Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Genomics, Gene Therapy and Proteomics

Association of heparanase gene (HPSE) single nucleotide polymorphisms with hematological malignancies

Abstract

Heparanase, endo-β-D-glucuronidase, degrades heparan sulfate glycosaminoglycans – the principal polysaccharide of the basement membrane and extracellular matrix. Heparanase activity plays a decisive role in biological processes associated with remodeling of the extracellular matrix, such as cancer metastasis, angiogenesis and inflammation. In the hematopoietic system, heparanase is thought to be associated with normal differentiation and function of myeloid cells and platelets. We investigated heparanase polymorphisms in patients with acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), acute lymphoblastic leukemia (ALL), chronic myeloid leukemia (CML), Hodgkin's disease (HD) and multiple myeloma (MM). Significant correlation was found between rs11099592 and rs6535455 heparanase gene (HPSE) single nucleotide polymorphisms (SNPs) and ALL (χ21d.f.=4.96, P=0.026). Genotype frequency comparisons revealed a significant association with rs4693602 (χ22d.f.=7.276, P=0.026) in MM patients and rs4364254 (χ22d.f.=6.226, P=0.044) in AML patients. Examination of HPSE gene mRNA expression by real-time RT-PCR indicated a significant low HPSE gene expression level in ALL patients and a high expression level in MM and AML patients, compared to healthy controls. Moreover, statistically significant correlation was found between heparanase mRNA expression level and three HPSE gene SNPs (rs4693608, rs11099592 and rs4364254) among healthy individuals. These data suggest that certain HPSE gene SNPs may contribute to basal heparanase gene expression and that alterations in this gene are an important determinant in the pathogenesis of ALL, AML and MM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Vlodavsky I, Friedmann Y . Molecular properties and involvement of heparanase in cancer metastasis and angiogenesis. J Clin Invest 2001; 108: 341–347.

    Article  CAS  Google Scholar 

  2. Sanderson RD, Yang Y, Suva LJ, Kelly T . Heparan sulfate proteoglycans and heparanase – partners in osteolytic tumor growth and metastasis. Matrix Biol 2004; 23: 341–352.

    Article  CAS  Google Scholar 

  3. Edovitsky E, Elkin M, Zcharia E, Peretz T, Vlodavsky I . Heparanase gene silencing, tumor invasiveness, angiogenesis, and metastasis. J Natl Cancer Inst 2004; 96: 1219–1230.

    Article  CAS  Google Scholar 

  4. Parish CR, Freeman C, Hulett MD . Heparanase: a key enzyme involved in cell invasion. Biochim Biophys Acta 2001; 1471: M99–M108.

    CAS  PubMed  Google Scholar 

  5. Ilan N, Elkin M, Vlodavsky I . Regulation, function and clinical significance of heparanase in cancer metastasis and angiogenesis. Int J Biochem Cell Biol 2006; 38: 2018–2039.

    Article  CAS  Google Scholar 

  6. Schubert SY, Ilan N, Shushy M, Ben-Izhak O, Vlodavsky I, Goldshmidt O . Human heparanase nuclear localization and enzymatic activity. Lab Invest 2004; 84: 535–544.

    Article  CAS  Google Scholar 

  7. Doweck I, Kaplan-Cohen V, Naroditsky I, Sabo E, Ilan N, Vlodavsky I . Heparanase localization and expression by head and neck cancer: correlation with tumor progression and patient survival. Neoplasia 2006; 8: 1055–1061.

    Article  CAS  Google Scholar 

  8. Nobuhisa T, Naomoto Y, Takaoka M, Tabuchi Y, Ookawa K, Kitamoto D et al. Emergence of nuclear heparanase induces differentiation of human mammary cancer cells. Biochem Biophys Res Com 2005; 331: 175–180.

    Article  CAS  Google Scholar 

  9. Kobayashi M, Naomoto Y, Nobuhisa T, Okawa T, Takaoka M, Shirakawa Y et al. Heparanase regulates esophageal keratinocyte differentiation through nuclear translocation and heparin sulfate cleavage. Differentiation 2006; 74: 235–243.

    Article  CAS  Google Scholar 

  10. Dong J, Kukula AK, Toyoshima M, Nakajima M . Genomic organization and chromosome localization of the newly identified human heparanase gene. Gene 2000; 253: 171–178.

    Article  CAS  Google Scholar 

  11. Bitan M, Polliack A, Zecchina G, Nagler A, Friedmann Y, Nadav L et al. Heparanase expression in human leukemias is restricted to acute myeloid leukemias. Exp Hemat 2002; 30: 34–41.

    Article  CAS  Google Scholar 

  12. Vlodavsky I, Eldor A, Haimovitz-Friedman A, Matzner Y, Ishai-Michaeli R, Lider O et al. Expression of heparanase by platelets and circulating cells of the immune system: possible involvement in diapedesis and extravasation. Invasion Metastasis 1992; 12: 112–127.

    CAS  PubMed  Google Scholar 

  13. Abboud-Jarrous G, Aingorn H, Rangini-Guetta Z, Atzmon R, Elgavish S, Peretz T et al. Heparanase processing: site-direct mutagenesis, proteolytic cleavage and activation. J Biol Chem 2005; 280: 13568–13575.

    Article  CAS  Google Scholar 

  14. Eshel R, Ben-Zaken O, Vainas O, Nadir I, Minucci S, Polliack A et al. Leukomogenic factors downregulate heparanase expression in acute myeloid leukemia cells. Biochem Biophys Res Com 2005; 335: 1115–1122.

    Article  CAS  Google Scholar 

  15. Ostrovsky O, Korostishevsky M, Levite I, Leiba M, Galski H, Gazit E et al. Characterization of HPSE gene single nucleotide polymorphisms in Jewish populations of Israel. Acta Haematol 2007; 117: 57–64.

    Article  CAS  Google Scholar 

  16. Abramson JH, Gahlinger PM . Computer Program for Epidemiologists, PEPI version 3. Brixton Books: London, 1999.

  17. Komlos L, Korostishevsky M, Livni E, Halbrecht I, Vardimon D, Ben-Rafael Z et al. Possible sex-correlated transmission of maternal class I HLA haplotypes. Eur J Immunogenet 1997; 24: 169–177.

    Article  CAS  Google Scholar 

  18. Schneider S, Roessli D, Excoffier L . A software for population genetic data analysis. Manual Arlequin. version 2.00. University of Geneva: Switzerland, 2000.

  19. Korostishevsky M, Kremer I, Kaganovich M, Cholostoy A, Murad I, Muhaheed M et al. Transmission disequilibrium and haplotype analysis of the G72/G30 locus: suggestive linkage to schizophrenia in Palestinian Arabs living in North of Israel. Am J Med Genet B Neuropsychiatr Genet 2006; 141: 91–95.

    Article  Google Scholar 

  20. Chanock S . Candidate genes and single nucleotide polymorphisms (SNPs) in the study of human disease. Dis Markers 2001; 17: 89–98.

    Article  CAS  Google Scholar 

  21. Chanock S . Genetic variation and hematology: single-nucleotide polymorphisms, haplotypes, and complex disease. Semin Hematol 2003; 40: 321–328.

    Article  CAS  Google Scholar 

  22. Kelly T, Miao H-Q, Yang Y, Navarro E, Kussie P, Huang Y et al. High heparanase activity in multiple myeloma is associated with elevated microvessel density. Cancer Res 2003; 63: 8749–8756.

    CAS  PubMed  Google Scholar 

  23. Fromm MF . The influence of MDR1 polymorphisms on P-glycoprotein expression and function in humans. Adv Drug Deliv Rev 2002; 54: 1295–1310.

    Article  CAS  Google Scholar 

  24. Espel E . The role of the AU-rich elements of mRNAs in controlling translation. Semin Cell Dev Biol 2005; 16: 59–67.

    Article  CAS  Google Scholar 

  25. Mullighan CG, Flotho C, Downing JR . Genomic assessment of pediatric acute leukemia. Cancer J 2005; 11: 268–282.

    Article  CAS  Google Scholar 

  26. Jabbour EJ, Faderl S, Kantarjian HM . Adult acute lymphoblastic leukemia. Mayo Clin Proc 2005; 80: 1517–1527.

    Article  CAS  Google Scholar 

  27. Deschler B, Lubbert M . Acute myeloid leukemia: epidemiology and etiology. Cancer 2006; 107: 2099–2107.

    Article  Google Scholar 

  28. Dudas J, Ramadori G, Knittel T, Neubauer K, Raddatz D, Egedy K . Effect of heparin and liver heparan sulphate on interaction of HepG2-derived transcription factors and their cis-acting elements: altered potential of hepatocellular carcinoma heparan sulphate. Biochem J 2000; 350: 245–251.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Nagler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ostrovsky, O., Korostishevsky, M., Levite, I. et al. Association of heparanase gene (HPSE) single nucleotide polymorphisms with hematological malignancies. Leukemia 21, 2296–2303 (2007). https://doi.org/10.1038/sj.leu.2404821

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404821

Keywords

This article is cited by

Search

Quick links