Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Genomics

Folate metabolic gene polymorphisms and childhood acute lymphoblastic leukemia: a case–control study

Abstract

We genotyped six folate metabolic pathway genes for 11 polymorphisms in 460 cases of childhood acute lymphoblastic leukemia (ALL) and 552 ethnically matched controls. None of the polymorphisms except the 66A>G (I22M) in the 5-methyltetrahydrofolate-homocysteine methyltransferase reductase (MTRR) gene showed any effect on disease risk. The carriers of the G-allele were associated with a marginal decreased risk of ALL (gender-adjusted global P=0.03; multiple-testing corrected P=0.25). Analysis of four polymorphisms in the MTRR gene showed statistically significant differences in haplotype distribution between cases and controls (global P<0.0001). The haplotypes GCAC (odds ratio (OR) 0.5, 95% confidence interval (CI) 0.4–0.6) and ATAC (OR 0.5, 95% CI 0.3–0.6) were associated with a reduced risk and the haplotypes ACAC (OR 2.3, 95% CI 1.8–2.9) and GTAC (OR 1.8, 95% CI 1.4–2.3) with an increased risk. The genotype-combination analyses indicated that the best model stratifies cases and controls based on the 66A>G and the 524C>T polymorphisms in the MTRR gene (global P=0.03). Our results suggest that, besides a weak association of childhood ALL with the 66A>G polymorphism, haplotypes within the MTRR gene may, in part, account for population-based differences in risk.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Canalle R, Burim RV, Tone LG, Takahashi CS . Genetic polymorphisms and susceptibility to childhood acute lymphoblastic leukemia. Environ Mol Mutagen 2004; 43: 100–109.

    Article  CAS  Google Scholar 

  2. Greaves MF . Aetiology of acute leukaemia. Lancet 1997; 349: 344–349.

    Article  CAS  Google Scholar 

  3. Meier M, den Boer ML, Hall AG, Irving JA, Passier M, Minto L et al. Relation between genetic variants of the ataxia telangiectasia-mutated (ATM) gene, drug resistance, clinical outcome and predisposition to childhood T-lineage acute lymphoblastic leukaemia. Leukemia 2005; 19: 1887–1895.

    Article  CAS  Google Scholar 

  4. Zeller B, Gustafsson G, Forestier E, Abrahamsson J, Clausen N, Heldrup J et al. Acute leukaemia in children with Down syndrome: a population-based Nordic study. Br J Haematol 2005; 128: 797–804.

    Article  Google Scholar 

  5. McNally RJ, Eden TO . An infectious aetiology for childhood acute leukaemia: a review of the evidence. Br J Haematol 2004; 127: 243–263.

    Article  Google Scholar 

  6. Couto E, Chen B, Hemminki K . Association of childhood acute lymphoblastic leukaemia with cancers in family members. Br J Cancer 2005; 93: 1307–1309.

    Article  CAS  Google Scholar 

  7. Greaves MF, Maia AT, Wiemels JL, Ford AM . Leukemia in twins: lessons in natural history. Blood 2003; 102: 2321–2333.

    Article  CAS  Google Scholar 

  8. Greaves M . Infection, immune responses and the aetiology of childhood leukaemia. Nat Rev Cancer 2006; 6: 193–203.

    Article  CAS  Google Scholar 

  9. Cheok MH, Evans WE . Acute lymphoblastic leukaemia: a model for the pharmacogenomics of cancer therapy. Nat Rev Cancer 2006; 6: 117–129.

    Article  CAS  Google Scholar 

  10. Pakakasama S, Mukda E, Sasanakul W, Kadegasem P, Udomsubpayakul U, Thithapandha A et al. Polymorphisms of drug-metabolizing enzymes and risk of childhood acute lymphoblastic leukemia. Am J Hematol 2005; 79: 202–205.

    Article  CAS  Google Scholar 

  11. Rocha JC, Cheng C, Liu W, Kishi S, Das S, Cook EH et al. Pharmacogenetics of outcome in children with acute lymphoblastic leukemia. Blood 2005; 105: 4752–4758.

    Article  CAS  Google Scholar 

  12. Krajinovic M, Sinnett H, Richer C, Labuda D, Sinnett D . Role of NQO1, MPO and CYP2E1 genetic polymorphisms in the susceptibility to childhood acute lymphoblastic leukemia. Int J Cancer 2002; 97: 230–236.

    Article  CAS  Google Scholar 

  13. Skibola CF, Smith MT, Kane E, Roman E, Rollinson S, Cartwright RA et al. Polymorphisms in the methylenetetrahydrofolate reductase gene are associated with susceptibility to acute leukemia in adults. Proc Natl Acad Sci USA 1999; 96: 12810–12815.

    Article  CAS  Google Scholar 

  14. Robien K, Ulrich CM . 5,10-Methylenetetrahydrofolate reductase polymorphisms and leukemia risk: a Huge minireview. Am J Epidemiol 2003; 157: 571–582.

    Article  Google Scholar 

  15. Krajinovic M, Lamothe S, Labuda D, Lemieux-Blanchard E, Theoret Y, Moghrabi A et al. Role of MTHFR genetic polymorphisms in the susceptibility to childhood acute lymphoblastic leukemia. Blood 2004; 103: 252–257.

    Article  CAS  Google Scholar 

  16. Skibola CF, Smith MT, Hubbard A, Shane B, Roberts AC, Law GR et al. Polymorphisms in the thymidylate synthase and serine hydroxymethyltransferase genes and risk of adult acute lymphocytic leukemia. Blood 2002; 99: 3786–3791.

    Article  CAS  Google Scholar 

  17. Thirumaran RK, Gast A, Flohr T, Burwinkel B, Bartram C, Hemminki K et al. MTHFR genetic polymorphisms and susceptibility to childhood acute lymphoblastic leukemia. Blood 2005; 106: 2590–2591, author reply 2591–2592.

    Article  CAS  Google Scholar 

  18. Schnakenberg E, Mehles A, Cario G, Rehe K, Seidemann K, Schlegelberger B et al. Polymorphisms of methylenetetrahydrofolate reductase (MTHFR) and susceptibility to pediatric acute lymphoblastic leukemia in a German study population. BMC Med Genet 2005; 6: 23.

    Article  Google Scholar 

  19. Devlin B, Roeder K . Genomic control for association studies. Biometrics 1999; 55: 997–1004.

    Article  CAS  Google Scholar 

  20. Thirumaran RK, Bermejo JL, Rudnai P, Gurzau E, Koppova K, Goessler W et al. Single nucleotide polymorphisms in DNA repair genes and basal cell carcinoma of skin. Carcinogenesis 2006; 27: 1676–1681.

    Article  CAS  Google Scholar 

  21. Westfall PH, Young SS . Resampling-Based Multiple Testing. John Wiley & Sons: New York, 1993, pp. 1–360.

    Google Scholar 

  22. Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA . Score tests for association between traits and haplotypes when linkage phase is ambiguous. Am J Hum Genet 2002; 70: 425–434.

    Article  Google Scholar 

  23. Sharp L, Little J . Polymorphisms in genes involved in folate metabolism and colorectal neoplasia: a HuGE review. Am J Epidemiol 2004; 159: 423–443.

    Article  Google Scholar 

  24. Gemmati D, Ongaro A, Scapoli GL, Della Porta M, Tognazzo S, Serino ML et al. Common gene polymorphisms in the metabolic folate and methylation pathway and the risk of acute lymphoblastic leukemia and non-Hodgkin's lymphoma in adults. Cancer Epidemiol Biomarkers Prev 2004; 13: 787–794.

    CAS  PubMed  Google Scholar 

  25. Gaughan DJ, Kluijtmans LA, Barbaux S, McMaster D, Young IS, Yarnell JW et al. The methionine synthase reductase (MTRR) A66G polymorphism is a novel genetic determinant of plasma homocysteine concentrations. Atherosclerosis 2001; 157: 451–456.

    Article  CAS  Google Scholar 

  26. Zavadakova P, Fowler B, Suormala T, Novotna Z, Mueller P, Hennermann JB et al. cblE type of homocystinuria due to methionine synthase reductase deficiency: functional correction by minigene expression. Hum Mutat 2005; 25: 239–247.

    Article  CAS  Google Scholar 

  27. Wilson A, Leclerc D, Rosenblatt DS, Gravel RA . Molecular basis for methionine synthase reductase deficiency in patients belonging to the cblE complementation group of disorders in folate/cobalamin metabolism. Hum Mol Genet 1999; 8: 2009–2016.

    Article  CAS  Google Scholar 

  28. Stolzenberg-Solomon RZ, Qiao YL, Abnet CC, Ratnasinghe DL, Dawsey SM, Dong ZW et al. Esophageal and gastric cardia cancer risk and folate- and vitamin B(12)-related polymorphisms in Linxian, China. Cancer Epidemiol Biomarkers Prev 2003; 12: 1222–1226.

    CAS  PubMed  Google Scholar 

  29. Shi Q, Zhang Z, Li G, Pillow PC, Hernandez LM, Spitz MR et al. Polymorphisms of methionine synthase and methionine synthase reductase and risk of lung cancer: a case–control analysis. Pharmacogenet Genomics 2005; 15: 547–555.

    Article  CAS  Google Scholar 

  30. Zhang Z, Shi Q, Liu Z, Sturgis EM, Spitz MR, Wei Q . Polymorphisms of methionine synthase and methionine synthase reductase and risk of squamous cell carcinoma of the head and neck: a case–control analysis. Cancer Epidemiol Biomarkers Prev 2005; 14: 1188–1193.

    Article  CAS  Google Scholar 

  31. Vaughn JD, Bailey LB, Shelnutt KP, Dunwoody KM, Maneval DR, Davis SR et al. Methionine synthase reductase 66A → G polymorphism is associated with increased plasma homocysteine concentration when combined with the homozygous methylenetetrahydrofolate reductase 677C → T variant. J Nutr 2004; 134: 2985–2990.

    Article  CAS  Google Scholar 

  32. de Jonge R, Hooijberg JH, van Zelst BD, Jansen G, van Zantwijk CH, Kaspers GJ et al. Effect of polymorphisms in folate-related genes on in vitro methotrexate sensitivity in pediatric acute lymphoblastic leukemia. Blood 2005; 106: 717–720.

    Article  CAS  Google Scholar 

  33. Crawford DC, Nickerson DA . Definition and clinical importance of haplotypes. Annu Rev Med 2005; 56: 303–320.

    Article  CAS  Google Scholar 

  34. Mori H, Colman SM, Xiao Z, Ford AM, Healy LE, Donaldson C et al. Chromosome translocations and covert leukemic clones are generated during normal fetal development. Proc Natl Acad Sci USA 2002; 99: 8242–8247.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge BFM Study Group for their support. The study was supported by an EU grant New Generis (FOOD-CT-2005-016320).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Kumar.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gast, A., Bermejo, J., Flohr, T. et al. Folate metabolic gene polymorphisms and childhood acute lymphoblastic leukemia: a case–control study. Leukemia 21, 320–325 (2007). https://doi.org/10.1038/sj.leu.2404474

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404474

Keywords

This article is cited by

Search

Quick links