Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Normal Hemopoiesis

T-, B- and NK-lymphoid, but not myeloid cells arise from human CD34+CD38CD7+ common lymphoid progenitors expressing lymphoid-specific genes

Abstract

Hematopoietic stem cells in the bone marrow (BM) give rise to all blood cells. According to the classic model of hematopoiesis, the differentiation paths leading to the myeloid and lymphoid lineages segregate early. A candidate ‘common lymphoid progenitor’ (CLP) has been isolated from CD34+CD38 human cord blood cells based on CD7 expression. Here, we confirm the B- and NK-differentiation potential of CD34+CD38CD7+ cells and show in addition that this population has strong capacity to differentiate into T cells. As CD34+CD38CD7+ cells are virtually devoid of myeloid differentiation potential, these cells represent true CLPs. To unravel the molecular mechanisms underlying lymphoid commitment, we performed genome-wide gene expression profiling on sorted CD34+CD38CD7+ and CD34+CD38CD7 cells. Interestingly, lymphoid-affiliated genes were mainly upregulated in the CD7+ population, while myeloid-specific genes were downregulated. This supports the hypothesis that lineage commitment is accompanied by the shutdown of inappropriate gene expression and the upregulation of lineage-specific genes. In addition, we identified several highly expressed genes that have not been described in hematopoiesis before.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Kondo M, Weissman IL, Akashi K . Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 1997; 91: 661–672.

    Article  CAS  Google Scholar 

  2. Akashi K, Traver D, Miyamoto T, Weissman IL . A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 2000; 404: 193–197.

    Article  CAS  Google Scholar 

  3. Allman D, Sambandam A, Kim S, Miller JP, Pagan A, Well D et al. Thymopoiesis independent of common lymphoid progenitors. Nat Immunol 2003; 4: 168–174.

    Article  CAS  Google Scholar 

  4. Schwarz BA, Bhandoola A . Circulating hematopoietic progenitors with T lineage potential. Nat Immunol 2004; 5: 953–960.

    Article  CAS  Google Scholar 

  5. Katsura Y . Redefinition of lymphoid progenitors. Nat Rev Immunol 2002; 2: 127–132.

    Article  CAS  Google Scholar 

  6. Galy A, Travis M, Cen D, Chen B . Human T, B, natural killer, and dendritic cells arise from a common bone marrow progenitor cell subset. Immunity 1995; 3: 459–473.

    Article  CAS  Google Scholar 

  7. Ishii T, Nishihara M, Ma F, Ebihara Y, Tsuji K, Asano S et al. Expression of stromal cell-derived factor-1/pre-B cell growth-stimulating factor receptor, CXC chemokine receptor 4, on CD34+ human bone marrow cells is a phenotypic alteration for committed lymphoid progenitors. J Immunol 1999; 163: 3612–3620.

    CAS  PubMed  Google Scholar 

  8. Manz MG, Miyamoto T, Akashi K, Weissman IL . Prospective isolation of human clonogenic common myeloid progenitors. Proc Natl Acad Sci USA 2002; 99: 11872–11877.

    Article  CAS  Google Scholar 

  9. Hao Q-L, Zhu J, Price MA, Payne KJ, Barsky LW, Crooks GM . Identification of a novel, human multilymphoid progenitor in cord blood. Blood 2001; 97: 3683–3690.

    Article  CAS  Google Scholar 

  10. Haddad R, Guardiola P, Izac B, Thibault C, Radich J, Delezoide A-L et al. Molecular characterization of early human T/NK and B-lymphoid progenitor cells in umbilical cord blood. Blood 2004; 104: 3918–3926.

    Article  CAS  Google Scholar 

  11. Robin C, Pflumio F, Vainchenker W, Coulombel L . Identification of lymphomyeloid primitive progenitor cells in fresh human cord blood and in the marrow of nonobese diabetic-severe combined immunodeficient (NOD-SCID) mice transplanted with human CD34+ cord blood cells. J Exp Med 1999; 189: 1601–1610.

    Article  CAS  Google Scholar 

  12. Dik WA, Pike-Overzet K, Weerkamp F, de Ridder D, de Haas EFE, Baert MRM et al. New insights on human T cell development by quantitative T cell receptor gene rearrangement studies and gene expression profiling. J Exp Med 2005; 201: 1715–1723.

    Article  CAS  Google Scholar 

  13. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003; 4: 249–264.

    Article  Google Scholar 

  14. Khatri P, Draghici S, Ostermeier GC, Krawetz SA . Profiling gene expression using Onto-Express. Genomics 2002; 79: 266–270.

    Article  CAS  Google Scholar 

  15. van Zelm MC, van der Burg M, de Ridder D, Barendregt BH, de Haas EFE, Reinders MJT et al. Ig gene rearrangement steps are initiated in early human precursor B cell subsets and correlate with specific transcription factor expression. J Immunol 2005; 175: 5912–5922.

    Article  CAS  Google Scholar 

  16. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001; 25: 402–408.

    Article  CAS  Google Scholar 

  17. De Smedt M, Reynvoet K, Kerre T, Taghon T, Verhasselt B, Vandekerckhove B et al. Active form of Notch imposes T cell fate in human progenitor cells. J Immunol 2002; 169: 3021–3029.

    Article  CAS  Google Scholar 

  18. Nemeth MJ, Curtis DJ, Kirby MR, Garrett-Beal LJ, Seidel NE, Cline AP et al. Hmgb3: an HMG-box family member expressed in primitive hematopoietic cells that inhibits myeloid and B-cell differentiation. Blood 2003; 102: 1298–1306.

    Article  CAS  Google Scholar 

  19. Forsberg EC, Prohaska SS, Katzman S, Heffner GC, Stuart JM, Weissman IL . Differential expression of novel potential regulators in hematopoietic stem cells. PLos Genet 2005; 1: e28.

    Article  Google Scholar 

  20. Ito K, Hirao A, Arai F, Matsuoka S, Takubo K, Hamaguchi I et al. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature 2004; 431: 997–1002.

    Article  CAS  Google Scholar 

  21. Bortoluzzi S, d'Alessi F, Romualdi C, Danieli GA . Differential expression of genes coding for ribosomal proteins in different human tissues. Bioinformatics 2001; 17: 1152–1157.

    Article  CAS  Google Scholar 

  22. Baklouti F, Huang SC, Tang TK, Delaunay J, Marchesi VT, Benz EJJ . Asynchronous regulation of splicing events within protein 4.1 pre-mRNA during erythroid differentiation. Blood 1996; 87: 3934–3941.

    CAS  PubMed  Google Scholar 

  23. Stoss O, Olbrich M, Hartmann AM, Konig H, Memmott J, Andreadis A et al. The STAR/GSG family protein rSLM-2 regulates the selection of alternative splice sites. J Biol Chem 2001; 276: 8665–8673.

    Article  CAS  Google Scholar 

  24. Levesque J-P, Simmons PJ . Cytoskeleton and integrin-mediated adhesion signaling in human CD34+ hemopoietic progenitor cells. Exp Hematol 1999; 27: 579–586.

    Article  CAS  Google Scholar 

  25. Juliano RL . Signal transduction by cell adhesion receptors and the cytoskeleton: functions of integrins, cadherins, selectins, and immunoglobulin-superfamily members. Annu Rev Pharmacol Toxicol 2002; 42: 283–323.

    Article  CAS  Google Scholar 

  26. Janmey PA . The cytoskeleton and cell signaling: component localization and mechanical coupling. Physiol Rev 1998; 78: 763–781.

    Article  CAS  Google Scholar 

  27. Doherty FJ, Dawson S, Mayer RJ . The ubiquitin-proteasome pathway of intracellular proteolysis. Essays Biochem 2002; 38: 51–63.

    Article  CAS  Google Scholar 

  28. Akashi K, He X, Chen J, Iwasaki H, Niu C, Steenhard B et al. Transcriptional accessibility for genes of multiple tissues and hematopoietic lineages is hierarchically controlled during early hematopoiesis. Blood 2003; 101: 383–389.

    Article  CAS  Google Scholar 

  29. Miyamoto T, Iwasaki H, Reizis B, Ye M, Graf T, Weissman IL et al. Myeloid or lymphoid promiscuity as a critical step in hematopoietic lineage commitment. Dev Cell 2002; 3: 137–147.

    Article  CAS  Google Scholar 

  30. Hu M, Krause D, Greaves M, Sharkis S, Dexter M, Heyworth C et al. Multilineage gene expression precedes commitment in the hemopoietic system. Genes Dev 1997; 11: 774–785.

    Article  CAS  Google Scholar 

  31. Krause DS, Theise ND, Collector MI, Henegariu O, Hwang S, Gardner R et al. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 2001; 105: 369–377.

    Article  CAS  Google Scholar 

  32. Haddad R, Guimiot F, Six E, Jourquin F, Setterblad N, Kahn E et al. Dynamics of thymus-colonizing cells during human development. Immunity 2006; 24: 217–230.

    Article  CAS  Google Scholar 

  33. Weerkamp F, Baert MR, Brugman MH, Dik WA, de Haas EF, Visser TP et al. The human thymus contains multipotent progenitors with T/B-lymphoid, myeloid and erythroid lineage potential. Blood 2005; 107: 3131–3137.

    Article  Google Scholar 

  34. Porritt HE, Rumfelt LL, Tabrizifard S, Schmitt TM, Zúñiga-Pflücker JC, Petrie HT . Heterogeneity among DN1 prothymocytes reveals multiple progenitors with different capacities to generate T cell and non-T cell lineages. Immunity 2004; 20: 735–745.

    Article  CAS  Google Scholar 

  35. Weerkamp F, Pike-Overzet K, Staal FJ . T-sing progenitors to commit. Trends Immunol 2006; 27: 125–131.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the staff of the Bloedtransfusiecentrum Oost-Vlaanderen for the supply of umbilical cord blood samples and Marie-José De Bosscher for lymphoprepping. We are grateful to Dick De Ridder for help with microarray analysis and to Inge Van de Walle for excellent technical assistance. This work was supported by grants from the Fund for Scientific Research Flanders (Belgium) and from the Ghent University concerted research program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Leclercq.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoebeke, I., De Smedt, M., Stolz, F. et al. T-, B- and NK-lymphoid, but not myeloid cells arise from human CD34+CD38CD7+ common lymphoid progenitors expressing lymphoid-specific genes. Leukemia 21, 311–319 (2007). https://doi.org/10.1038/sj.leu.2404488

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404488

Keywords

This article is cited by

Search

Quick links