Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Stem Cells

Mouse embryonic stem cells that express a NUP98–HOXD13 fusion protein are impaired in their ability to differentiate and can be complemented by BCR-ABL

Abstract

NUP98–HOXD13 (NHD13) fusions have been identified in patients with myelodysplastic syndrome, acute myelogenous leukemia and chronic myeloid leukemia blast crisis. We generated ‘knock-in’ mouse embryonic stem (ES) cells that express a NHD13 fusion gene from the endogenous murine NUP98 promoter, and used an in vitro differentiation system to differentiate the ES cells to hematopoietic colonies. Replating assays demonstrated that the partially differentiated NHD13 ES cells were immortal, and two of these cultures were transferred to liquid culture. These cell lines are partially differentiated immature hematopoietic cells, as determined by morphology, immunophenotype and gene expression profile. Despite these characteristics, they were unable to differentiate when exposed to high concentrations of erythropoietin (Epo), granulocyte colony-stimulating factor or macrophage colony-stimulating factor. The cell lines are incompletely transformed, as evidenced by their dependence on interleukin 3 (IL-3), and their failure to initiate tumors when injected into immunodeficient mice. We attempted genetic complementation of the NHD13 gene using IL-3 independence and tumorigenicity in immunodeficient mice as markers of transformation, and found that BCR-ABL successfully transformed the cell lines. These findings support the hypothesis that expression of a NHD13 fusion gene impairs hematopoietic differentiation, and that these cell lines present a model system to study the nature of this impaired differentiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Raza-Egilmez SZ, Jani-Sait SN, Grossi M, Higgins MJ, Shows TB, Aplan PD . Nup98-HoxD13 gene fusion in therapy-related acute myelogenous leukemia. Cancer Res 1998; 58: 4269–4273.

    CAS  PubMed  Google Scholar 

  2. Slape C, Aplan PD . The role of NUP98 gene fusions in hematologic malignancy. Leuk Lymphoma 2004; 45: 1341–1350.

    Article  CAS  PubMed  Google Scholar 

  3. Radu A, Moore MS, Blobel G . The peptide repeat domain of nucleoporin Nup98 functions as a docking site in transport across the nuclear pore complex. Cell 1995; 81: 215–222.

    Article  CAS  PubMed  Google Scholar 

  4. Bayliss R, Littlewood T, Strawn LA, Wente SR, Stewart M . GLFG and FxFG nucleoporins bind to overlapping sites on importin-beta. J Biol Chem 2002; 277: 50597–50606.

    Article  CAS  PubMed  Google Scholar 

  5. Pritchard CE, Fornerod M, Kasper LH, van Deursen JM . RAE1 is a shuttling mRNA export factor that binds to a GLEBS-like NUP98 motif at the nuclear pore complex through multiple domains. J Cell Biol 1999; 145: 237–254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jeganathan KB, Malureanu L, van Deursen JM . The Rae1-Nup98 complex prevents aneuploidy by inhibiting securin degradation. Nature 2005; 438: 1036–1039.

    Article  CAS  PubMed  Google Scholar 

  7. Kasper LH, Brindle PK, Schnabel CA, Pritchard CEJ, Cleary ML, van Deursen JMA . CREB binding protein interacts with nucleoporin-specific FG repeats that activate transcription and mediate NUP98-HOXA9 oncogenicity. Mol Cell Biol 1999; 19: 764–776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Abramovich C, Humphries RK . Hox regulation of normal and leukemic hematopoietic stem cells. Curr Opin Hematol 2005; 12: 210–216.

    Article  CAS  PubMed  Google Scholar 

  9. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999; 286: 531–537.

    Article  CAS  PubMed  Google Scholar 

  10. Su X, Drabkin H, Clappier E, Morgado E, Busson M, Romana S et al. Transforming potential of the T-cell acute lymphoblastic leukemia-associated homeobox genes HOXA13, TLX1, and TLX3. Genes Chromosomes Cancer 2006; 45: 846–855.

    Article  CAS  PubMed  Google Scholar 

  11. Beslu N, Krosl J, Laurin M, Mayotte N, Humphries KR, Sauvageau G . Molecular interactions involved in HOXB4-induced activation of HSC self-renewal. Blood 2004; 104: 2307–2314.

    Article  CAS  PubMed  Google Scholar 

  12. Fischbach NA, Rozenfeld S, Shen W, Fong S, Chrobak D, Ginzinger D et al. HOXB6 overexpression in murine bone marrow immortalizes a myelomonocytic precursor in vitro and causes hematopoietic stem cell expansion and acute myeloid leukemia in vivo. Blood 2005; 105: 1456–1466.

    Article  CAS  PubMed  Google Scholar 

  13. Drabkin HA, Parsy C, Ferguson K, Guilhot F, Lacotte L, Roy L et al. Quantitative HOX expression in chromosomally defined subsets of acute myelogenous leukemia. Leukemia 2002; 16: 186–195.

    Article  CAS  PubMed  Google Scholar 

  14. Kroon E, Thorsteinsdottir U, Mayotte N, Nakamura T, Sauvageau G . NUP98-HOXA9 expression in hemopoietic stem cells induces chronic and acute myeloid leukemias in mice. EMBO J 2001; 20: 350–361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pineault N, Buske C, Feuring-Buske M, Abramovich C, Rosten P, Hogge DE et al. Induction of acute myeloid leukemia in mice by the human leukemia-specific fusion gene NUP98–HOXD13 in concert with Meis1. Blood 2003; 101: 4529–4538.

    Article  CAS  PubMed  Google Scholar 

  16. Gurevich RM, Aplan PD, Humphries RK . NUP98-topoisomerase I acute myeloid leukemia-associated fusion gene has potent leukemogenic activities independent of an engineered catalytic site mutation. Blood 2004; 104: 1127–1136.

    Article  CAS  PubMed  Google Scholar 

  17. Lin YW, Slape C, Zhang Z, Aplan PD . NUP98-HOXD13 transgenic mice develop a highly penetrant, severe myelodysplastic syndrome that progresses to acute leukemia. Blood 2005; 106: 287–295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tessarollo L . Manipulating mouse embryonic stem cells. Methods Mol Biol 2001; 158: 47–63.

    CAS  PubMed  Google Scholar 

  19. Bonin A, Reid SW, Tessarollo L . Isolation, microinjection, and transfer of mouse blastocysts. Methods Mol Biol 2001; 158: 121–134.

    CAS  PubMed  Google Scholar 

  20. Keller G, Kennedy M, Papayannopoulou T, Wiles MV . Hematopoietic commitment during embryonic stem cell differentiation in culture. Mol Cell Biol 1993; 13: 473–486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Arnold HH, Braun T . Targeted inactivation of myogenic factor genes reveals their role during mouse myogenesis: a review. Int J Dev Biol 1996; 40: 345–353.

    CAS  PubMed  Google Scholar 

  22. Rudnicki MA, Braun T, Hinuma S, Jaenisch R . Inactivation of MyoD in mice leads to up-regulation of the myogenic HLH gene Myf-5 and results in apparently normal muscle development. Cell 1992; 71: 383–390.

    Article  CAS  PubMed  Google Scholar 

  23. Braun T, Rudnicki MA, Arnold HH, Jaenisch R . Targeted inactivation of the muscle regulatory gene Myf-5 results in abnormal rib development and perinatal death. Cell 1992; 71: 369–382.

    Article  CAS  PubMed  Google Scholar 

  24. Cameron EE, Bachman KE, Myohanen S, Herman JG, Baylin SB . Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet 1999; 21: 103–107.

    Article  CAS  PubMed  Google Scholar 

  25. Yu L, Liu C, Vandeusen J, Becknell B, Dai Z, Wu YZ et al. Global assessment of promoter methylation in a mouse model of cancer identifies ID4 as a putative tumor-suppressor gene in human leukemia. Nat Genet 2005; 37: 265–274.

    Article  CAS  PubMed  Google Scholar 

  26. Kelly LM, Gilliland DG . Genetics of myeloid leukemias. Annu Rev Genomics Hum Genet 2002; 3: 179–198.

    Article  CAS  PubMed  Google Scholar 

  27. Dash AB, Williams IR, Kutok JL, Tomasson MH, Anastasiadou E, Lindahl K et al. A murine model of CML blast crisis induced by cooperation between BCR/ABL and NUP98/HOXA9. Proc Natl Acad Sci USA 2002; 99: 7622–7627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gilliland DG, Tallman MS . Focus on acute leukemias. Cancer Cell 2002; 1: 417–420.

    Article  CAS  PubMed  Google Scholar 

  29. Kasper LH, Brindle PK, Schnabel CA, Pritchard CE, Cleary ML, van Deursen JM . CREB binding protein interacts with nucleoporin-specific FG repeats that activate transcription and mediate NUP98-HOXA9 oncogenicity. Mol Cell Biol 1999; 19: 764–776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Palmqvist L, Argiropoulos B, Pineault N, Abramovich C, Sly LM, Krystal G et al. The Flt3 receptor tyrosine kinase collaborates with NUP98–HOX fusions in acute myeloid leukemia. Blood 2006; 108: 1030–1036.

    Article  CAS  PubMed  Google Scholar 

  31. Hess JL, Bittner CB, Zeisig DT, Bach C, Fuchs U, Borkhardt A et al. c-Myb is an essential downstream target for homeobox-mediated transformation of hematopoietic cells. Blood 2006; 108: 297–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sakamoto H, Dai G, Tsujino K, Hashimoto K, Huang X, Fujimoto T et al. Proper levels of c-Myb are discretely defined at distinct steps of hematopoietic cell development. Blood 2006; 108: 896–903.

    Article  CAS  PubMed  Google Scholar 

  33. McClinton D, Stafford J, Brents L, Bender TP, Kuehl WM . Differentiation of mouse erythroleukemia cells is blocked by late up-regulation of a c-myb transgene. Mol Cell Biol 1990; 10: 705–710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank our colleagues Du H. Lam, Linda Lowe, Zhenhua Zhang, David Caudell and Stephanie Strahan for technical assistance and critical discussion. We thank R Keith Humphries, Michael Kuehl and Ilan Kirsch for their insight and advice. We thank Warren Pear for the gift of the bcr-abl plasmid. This research was supported by the Intramural Research Program of the NIH, NCI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P D Aplan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slape, C., Chung, Y., Soloway, P. et al. Mouse embryonic stem cells that express a NUP98–HOXD13 fusion protein are impaired in their ability to differentiate and can be complemented by BCR-ABL. Leukemia 21, 1239–1248 (2007). https://doi.org/10.1038/sj.leu.2404648

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404648

Keywords

This article is cited by

Search

Quick links