Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Etiology of common childhood acute lymphoblastic leukemia: the adrenal hypothesis

Abstract

The pattern of infections in the first years of life modulates our immune system, and a low incidence of infections has been linked to an increased risk of common childhood acute lymphoblastic leukemia (ALL). We here present a new interpretation of these observations - the adrenal hypothesis - that proposes that the risk of childhood ALL is reduced when early childhood infections induce qualitative and quantitative changes in the hypothalamus–pituitary–adrenal axis that increase plasma cortisol levels. This may directly eliminate leukemic cells as well as preleukemic cells for the ALL subsets that dominate in the first 5–7 years of life and may furthermore suppress the Th1-dominated proinflammatory response to infections, and thus lower the proliferative stress on pre-existing preleukemic cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Hjalgrim LL, Rostgaard K, Schmiegelow K, Soderhall S, Kolmannskog S, Vettenranta K et al. Age- and sex-specific incidence of childhood leukemia by immunophenotype in the Nordic countries. J Natl Cancer Inst 2003; 95: 1539–1544.

    Article  PubMed  Google Scholar 

  2. Schmiegelow K, Hjalgrim H . Is the risk of acute lymphoblastic leukemia reduced in siblings to children with the disease? A novel hypothesis explored by international collaboration. Leukemia 2006; 20: 1206–1208.

    Article  CAS  PubMed  Google Scholar 

  3. Stiller CA, Parkin DM . Geographic and ethnic variations in the incidence of childhood cancer. Br Med Bull 1996; 52: 682–703.

    Article  CAS  PubMed  Google Scholar 

  4. IARC. International Incidence of Childhood Cancer. IARC Scientific Publications: Lyon, 1998, 1–391.

  5. Edgar K, Morgan A . Does infections cause or prevent childhood leukemia? 2008, 1–43.

  6. Pieters R, Schrappe M, De LP, Hann I, De RG, Felice M et al. A treatment protocol for infants younger than 1 year with acute lymphoblastic leukaemia (Interfant-99): an observational study and a multicentre randomised trial. Lancet 2007; 370: 240–250.

    Article  CAS  PubMed  Google Scholar 

  7. Forestier E, Schmiegelow K . The incidence peaks of the childhood acute leukemias reflect specific cytogenetic aberrations. J Pediatr Hematol Oncol 2006; 28: 486–495.

    Article  CAS  PubMed  Google Scholar 

  8. Murray CJ, Laakso T, Shibuya K, Hill K, Lopez AD . Can we achieve millennium development goal 4? New analysis of country trends and forecasts of under-5 mortality to 2015. Lancet 2007; 370: 1040–1054.

    Article  PubMed  Google Scholar 

  9. Rajalekshmy KR, Abitha AR, Pramila R, Gnanasagar T, Shanta V . Immunophenotypic analysis of T-cell acute lymphoblastic leukaemia in Madras, India. Leuk Res 1997; 21: 119–124.

    Article  CAS  PubMed  Google Scholar 

  10. Mullighan CG, Goorha S, Radtke I, Miller CB, Coustan-Smith E, Dalton JD et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 2007; 446: 758–764.

    Article  CAS  Google Scholar 

  11. Wiemels JL, Cazzaniga G, Daniotti M, Eden OB, Addison GM, Masera G et al. Prenatal origin of acute lymphoblastic leukaemia in children. Lancet 1999; 354: 1499–1503.

    Article  CAS  PubMed  Google Scholar 

  12. Wiemels JL, Ford AM, van Wering ER, Postma A, Greaves M . Protracted and variable latency of acute lymphoblastic leukemia after TEL-AML1 gene fusion in utero. Blood 1999; 94: 1057–1062.

    CAS  PubMed  Google Scholar 

  13. Hjalgrim LL, Madsen HO, Melbye M, Jørgensen P, Christiansen M, Andersen MT et al. Presence of clone specific markers at birth in children with acute lymphoblastic leukemia. Br J Cancer 2002; 97: 994–999.

    Article  Google Scholar 

  14. McHale CM, Wiemels JL, Zhang L, Ma X, Buffler PA, Guo W et al. Prenatal origin of TEL-AML1-positive acute lymphoblastic leukemia in children born in California. Genes Chromosomes Cancer 2003; 37: 36–43.

    Article  CAS  PubMed  Google Scholar 

  15. Zuna J, Muzikova K, Ford AM, Maia AT, Krejci O, Tousovska K et al. Pre-natal, clonal origin of acute lymphoblastic leukaemia in triplets. Leuk Lymphoma 2003; 44: 2099–2102.

    Article  PubMed  Google Scholar 

  16. Maia AT, Tussiwand R, Cazzaniga G, Rebulla P, Colman S, Biondi A et al. Identification of preleukemic precursors of hyperdiploid acute lymphoblastic leukemia in cord blood. Genes Chromosomes Cancer 2004; 40: 38–43.

    Article  PubMed  Google Scholar 

  17. Mori H, Colman SM, Xiao Z, Ford AM, Healy LE, Donaldson C et al. Chromosome translocations and covert leukemic clones are generated during normal fetal development. Proc Natl Acad Sci USA 2002; 99: 8242–8247.

    Article  CAS  PubMed  Google Scholar 

  18. Olsen M, Madsen HO, Hjalgrim H, Gregers J, Rostgaard K, Schmiegelow K . Preleukemic TEL-AML1-positive clones at cell level of 10(−3) to 10(−4) do not persist into adulthood. J Pediatr Hematol Oncol 2006; 28: 734–740.

    Article  CAS  PubMed  Google Scholar 

  19. Wiemels JL, Leonard BC, Wang Y, Segal MR, Hunger SP, Smith MT et al. Site-specific translocation and evidence of postnatal origin of the t(1;19) E2A-PBX1 fusion in childhood acute lymphoblastic leukemia. Proc Natl Acad Sci USA 2002; 99: 15101–15106.

    Article  CAS  PubMed  Google Scholar 

  20. Fischer S, Mann G, Konrad M, Metzler M, Ebetsberger G, Jones N et al. Screening for leukemia- and clone-specific markers at birth in children with T-cell precursor ALL suggests a predominantly postnatal origin. Blood 2007; 110: 3036–3038.

    Article  CAS  PubMed  Google Scholar 

  21. Eguchi-Ishimae M, Eguchi M, Kempski H, Greaves M . NOTCH1 mutation can be an early, prenatal genetic event in T-ALL. Blood 2008; 111: 376–378.

    Article  CAS  PubMed  Google Scholar 

  22. Gaynon PS, Carrel AL . Glucocorticosteroid therapy in childhood acute lymphoblastic leukemia. Adv Exp Med Biol 1999; 457: 593–605.

    Article  CAS  PubMed  Google Scholar 

  23. Distelhorst CW . Recent insights into the mechanism of glucocorticosteroid-induced apoptosis. Cell Death Differ 2002; 9: 6–19.

    Article  CAS  PubMed  Google Scholar 

  24. Nyvold C, Madsen HO, Ryder LP, Seyfarth J, Svejgaard A, Clausen N et al. Precise quantification of minimal residual disease at day 29 allows identification of children with acute lymphoblastic leukemia and an excellent outcome. Blood 2002; 99: 1253–1258.

    Article  CAS  PubMed  Google Scholar 

  25. Rosenthal MC, Saunders RH, Schwartz LI, Zannos L, Perez SE, DameShek W . The use of adrenocorticotropic hormone and cortisone in the treatment of leukemia and leukosarcoma. Blood 1951; 6: 804–823.

    CAS  PubMed  Google Scholar 

  26. Phillips RS, Enwonwu CO, Okolo S, Hassan A . Metabolic effects of acute measles in chronically malnourished Nigerian children. J Nutr Biochem 2004; 15: 281–288.

    Article  CAS  PubMed  Google Scholar 

  27. Manary MJ, Muglia LJ, Vogt SK, Yarasheski KE . Cortisol and its action on the glucocorticoid receptor in malnutrition and acute infection. Metabolism 2006; 55: 550–554.

    Article  CAS  PubMed  Google Scholar 

  28. Pinto RA, Arredondo SM, Bono MR, Gaggero AA, Diaz PV . T helper 1/T helper 2 cytokine imbalance in respiratory syncytial virus infection is associated with increased endogenous plasma cortisol. Pediatrics 2006; 117: e878–e886.

    Article  PubMed  Google Scholar 

  29. Singhi SC, Bansal A . Serum cortisol levels in children with acute bacterial and aseptic meningitis. Pediatr Crit Care Med 2006; 7: 74–78.

    Article  PubMed  Google Scholar 

  30. Nickels DA, Moore DC . Serum cortisol responses in febrile children. Pediatr Infect Dis J 1989; 8: 16–20.

    Article  CAS  PubMed  Google Scholar 

  31. Ho JT, Al-Musalhi H, Chapman MJ, Quach T, Thomas PD, Bagley CJ et al. Septic shock and sepsis: a comparison of total and free plasma cortisol levels. J Clin Endocrinol Metab 2006; 91: 105–114.

    Article  CAS  PubMed  Google Scholar 

  32. Petersen KB, Jusko WJ, Rasmussen M, Schmiegelow K . Population pharmacokinetics of prednisolone in children with acute lymphoblastic leukemia. Cancer Chemother Pharmacol 2003; 51: 465–473.

    CAS  PubMed  Google Scholar 

  33. Van den BG, de ZF, Bouillon R . Clinical review 95: acute and prolonged critical illness as different neuroendocrine paradigms. J Clin Endocrinol Metab 1998; 83: 1827–1834.

    Google Scholar 

  34. Bierman HR, Crile DM, Dod KS, Kelly KH, Petrakis NL, White LP et al. Remissions in leukemia of childhood following acute infectious disease: staphylococcus and streptococcus, varicella, and feline panleukopenia. Cancer 1953; 6: 591–605.

    Article  CAS  PubMed  Google Scholar 

  35. Pelner L, Fowler GA, Nauts HC . Effects of concurrent infections and their toxins on the course of leukemia. Acta Med Scand Suppl 1958; 338: 1–47.

    CAS  PubMed  Google Scholar 

  36. Diamond LK, luhby LA . Pattern of ‘spontaneous’ remissions in leukemia of childhood, observed in 26 of 300 cases. Am J Med 1951; 10: 238–239.

    Article  Google Scholar 

  37. Kamper-Jorgensen M, Wohlfahrt J, Simonsen J, Gronbaek M, Benn CS . Population-based study of the impact of childcare attendance on hospitalizations for acute respiratory infections. Pediatrics 2006; 118: 1439–1446.

    Article  PubMed  Google Scholar 

  38. Kamper-Jørgensen M, Woodward A, Wohlfahrt J, Benn CS, Simonsen J, Hjalgrim H et al. Childcare in the first two years of life reduces the risk of childhood acute lymphoblastic leukemia. Leukemia 2007; 22: 189–193.

    Article  PubMed  Google Scholar 

  39. Gilham C, Peto J, Simpson J, Roman E, Eden TO, Greaves MF et al. Day care in infancy and risk of childhood acute lymphoblastic leukaemia: findings from UK case–control study. BMJ 2005; 330: 1294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Roman E, Simpson J, Ansell P, Kinsey S, Mitchell CD, McKinney PA et al. Childhood acute lymphoblastic leukemia and infections in the first year of life: a report from the United Kingdom Childhood Cancer Study. Am J Epidemiol 2007; 165: 496–504.

    Article  CAS  PubMed  Google Scholar 

  41. Sherman B, Wysham C, Pfohl B . Age-related changes in the circadian rhythm of plasma cortisol in man. J Clin Endocrinol Metab 1985; 61: 439–443.

    Article  CAS  PubMed  Google Scholar 

  42. Lewis M, Ramsay DS . Developmental change in infants' responses to stress. Child Dev 1995; 66: 657–670.

    Article  CAS  PubMed  Google Scholar 

  43. Kinlen LJ . Infective cause of childhood leukaemia. Lancet 1989; 1: 378–379.

    Article  CAS  PubMed  Google Scholar 

  44. Greaves M . Infection, immune responses and the aetiology of childhood leukaemia. Nat Rev Cancer 2006; 6: 193–203.

    Article  CAS  PubMed  Google Scholar 

  45. Rook GA . Glucocorticoids and immune function. Baillieres Best Pract Res Clin Endocrinol Metab 1999; 13: 567–581.

    Article  CAS  PubMed  Google Scholar 

  46. Gasparoni A, Ciardelli L, Avanzini A, Castellazzi AM, Carini R, Rondini G et al. Age-related changes in intracellular TH1/TH2 cytokine production, immunoproliferative T lymphocyte response and natural killer cell activity in newborns, children and adults. Biol Neonate 2003; 84: 297–303.

    Article  CAS  PubMed  Google Scholar 

  47. Dunne DW, Cooke A . A worm's eye view of the immune system: consequences for evolution of human autoimmune disease. Nat Rev Immunol 2005; 5: 420–426.

    Article  CAS  PubMed  Google Scholar 

  48. Sapolsky RM, Romero LM, Munck AU . How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev 2000; 21: 55–89.

    CAS  PubMed  Google Scholar 

  49. Blotta MH, DeKruyff RH, Umetsu DT . Corticosteroids inhibit IL-12 production in human monocytes and enhance their capacity to induce IL-4 synthesis in CD4+ lymphocytes. J Immunol 1997; 158: 5589–5595.

    CAS  PubMed  Google Scholar 

  50. Shanks N, Windle RJ, Perks PA, Harbuz MS, Jessop DS, Ingram CD et al. Early-life exposure to endotoxin alters hypothalamic-pituitary-adrenal function and predisposition to inflammation. Proc Natl Acad Sci USA 2000; 97: 5645–5650.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Kjeld Schmiegelow holds the Danish Childhood Cancer Foundation Research Professorship. This study has received financial support from the Danish Childhood Cancer Foundation, Michael Goldschmidt Holding A/S and the Danish Cancer Society (Grant no. DP06136).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Schmiegelow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmiegelow, K., Vestergaard, T., Nielsen, S. et al. Etiology of common childhood acute lymphoblastic leukemia: the adrenal hypothesis. Leukemia 22, 2137–2141 (2008). https://doi.org/10.1038/leu.2008.212

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2008.212

Keywords

This article is cited by

Search

Quick links