Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lymphoma

Mapping of MYC breakpoints in 8q24 rearrangements involving non-immunoglobulin partners in B-cell lymphomas

Abstract

Chromosomal translocations joining the immunoglobulin (IG) and MYC genes have been extensively reported in Burkitt's and non-Burkitt's lymphomas but data concerning MYC rearrangements with non-IG partners are scarce. In this study, 8q24 breakpoints from 17 B-cell lymphomas involving non-IG loci were mapped by fluorescence in situ hybridization (FISH). In seven cases the breakpoint was inside a small region encompassing MYC: in one t(7;8)(p12;q24) and two t(3;8)(q27;q24), it was telomeric to MYC whereas in four cases, one t(2;8)(p15;q24) and three t(8;9)(q24;p13) it was located in a 85 kb region encompassing MYC. In these seven cases, partner regions identified by FISH contained genes known to be involved in lymphomagenesis, namely BCL6, BCL11A, PAX5 and IKAROS. Breakpoints were cloned in two t(8;9)(q24;p13), 2.5 and 7 kb downstream from MYC and several hundred kb 5′ to PAX5 on chromosome 9, joining MYC to ZCCHC7 and to ZBTB5 exon 2, two genes encoding zinc-finger proteins. In these seven cases, MYC expression measured by quantitative reverse transcription-polymerase chain reaction (RT-PCR) was significantly higher when compared to that of patients without 8q24 rearrangement (P=0.006). These results suggest that these rearrangements are the consequence of a non-random process targeting MYC together with non-IG genes involved in lymphocyte differentiation and lymphoma progression.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 3
Figure 2
Figure 4

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Boxer LM, Dang CV . Translocations involving c-myc and c-myc function. Oncogene 2001; 20: 5595–5610.

    Article  CAS  PubMed  Google Scholar 

  2. Hecht JL, Aster JC . Molecular biology of Burkitt's lymphoma. J Clin Oncol 2000; 18: 3707–3721.

    Article  CAS  PubMed  Google Scholar 

  3. Mukhopadhyay S, Readling J, Cotter PD, Shrimpton AE, Sidhu JS . Transformation of follicular lymphoma to Burkitt-like lymphoma within a single lymph node. Hum Pathol 2005; 36: 571–575.

    Article  CAS  PubMed  Google Scholar 

  4. Tirier C, Zhang Y, Plendl H, Weber-Matthiesen K, Langer W, Heit W et al. Simultaneous presence of t(11;14) and a variant Burkitt's translocation in the terminal phase of a mantle cell lymphoma. Leukemia 1996; 10: 346–350.

    CAS  PubMed  Google Scholar 

  5. Yano T, Jaffe ES, Longo DL, Raffeld M . MYC rearrangements in histologically progressed follicular lymphomas. Blood 1992; 80: 758–767.

    CAS  PubMed  Google Scholar 

  6. Rimokh R, Rouault JP, Wahbi K, Gadoux M, Lafage M, Archimbaud E et al. A chromosome 12 coding region is juxtaposed to the MYC protooncogene locus in a t(8;12)(q24;q22) translocation in a case of B-cell chronic lymphocytic leukemia. Genes Chromosomes Cancer 1991; 3: 24–36.

    Article  CAS  PubMed  Google Scholar 

  7. Levine EG, Arthur DC, Machnicki J, Frizzera G, Hurd D, Peterson B et al. Four new recurring translocations in non-Hodgkin lymphoma. Blood 1989; 74: 1796–1800.

    CAS  PubMed  Google Scholar 

  8. Knuutila S, Klefstrom J, Szymanska J, Lakkala T, Peltomaki P, Eray M et al. Two novel human B-cell lymphoma lines of lymphatic follicle origin: cytogenetic, molecular genetic and histopathological characterisation. Eur J Haematol 1994; 52: 65–72.

    Article  CAS  PubMed  Google Scholar 

  9. Jaffe ES, Harris NL, Stein H, Vardiman J (eds). World health organization classification of tumours. Pathology and genetics of tumours of haematopoietic and lymphoid tissues. IARC Press: Lyon, 2001.

    Google Scholar 

  10. Hans CP, Weisenburger DD, Greiner TC, Gascoyne RD, Delabie J, Ott G et al. Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood 2004; 103: 275–282.

    Article  CAS  PubMed  Google Scholar 

  11. A predictive model for aggressive non-Hodgkin's lymphoma. The International Non-Hodgkin's Lymphoma Prognostic Factors Project. N Engl J Med 1993; 329: 987–994.

    Article  Google Scholar 

  12. Cheson BD, Horning SJ, Coiffier B, Shipp MA, Fisher RI, Connors JM et al. Report of an international workshop to standardize response criteria for non-Hodgkin's lymphomas. NCI Sponsored International Working Group. J Clin Oncol 1999; 17: 1244.

    Article  CAS  PubMed  Google Scholar 

  13. Sehested J . A simple method for R banding of human chromosomes, showing a pH-dependent connection between R and G bands. Humangenetik 1974; 21: 55–58.

    CAS  PubMed  Google Scholar 

  14. Mitelman F, (Ed)., ISCN (1995). An international System for Human Cytogenetic Nomenclature. Karger: Basel, 1995.

    Google Scholar 

  15. Fabris S, Storlazzi CT, Baldini L, Nobili L, Lombardi L, Maiolo AT et al. Heterogeneous pattern of chromosomal breakpoints involving the MYC locus in multiple myeloma. Genes Chromosomes Cancer 2003; 37: 261–269.

    Article  CAS  PubMed  Google Scholar 

  16. van der Burg M, Poulsen TS, Hunger SP, Beverloo HB, Smit EM, Vang-Nielsen K et al. Split-signal FISH for detection of chromosome aberrations in acute lymphoblastic leukemia. Leukemia 2004; 18: 895–908.

    Article  CAS  PubMed  Google Scholar 

  17. Sambrook J, Russell DW . Molecular cloning. A laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press: New York, 2001, 6.33–6.58.

    Google Scholar 

  18. Willis TG, Jadayel DM, Coignet LJ, Abdul-Rauf M, Treleaven JG, Catovsky D et al. Rapid molecular cloning of rearrangements of the IGHJ locus using long-distance inverse polymerase chain reaction. Blood 1997; 90: 2456–2464.

    CAS  PubMed  Google Scholar 

  19. Bertrand P, Courel MN, Maingonnat C, Jardin F, Tilly H, Bastard C . Expression of HYAL2 mRNA, hyaluronan and hyaluronidase in B-cell non-Hodgkin lymphoma: relationship with tumor aggressiveness. Int J Cancer 2005; 113: 207–212.

    Article  CAS  PubMed  Google Scholar 

  20. Latil A, Vidaud D, Valeri A, Fournier G, Vidaud M, Lidereau R et al. htert expression correlates with MYC over-expression in human prostate cancer. Int J Cancer 2000; 89: 172–176.

    Article  CAS  PubMed  Google Scholar 

  21. Au WY, Horsman DE, Gascoyne RD, Viswanatha DS, Klasa RJ, Connors JM . The spectrum of lymphoma with 8q24 aberrations: a clinical, pathological and cytogenetic study of 87 consecutive cases. Leuk Lymphoma 2004; 45: 519–528.

    Article  CAS  PubMed  Google Scholar 

  22. Joos S, Falk MH, Lichter P, Haluska FG, Henglein B, Lenoir GM et al. Variable breakpoints in Burkitt lymphoma cells with chromosomal t(8;14) translocation separate c-myc and the IgH locus up to several hundred kb. Hum Mol Genet 1992; 1: 625–632.

    Article  CAS  PubMed  Google Scholar 

  23. Zeidler R, Joos S, Delecluse HJ, Klobeck G, Vuillaume M, Lenoir GM et al. Breakpoints of Burkitt's lymphoma t(8;22) translocations map within a distance of 300 kb downstream of MYC. Genes Chromosomes Cancer 1994; 9: 282–287.

    Article  CAS  PubMed  Google Scholar 

  24. Bernard O, Larsen CJ, Hampe A, Mauchauffe M, Berger R, Mathieu-Mahul D . Molecular mechanisms of a t(8;14)(q24;q11) translocation juxtaposing c- myc and TcR-alpha genes in a T-cell leukaemia: involvement of a V alpha internal heptamer. Oncogene 1988; 2: 195–200.

    CAS  PubMed  Google Scholar 

  25. Cario G, Stadt UZ, Reiter A, Welte K, Sykora KW . Variant translocations in sporadic Burkitt's lymphoma detected in fresh tumour material: analysis of three cases. Br J Haematol 2000; 110: 537–546.

    Article  CAS  PubMed  Google Scholar 

  26. Denny CT, Hollis GF, Magrath IT, Kirsch IR . Burkitt lymphoma cell line carrying a variant translocation creates new DNA at the breakpoint and violates the hierarchy of immunoglobulin gene rearrangement. Mol Cell Biol 1985; 5: 3199–3207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Finger LR, Harvey RC, Moore RC, Showe LC, Croce CM . A common mechanism of chromosomal translocation in T- and B-cell neoplasia. Science 1986; 234: 982–985.

    Article  CAS  PubMed  Google Scholar 

  28. Hollis GF, Mitchell KF, Battey J, Potter H, Taub R, Lenoir GM et al. A variant translocation places the lambda immunoglobulin genes 3′ to the c-myc oncogene in Burkitt's lymphoma. Nature 1984; 307: 752–755.

    Article  CAS  PubMed  Google Scholar 

  29. Park JK, McKeithan TW, Le Beau MM, Bitter MA, Franklin WA, Rowley JD et al. An (8;14)(q24;q11) translocation involving the T-cell receptor alpha-chain gene and the MYC oncogene 3′ region in a B-cell lymphoma. Genes Chromosomes Cancer 1989; 1: 15–22.

    Article  CAS  PubMed  Google Scholar 

  30. Showe LC, Moore RC, Erikson J, Croce CM . MYC oncogene involved in a t(8;22) chromosome translocation is not altered in its putative regulatory regions. Proc Natl Acad Sci USA 1987; 84: 2824–2828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sowerby SJ, Kennedy MA, Fitzgerald PH, Morris CM . DNA sequence analysis of the major breakpoint cluster region of the BCR gene rearranged in Philadelphia-positive human leukemias. Oncogene 1993; 8: 1679–1683.

    CAS  PubMed  Google Scholar 

  32. Mautner J, Joos S, Werner T, Eick D, Bornkamm GW, Polack A . Identification of two enhancer elements downstream of the human c-myc gene. Nucleic Acids Res 1995; 23: 72–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pellet P, Berger R, Bernheim A, Brouet JC, Tsapis A . Molecular analysis of a t(9;14)(p11;q32) translocation occurring in a case of human alpha heavy chain disease. Oncogene 1989; 4: 653–657.

    CAS  PubMed  Google Scholar 

  34. Akasaka T, Lossos IS, Levy R . BCL6 gene translocation in follicular lymphoma: a harbinger of eventual transformation to diffuse aggressive lymphoma. Blood 2003; 102: 1443–1448.

    Article  CAS  PubMed  Google Scholar 

  35. Wlodarska I, Stul M, Wolf-Peeters C, Hagemeijer A . Heterogeneity of BCL6 rearrangements in nodular lymphocyte predominant Hodgkin's lymphoma. Haematologica 2004; 89: 965–972.

    CAS  PubMed  Google Scholar 

  36. Gerbitz A, Mautner J, Geltinger C, Hortnagel K, Christoph B, Asenbauer H et al. Deregulation of the proto-oncogene c-myc through t(8;22) translocation in Burkitt's lymphoma. Oncogene 1999; 18: 1745–1753.

    Article  CAS  PubMed  Google Scholar 

  37. Wittekindt NE, Hortnagel K, Geltinger C, Polack A . Activation of c-myc promoter P1 by immunoglobulin kappa gene enhancers in Burkitt lymphoma: functional characterization of the intron enhancer motifs kappaB, E box 1 and E box 2, and of the 3′ enhancer motif PU. Nucleic Acids Res 2000; 28: 800–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Einerson RR, Law ME, Blair HE, Kurtin PJ, McClure RF, Ketterling RP et al. Novel FISH probes designed to detect IGK-MYC and IGL-MYC rearrangements in B-cell lineage malignancy identify a new breakpoint cluster region designated BVR2. Leukemia 2006; 20: 1790–1799.

    Article  CAS  PubMed  Google Scholar 

  39. Ratsch A, Joos S, Kioschis P, Lichter P . Topological organization of the MYC/IGK locus in Burkitt's lymphoma cells assessed by nuclear halo preparations. Exp Cell Res 2002; 273: 12–20.

    Article  CAS  PubMed  Google Scholar 

  40. Macpherson N, Lesack D, Klasa R, Horsman D, Connors JM, Barnett M et al. Small noncleaved, non-Burkitt's (Burkit-Like) lymphoma: cytogenetics predict outcome and reflect clinical presentation. J Clin Oncol 1999; 17: 1558–1567.

    Article  CAS  PubMed  Google Scholar 

  41. Goossens T, Klein U, Kuppers R . Frequent occurrence of deletions and duplications during somatic hypermutation: implications for oncogene translocations and heavy chain disease. Proc Natl Acad Sci USA 1998; 95: 2463–2468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pasqualucci L, Neumeister P, Goossens T, Nanjangud G, Chaganti RS, Kuppers R et al. Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas. Nature 2001; 412: 341–346.

    Article  CAS  PubMed  Google Scholar 

  43. Dave SS, Fu K, Wright GW, Lam LT, Kluin P, Boerma EJ et al. Molecular diagnosis of Burkitt's lymphoma. N Engl J Med 2006; 354: 2431–2442.

    Article  CAS  PubMed  Google Scholar 

  44. Hummel M, Bentink S, Berger H, Klapper W, Wessendorf S, Barth TF et al. A biologic definition of Burkitt's lymphoma from transcriptional and genomic profiling. N Engl J Med 2006; 354: 2419–2430.

    Article  CAS  PubMed  Google Scholar 

  45. Henglein B, Synovzik H, Groitl P, Bornkamm GW, Hartl P, Lipp M . Three breakpoints of variant t(2;8) translocations in Burkitt's lymphoma cells fall within a region 140 kilobases distal from c-myc. Mol Cell Biol 1989; 9: 2105–2113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ligue Contre le Cancer (Comité de Seine Maritime) and the Fédération des Centres de Lutte contre le Cancer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Bertrand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertrand, P., Bastard, C., Maingonnat, C. et al. Mapping of MYC breakpoints in 8q24 rearrangements involving non-immunoglobulin partners in B-cell lymphomas. Leukemia 21, 515–523 (2007). https://doi.org/10.1038/sj.leu.2404529

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404529

Keywords

This article is cited by

Search

Quick links