–30.

    CAS  Google Scholar 

  64. Broxmeyer HE, Cooper S, Hangoc G, Gao JL, Murphy PM . Dominant myelopoietic effector functions mediated by chemokine receptor CCR1. J Exp Med 1999; 189: 1987–1992.

    CAS  Google Scholar 

  65. Merzouk A, Wong D, Salari H, Bian H, Fukuda S, Pelus LM . Rational design of chemokine SDF-1 analogs with agonist activity for the CXCR4 receptor and the capacity to rapidly mobilize PMN and hematopoietic progenitor cells in mice. Lett Drug Des Discov 2004; 1: 126–134.

    CAS  Google Scholar 

  66. Pelus LM, Bian H, Fukuda S, Wong D, Merzouk A, Salari H . The CXCR4 agonist peptide, CTCE-0021, rapidly mobilizes polymorphonuclear neutrophils and hematopoietic progenitor cells into peripheral blood and synergizes with granulocyte colony-stimulating factor. Exp Hematol 2005; 33: 295–307.

    CAS  Google Scholar 

  67. Broxmeyer HE, Clapp DW, Orschell CM, Hangoc G, Cooper S, Plett A et al. Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J Exp Med 2005; 201: 1307–1318.

    CAS  Google Scholar 

  68. Liles WC, Broxmeyer HE, Rodger E, Wood B, Hubel K, Cooper S et al. Mobilization of hematopoietic progenitor cells in healthy volunteers by AMD3100, a CXCR4 antagonist. Blood 2003; 102: 2728–2730.

    CAS  Google Scholar 

  69. Devine SM, Flomenberg N, Vesole DH, Liesveld J, Weisdoef D, Badel K et al. Rapid mobilization of CD34+ cells following administration of the CXCR4 antagonist AMD3100 to patients with multiple myeloma and Non-Hodgkin's lymphoma. J Clin Oncol 2004; 22: 1095–1102.

    CAS  Google Scholar 

  70. Shen H, Cheng T, Olszak I, Garcia-Zepeda E, Lu Z, Herrmann S et al. CXCR-4 desensitization is associated with tissue localization of hemopoietic progenitor cells. J Immunol 2001; 166: 5027–5033.

    CAS  Google Scholar 

  71. Yang OO, Swanberg SL, Lu Z, Dziejman M, McCoy J, Luster AD et al. Enhanced inhibition of human immunodeficiency virus type 1 by met-stromal-derived factor 1β correlates with down-modulation of CXCR4. J Virology 1999; 73: 4582–4589.

    CAS  Google Scholar 

  72. Pelus LM, Broxmeyer HE . Chemokine axes in hematopoietic stem cell mobilization. In: Parnham MJ (ed). Progress in Inflammation Research; Chemokine Biology: Basic Research and Clinical Application, vol. 2. Birkhauser Verlag AG: Basel, 2007, pp 125–144.

    Google Scholar 

  73. Pelus LM, Fukuda S . Peripheral blood stem cell mobilization: the CXCR2 ligand GRObeta rapidly mobilizes hematopoietic stem cells with enhanced engraftment properties. Exp Hematol 2006; 34: 1010–1020.

    CAS  Google Scholar 

  74. Pelus LM, Bian H, King AG, Fukuda S . Neutrophil-derived MMP-9 mediates synergistic mobilization of hematopoietic stem and progenitor cells by the combination of G-CSF and the chemokines GROβ/CXCL2 and GROβT/CXCL2des4. Blood 2004; 103: 110–119.

    CAS  Google Scholar 

  75. Pruijt JFM, Verzaal P, van Os R, de Kruijf E-JFM, van Schie MLJ, Mantovani A et al. Neutrophils are indispensable for hematopoietic stem cell mobilization induced by interleukin-8 in mice. Proc Natl Acad Sci USA 2002; 99: 6228–6233.

    CAS  Google Scholar 

  76. King AG, Horowitz D, Levin SB, Farese AM, MacVittie TJ, Pelus LM . Rapid mobilization of murine hematopoietic stem cells with enhanced engraftment properties and evaluation of hematopoietic progenitor cell mobilization in rhesus monkeys by a single injection of SB-251353, a specific truncated form of the human CXC chemokine GROβ. Blood 2001; 97: 1534–1542.

    CAS  Google Scholar 

  77. Fukuda S, Bian H, King AG, Pelus LM . The chemokine GROβ mobilizes early hematopoietic stem cells characterized by enhanced homing and engraftment. Blood 2007; 110: 860–869.

    CAS  Google Scholar 

  78. Lord BI, Testa NG, Hendry JH . The relative spatial distributions of CFUs and CFUc in the normal mouse femur. Blood 1975; 46: 65–72.

    CAS  Google Scholar 

  79. Lord BI, Wright EG . Spatial organisation of CFU-S proliferation regulators in the mouse femur. Leuk Res 1984; 8: 1073–1083.

    CAS  Google Scholar 

  80. Nilsson SK, Johnston HM, Coverdale JA . Spatial localization of transplanted hemopoietic stem cells: inferences for the localization of stem cell niches. Blood 2001; 97: 2293–2299.

    CAS  Google Scholar 

  81. Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 2003; 425: 841–846.

    CAS  Google Scholar 

  82. Haylock DN, Williams B, Johnston HM, Liu MC, Rutherford KE, Whitty GA et al. Hemopoietic stem cells with higher hemopoietic potential reside at the bone marrow endosteum. Stem Cells 2007; 25: 1062–1069.

    CAS  Google Scholar 

  83. Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ . SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 2005; 121: 1109–1121.

    CAS  Google Scholar 

  84. Steidl U, Kronenwett R, Haas R . Differential gene expression underlying the functional distinctions of primary human CD34+ hematopoietic stem and progenitor cells from peripheral blood and bone marrow. Ann N Y Acad Sci 2003; 996: 89–100.

    CAS  Google Scholar 

  85. Lapidot T, Petit I . Current understanding of stem cell mobilization: the roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells. Exp Hematol 2002; 30: 973–981.

    CAS  Google Scholar 

  86. Kucia M, Reca R, Miekus K, Wanzeck J, Wojakowski W, Janowska-Wieczorek A et al. Trafficking of normal stem cells and metastasis of cancer stem cells involve similar mechanisms: pivotal role of the SDF-1-CXCR4 axis. Stem Cells 2005; 23: 879–894.

    CAS  Google Scholar 

  87. Hattori K, Heissig B, Rafii S . The regulation of hematopoietic stem cell and progenitor mobilization by chemokine SDF-1. Leuk Lymphoma 2003; 44: 575–582.

    CAS  Google Scholar 

  88. Schmitz N, Linch DC, Dreger P, Goldstone AH, Boogaerts MA, Ferrant A et al. Randomised trial of filgrastim-mobilised peripheral blood progenitor cell transplantation versus autologous bone-marrow transplantation in lymphoma patients. Lancet 1996; 347: 353–357.

    CAS  Google Scholar 

  89. Bernstein SH, Nademanee AP, Vose JM, Tricot G, Fay JW, Negrin RS et al. A multicenter study of platelet recovery and utilization in patients after myeloablative therapy and hematopoietic stem cell transplantation. Blood 1998; 91: 3509–3517.

    CAS  Google Scholar 

  90. Aiuti A, Webb IJ, Bleul C, Springer T, Gutierrez-Ramos JC . The chemokine SDF-1 is a chemoattractant for human CD34+ hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34+ progenitors to peripheral blood. J Exp Med 1997; 185: 111–120.

    CAS  Google Scholar 

  91. Wiesmann A, Spangrude GJ . Marrow engraftment of hematopoietic stem and progenitor cells is independent of Galphai-coupled chemokine receptors. Exp Hematol 1999; 27: 946–955.

    CAS  Google Scholar 

  92. Ma Q, Jones D, Springer TA . The chemokine receptor CXCR4 is required for the retention of B lineage and granulocytic precursors within the bone marrow microenvironment. Immunity 1999; 10: 463–471.

    CAS  Google Scholar 

  93. Kawabata K, Ujikawa M, Egawa T, Kawamoto H, Tachibana K, Iizasa H et al. A cell-autonomous requirement for CXCR4 in long-term lymphoid and myeloid reconstitution. Proc Natl Acad Sci USA 1999; 96: 5663–5667.

    CAS  Google Scholar 

  94. Bonig H, Priestly GV, Papayannopoulou T . Hierarchy of molecular pathway usage in bone marrow homing and its shift by cytokines. Blood 2006; 107: 79–86.

    CAS  Google Scholar 

  95. Pelus LM, Clapp DW, Bridger G . Suprasynergistic peripheral blood stem cell mobilization in normal and Fanconi Anemia knockout mice by the combination of G-CSF plus the CXCR4 antagonist AMD3100 and the CXCR2 agonist GROβ. Blood 2006; 108: 909a [Abstract no. 3185].

    Google Scholar 

  96. Flomenberg N, Devine SM, Dipersio JF, Liesveld JL, McCarty JM, Rowley SD et al. The use of AMD3100 plus G-CSF for autologous hematopoietic progenitor cell mobilization is superior to G-CSF alone. Blood 2005; 106: 1867–1874.

    CAS  Google Scholar 

  97. Valgimigli M, Rigolin GM, Cittanti C, Malagutti P, Curello S, Percoco G et al. Use of granulocyte-colony stimulating factor during acute myocardial infarction to enhance bone marrow stem cell mobilization in humans: clinical and angiographic safety profile. Eur Heart J 2005; 26: 1838–1845.

    CAS  Google Scholar 

  98. Hattori K, Dias S, Heissig B, Hackett NR, Lyden D, Tateno M et al. Vascular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells. J Exp Med 2001; 193: 1005–1014.

    CAS  Google Scholar 

  99. Luttun A, Tjwa M, Carmeliet P . Placental growth factor (PlGF) and its receptor Flt-1 (VEGFR-1): novel therapeutic targets for angiogenic disorders. Ann N Y Acad Sci 2002; 979: 80–93.

    CAS  Google Scholar 

  100. Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M et al. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 1999; 5: 434–438.

    CAS  Google Scholar 

  101. Hu J, Takatoku M, Sellers SE, Agricola BA, Metzger ME, Donahue RE et al. Analysis of origin and optimization of expansion and transduction of circulating peripheral blood endothelial progenitor cells in the rhesus macaque model. Hum Gene Ther 2002; 13: 2041–2050.

    CAS  Google Scholar 

  102. Powell TM, Paul JD, Hill JM, Thompson M, Benjamin M, Rodrigo M et al. Granulocyte colony-stimulating factor mobilizes functional endothelial progenitor cells in patients with coronary artery disease. Arterioscler Thromb Vasc Biol 2005; 25: 296–301.

    CAS  Google Scholar 

  103. Sesti C, Hale SL, Lutzko C, Kloner RA . Granulocyte colony-stimulating factor and stem cell factor improve contractile reserve of the infarcted left ventricle independent of restoring muscle mass. J Am Coll Cardiol 2005; 46: 1662–1669.

    CAS  Google Scholar 

  104. Shepherd RM, Capoccia BJ, Devine SM, Dipersio J, Trinkaus KM, Ingram D et al. Angiogenic cells can be rapidly mobilized and efficiently harvested from the blood following treatment with AMD3100. Blood 2006; 108: 3662–3667.

    CAS  Google Scholar 

  105. Moore MA, Hattori K, Heissig B, Shieh JH, Dias S, Crystal RG et al. Mobilization of endothelial and hematopoietic stem and progenitor cells by adenovector-mediated elevation of serum levels of SDF-1, VEGF, and angiopoietin-1. Ann N Y Acad Sci 2001; 938: 36–45.

    CAS  Google Scholar 

Download references

Acknowledgements

Supported by Grants HL69669 and HL07654 (to LMP) from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L M Pelus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pelus, L., Fukuda, S. Chemokine-mobilized adult stem cells; defining a better hematopoietic graft. Leukemia 22, 466–473 (2008). https://doi.org/10.1038/sj.leu.2405021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2405021

Keywords

This article is cited by

Search

Quick links