Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cytogenetics and Molecular Genetics

Clinical, cytogenetic and molecular characteristics of 14 T-ALL patients carrying the TCRβ-HOXA rearrangement: a study of the Groupe Francophone de Cytogénétique Hématologique

Abstract

Recently, we and others described a new chromosomal rearrangement, that is, inv(7)(p15q34) and t(7;7)(p15;q34) involving the T-cell receptor beta (TCRβ) (7q34) and the HOXA gene locus (7p15) in 5% of T-cell acute lymphoblastic leukemia (T-ALL) patients leading to transcriptional activation of especially HOXA10. To further address the clinical, immunophenotypical and molecular genetic findings of this chromosomal aberration, we studied 330 additional T-ALLs. This revealed TCRβ-HOXA rearrangements in five additional patients, which brings the total to 14 cases in 424 patients (3.3%). Real-time quantitative PCR analysis for HOXA10 gene expression was performed in 170 T-ALL patients and detected HOXA10 overexpression in 25.2% of cases including all the cases with a TCRβ-HOXA rearrangement (8.2%). In contrast, expression of the short HOXA10 transcript, HOXA10b, was almost exclusively found in the TCRβ-HOXA rearranged cases, suggesting a specific role for the HOXA10b short transcript in TCRβ-HOXA-mediated oncogenesis. Other molecular and/or cytogenetic aberrations frequently found in subtypes of T-ALL (SIL-TAL1, CALM-AF10, HOX11, HOX11L2) were not detected in the TCRβ-HOXA rearranged cases except for deletion 9p21 and NOTCH1 activating mutations, which were present in 64 and 67%, respectively. In conclusion, this study defines TCRβ-HOXA rearranged T-ALLs as a distinct cytogenetic subgroup by clinical, immunophenotypical and molecular genetic characteristics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 2
Figure 1
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Pui CH, Relling MV, Downing JR . Acute lymphoblastic leukemia. N Engl J Med 2004; 350: 1535–1548.

    Article  CAS  PubMed  Google Scholar 

  2. De Keersmaecker K, Marynen P, Cools J . Genetic insights in the pathogenesis of T-cell acute lymphoblastic leukemia. Haematologica 2005; 90: 1116–1127.

    CAS  PubMed  Google Scholar 

  3. Speleman F, Cauwelier B, Dastugue N, Cools J, Verhasselt B, Poppe B et al. A new recurrent inversion, inv(7)(p15q34), leads to transcriptional activation of HOXA10 and HOXA11 in a subset of T-cell acute lymphoblastic leukemias. 2005; 19: 358–366.

  4. Soulier J, Clappier E, Cayuela JM, Regnault A, Garcia-Peydro M, Dombret H et al. HOXA genes are included in genetic and biologic networks defining human acute T-cell leukemia (T-ALL). Blood 2005; 106: 274–286.

    CAS  PubMed  Google Scholar 

  5. Armstrong SA, Staunton JE, Silverman LB, Pieters R, den Boer ML, Minden MD et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet 2002; 30: 41–47.

    Article  CAS  PubMed  Google Scholar 

  6. Ferrando AA, Armstrong SA, Neuberg DS, Sallan SE, Silverman LB, Korsmeyer SJ et al. Gene expression signatures in MLL-rearranged T-lineage and B-precursor acute leukemias: dominance of HOX dysregulation. Blood 2003; 102: 262–268.

    Article  CAS  PubMed  Google Scholar 

  7. Dik WA, Brahim W, Braun C, Asnafi V, Dastugue N, Bernard OA et al. CALM-AF10+ T-ALL expression profiles are characterized by overexpression of HOXA and BMI1 oncogenes. Leukemia 2005; 19: 1948–1957.

    Article  CAS  PubMed  Google Scholar 

  8. Asnafi V, Radford-Weiss I, Dastugue N, Bayle C, Leboeuf D, Charrin C et al. CALM-AF10 is a common fusion transcript in T-ALL and is specific to the TCRgammadelta lineage. Blood 2003; 102: 1000–1006.

    Article  CAS  PubMed  Google Scholar 

  9. Yeoh EJ, Ross ME, Shurtleff SA, Williams WK, Patel D, Mahfouz R et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 2002; 1: 133–143.

    Article  CAS  PubMed  Google Scholar 

  10. Rozovskaia T, Feinstein E, Mor O, Foa R, Blechman J, Nakamura T et al. Upregulation of Meis1 and HoxA9 in acute lymphocytic leukemias with the t(4:11) abnormality. Oncogene 2001; 20: 874–878.

    Article  CAS  PubMed  Google Scholar 

  11. Ayton PM, Cleary ML . Transformation of myeloid progenitors by MLL oncoproteins is dependent on HOXA7 and HOXA9. Genes Dev 2003; 17: 2298–2307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Milne TA, Briggs SD, Brock HW, Martin ME, Gibbs D, Allis CD et al. MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol Cell 2002; 10: 1107–1117.

    Article  CAS  PubMed  Google Scholar 

  13. Nakamura T, Mori T, Tada S, Krajewski W, Rozovskaia T, Wassell R et al. ALL-1 is a histone methyltransferase that assembles a supercomplex of proteins involved in transcriptional regulation. Mol Cell 2002; 10: 1119–1128.

    Article  CAS  PubMed  Google Scholar 

  14. Santos-Rosa H, Schneider R, Bernstein BE, Karabetsou N, Morillon A, Weise C et al. Methylation of histone H3 K4 mediates association of the Isw1p ATPase with chromatin. Mol Cell 2003; 12: 1325–1332.

    Article  CAS  PubMed  Google Scholar 

  15. Bernstein BE, Humphrey EL, Erlich RL, Schneider R, Bouman P, Liu JS et al. Methylation of histone H3 Lys 4 in coding regions of active genes. Proc Natl Acad Sci USA 2002; 99: 8695–8700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Berger R, Dastugue N, Busson M, Van Den Akker J, Perot C, Ballerini P et al. t(5;14)/HOX11L2-positive T-cell acute lymphoblastic leukemia. A collaborative study of the Groupe Français de Cytogénétique Hématologique (GFCH). 2003; 17: 1851–1857.

  17. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR et al. Proposals for the classification of the acute leukaemias. French–American–British (FAB) co-operative group. Br J Haematol 1976; 33: 451–458.

    Article  CAS  PubMed  Google Scholar 

  18. Bene MC, Castoldi G, Knapp W, Ludwig WD, Matutes E, Orfao A et al. Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). Leukemia 1995; 9: 1783–1786.

    CAS  PubMed  Google Scholar 

  19. Mitelman F . An International System for Human Cytogenetic Nomenclature. ISCN: S Karger, Basel, 1995.

    Google Scholar 

  20. Van Limbergen H, Poppe B, Michaux L, Herens C, Brown J, Noens L et al. Identification of cytogenetic subclasses and recurring chromosomal aberrations in AML and MDS with complex karyotypes using M-FISH. Genes Chromosomes Cancer 2002; 33: 60–72.

    Article  CAS  PubMed  Google Scholar 

  21. Gabert J, Beillard E, van der Velden VH, Bi W, Grimwade D, Pallisgaard N et al. Standardization and quality control studies of ‘real-time’ quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia – a Europe Against Cancer program. Leukemia 2003; 17: 2318–2357.

    Article  CAS  PubMed  Google Scholar 

  22. Graux C, Cools J, Melotte C, Quentmeier H, Ferrando A, Levine R et al. Fusion of NUP214 to ABL1 on amplified episomes in T-cell acute lymphoblastic leukemia. Nat Genet 2004; 36: 1084–1089.

    Article  CAS  PubMed  Google Scholar 

  23. Ferrando AA, Neuberg DS, Staunton J, Loh ML, Huard C, Raimondi SC et al. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell 2002; 1: 75–87.

    Article  CAS  PubMed  Google Scholar 

  24. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 2002; 3: 1–11.

    Article  Google Scholar 

  25. Bernard OA, Busson-LeConiat M, Ballerini P, Mauchauffe M, Della Valle V, Monni R et al. A new recurrent and specific cryptic translocation, t(5;14)(q35;q32), is associated with expression of the Hox11L2 gene in T acute lymphoblastic leukemia. Leukemia 2001; 15: 1495–1504.

    Article  CAS  PubMed  Google Scholar 

  26. Pallisgaard N, Hokland P, Riishoj DC, Pedersen B, Jorgensen P . Multiplex reverse transcription-polymerase chain reaction for simultaneous screening of 29 translocations and chromosomal aberrations in acute leukemia. Blood 1998; 92: 574–588.

    CAS  PubMed  Google Scholar 

  27. Pui CH, Behm FG, Singh B, Schell MJ, Williams DL, Rivera GK et al. Heterogeneity of presenting features and their relation to treatment outcome in 120 children with T-cell acute lymphoblastic leukemia. Blood 1990; 75: 174–179.

    CAS  PubMed  Google Scholar 

  28. Asnafi V, Beldjord K, Boulanger E, Comba B, Le Tutour P, Estienne MH et al. Analysis of TCR, pT alpha, and RAG-1 in T-acute lymphoblastic leukemias improves understanding of early human T-lymphoid lineage commitment. Blood 2003; 101: 2693–2703.

    Article  CAS  PubMed  Google Scholar 

  29. Bergeron J, Clappier E, Cauwelier B, Dastugue N, Millien C, Delabesse E et al. HOXA cluster deregulation in T-ALL associated with both a TCRD-HOXA and a CALM-AF10 chromosomal translocation. Leukemia 2006; 20: 1184–1187.

    Article  CAS  PubMed  Google Scholar 

  30. Weng AP, Ferrando AA, Lee W, Morris JPt, Silverman LB, Sanchez-Irizarry C et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 2004; 306: 269–271.

    Article  CAS  PubMed  Google Scholar 

  31. Shen WF, Detmer K, Simonitch-Eason TA, Lawrence HJ, Largman C . Alternative splicing of the HOX 2.2 homeobox gene in human hematopoietic cells and murine embryonic and adult tissues. Nucleic Acids Res 1991; 19: 539–545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lowney P, Corral J, Detmer K, LeBeau MM, Deaven L, Lawrence HJ et al. A human Hox 1 homeobox gene exhibits myeloid-specific expression of alternative transcripts in human hematopoietic cells. Nucleic Acids Res 1991; 19: 3443–3449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lawrence HJ, Sauvageau G, Ahmadi N, Lopez AR, LeBeau MM, Link M et al. Stage- and lineage-specific expression of the HOXA10 homeobox gene in normal and leukemic hematopoietic cells. Exp Hematol 1995; 23: 1160–1166.

    CAS  PubMed  Google Scholar 

  34. Zappavigna V, Sartori D, Mavilio F . Specificity of HOX protein function depends on DNA–protein and protein–protein interactions, both mediated by the homeo domain. Genes Dev 1994; 8: 732–744.

    Article  CAS  PubMed  Google Scholar 

  35. Gisselsson D, Hoglund M, Mertens F, Johansson B, Dal Cin P, Van den Berghe H et al. The structure and dynamics of ring chromosomes in human neoplastic and non-neoplastic cells. Hum Genet 1999; 104: 315–325.

    Article  CAS  PubMed  Google Scholar 

  36. Gisselsson D, Pettersson L, Höglund M, Heidenblad M, Gorunova L, Wiegant J et al. Chromosomal breakage–fusion–bridge events cause genetic intratumor heterogeneity. Proc Natl Acad Sci USA 2000; 97: 5357–5362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nishio J, Iwasaki H, Ohjimi Y, Ishiguro M, Isayama T, Naito M et al. Supernumerary ring chromosomes in dermatofibrosarcoma protuberans may contain sequences from 8q11.2–qter and 17q21–qter: a combined cytogenetic and comparative genomic hybridization study. Cancer Genet Cytogenet 2001; 129: 102–106.

    Article  CAS  PubMed  Google Scholar 

  38. Nishio J, Iwasaki H, Ishiguro M, Ohjimi Y, Yo S, Isayama T et al. Supernumerary ring chromosome in a Bednar tumor (pigmented dermatofibrosarcoma protuberans) is composed of interspersed sequences from chromosomes 17 and 22: a fluorescence in situ hybridization and comparative genomic hybridization analysis. Genes Chromosomes Cancer 2001; 30: 305–309.

    Article  CAS  PubMed  Google Scholar 

  39. Streubel B, Valent P, Jager U, Edelhauser M, Wandt H, Wagner T et al. Amplification of the MLL gene on double minutes, a homogeneously staining region, and ring chromosomes in five patients with acute myeloid leukemia or myelodysplastic syndrome. Genes Chromosomes Cancer 2000; 27: 380–386.

    Article  CAS  PubMed  Google Scholar 

  40. Andreasson P, Johansson B, Billstrom R, Garwicz S, Mitelman F, Höglund M . Fluorescence in situ hybridization analyses of hematologic malignancies reveal frequent cytogenetically unrecognized 12p rearrangements. Leukemia 1998; 12: 390–400.

    Article  CAS  PubMed  Google Scholar 

  41. Streubel B, Valent P, Lechner K, Fonatsch C . Amplification of the AML1(CBFA2) gene on ring chromosomes in a patient with acute myeloid leukemia and a constitutional ring chromosome 21. Cancer Genet Cytogenet 2001; 124: 42–46.

    Article  CAS  PubMed  Google Scholar 

  42. Ruiz JC, Choi KH, von Hoff DD, Roninson IB, Wahl GM . Autonomously replicating episomes contain mdr1 genes in a multidrug-resistant human cell line. Mol Cell Biol 1989; 9: 109–115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ciullo M, Debily MA, Rozier L, Autiero M, Billault A, Mayau V et al. Initiation of the breakage–fusion–bridge mechanism through common fragile site activation in human breast cancer cells: the model of PIP gene duplication from a break at FRA7I. Hum Mol Genet 2002; 11: 2887–2894.

    Article  CAS  PubMed  Google Scholar 

  44. Barr FG, Nauta LE, Davis RJ, Schafer BW, Nycum LM, Biegel JA . In vivo amplification of the PAX3-FKHR and PAX7-FKHR fusion genes in alveolar rhabdomyosarcoma. Hum Mol Genet 1996; 5: 15–21.

    Article  CAS  PubMed  Google Scholar 

  45. Rodley P, McDonald M, Price B, Fright R, Morris C . Comparative genomic hybridization reveals previously undescribed amplifications and deletions in the chronic myeloid leukemia-derived K-562 cell line. Genes Chromosomes Cancer 1997; 19: 36–42.

    Article  CAS  PubMed  Google Scholar 

  46. Marculescu R, Le T, Simon P, Jaeger U, Nadel B . V(D)J-mediated translocations in lymphoid neoplasms: a functional assessment of genomic instability by cryptic sites. J Exp Med 2002; 195: 85–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Raghavan SC, Kirsch IR, Lieber MR . Analysis of the V(D)J recombination efficiency at lymphoid chromosomal translocation breakpoints. J Biol Chem 2001; 276: 29126–29133.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Fonds voor Wetenschappelijk Onderzoek (FWO-) Vlaanderen, Grants G.0106.05 and GOA, grant no.12051203. This paper presents research results of the Belgian program of Interuniversity Poles of Attraction initiated by the Belgian State, Prime Minister's Office, Science Policy Programming. The scientific responsibility is assumed by the authors. BC is supported by the Belgian program of Interuniversity Poles of Attraction. NVR is a Postdoctoral fellow and BV is a Senior Clinical Investigator funded by the FWO-Vlaanderen. We are thankful to Betty Emanuel and Nurten Yigit for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Speleman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cauwelier, B., Cavé, H., Gervais, C. et al. Clinical, cytogenetic and molecular characteristics of 14 T-ALL patients carrying the TCRβ-HOXA rearrangement: a study of the Groupe Francophone de Cytogénétique Hématologique. Leukemia 21, 121–128 (2007). https://doi.org/10.1038/sj.leu.2404410

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404410

Keywords

This article is cited by

Search

Quick links