Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Animal Models

MN1-TEL, the product of the t(12;22) in human myeloid leukemia, immortalizes murine myeloid cells and causes myeloid malignancy in mice

Abstract

MN1-TEL is the product of the recurrent t(12;22)(p12;q11) associated with human myeloid malignancies. MN1-TEL functions as an activated transcription factor, exhibiting weak transforming activity in NIH3T3 fibroblasts that depends on the presence of a functional TEL DNA-binding domain, the N-terminal transactivating sequences of MN1 and C-terminal sequences of MN1. We determined the transforming activity of MN1-TEL in mouse bone marrow (BM) by using retroviral transfer. MN1-TEL-transduced BM showed increased self-renewal capacity of primitive progenitors in vitro, and prolonged in vitro culture of MN1-TEL-expressing BM produced immortalized myeloid, interleukin (IL)-3/stem cell factor-dependent cell lines with a primitive morphology. Transplantation of such cell lines into lethally irradiated mice rescued them from irradiation-induced death and resulted in the contribution of MN1-TEL-expressing cells to all hematopoietic lineages, underscoring the primitive nature of these cells and their capacity to differentiate in vivo. Three months after transplantation, all mice succumbed to promonocytic leukemia. Transplantation of freshly MN1-TEL-transduced BM into lethally irradiated mice also caused acute myeloid leukemia within 3 months of transplantation. We infer that MN1-TEL is a hematopoietic oncogene that stimulates the growth of hematopoietic cells, but depends on secondary mutations to cause leukemia in mice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Bohlander SK . ETV6: a versatile player in leukemogenesis. Semin Cancer Biol 2005; 15: 162–174.

    Article  CAS  PubMed  Google Scholar 

  2. Rubnitz JE, Pui CH, Downing JR . The role of TEL fusion genes in pediatric leukemias. Leukemia 1999; 13: 6–13.

    Article  CAS  PubMed  Google Scholar 

  3. Golub TR, Barker GF, Lovett M, Gilliland DG . Fusion of PDGF receptor beta to a novel ETS-like gene, TEL, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell 1994; 77: 307–316.

    Article  CAS  PubMed  Google Scholar 

  4. Sharrocks AD, Brown AL, Ling Y, Yates PR . The ETS-domain transcription factor family. Int J Biochem Cell Biol 1997; 29: 1371–1387.

    Article  CAS  PubMed  Google Scholar 

  5. Jousset C, Carron C, Boureux A, TranQuang C, Oury C, Dusanter-Fourt I et al. A domain of TEL conserved in a subset of ETS proteins defines a specific oligomerization interface essential to the mitogenic properties of the TEL-PDGFRb oncoprotein. EMBO J 1997; 16: 69–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kwiatkowski B, Bastian L, Bauer T, Tsai S, Zielinska-Kwiatkowska A, Hickstein D . The ets family member Tel binds to the Fli-1 oncoprotein and inhibits its transcriptional activity. J Biol Chem 1998; 273: 17525–17530.

    Article  CAS  PubMed  Google Scholar 

  7. Potter M, Buijs A, Kreider B, Rompaey LV, Grosveld G . Identification and characterization of a new human ETS-family transcription factor, TEL2, that is expressed in hematopoietic tissues and can associate with TEL1/ETV6. Blood 2000; 95: 3341–3348.

    CAS  PubMed  Google Scholar 

  8. Lopez RG, Carron C, Oury C, Gardellin P, Bernard O, Ghysdael J . TEL is a sequence-specific transcriptional repressor. J Biol Chem 1999; 274: 30132–30138.

    Article  CAS  PubMed  Google Scholar 

  9. Chakrabarti SR, Nucifora G . The leukemia-associated gene TEL encodes a transcription repressor which associates with SMRT and mSin3A. Biochem Biophys Res Commun 1999; 264: 871–877.

    Article  CAS  PubMed  Google Scholar 

  10. Fenrick R, Amann JM, Lutterbach B, Wang L, Westendorf JJ, Downing JR et al. Both TEL and AML-1 contribute repression domains to the t(12;21) fusion protein. Mol Cell Biol 1999; 19: 6566–6574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Buijs A, van Rompaey L, Molijn AC, Davis JN, Vertegaal AC, Potter MD et al. The MN1-TEL fusion protein, encoded by the translocation (12;22)(p13;q11) in myeloid leukemia, is a transcription factor with transforming activity. Mol Cell Biol 2000; 20: 9281–9293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Szymczyna BR, Arrowsmith CH . DNA binding specificity studies of four ETS proteins support an indirect read-out mechanism of protein–DNA recognition. J Biol Chem 2000; 275: 28363–28370.

    Article  CAS  PubMed  Google Scholar 

  13. Rowley JD . The role of chromosome translocations in leukemogenesis. Semin Hematol 1999; 36: 59–72.

    CAS  PubMed  Google Scholar 

  14. Papadopoulos P, Ridge SA, Boucher CA, Stocking C, Wiedemann LM . The novel activation of ABL by fusion to an ETS-related gene. Cancer Res 1995; 55: 34–38.

    CAS  PubMed  Google Scholar 

  15. Lacronique V, Boureux A, Valle VD, Poirel H, Quang CT, Mauchauffe M et al. A TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia. Science 1997; 278: 1309–1312.

    Article  CAS  PubMed  Google Scholar 

  16. Cazzaniga G, Tosi S, Aloisi A, Giudici G, Daniotti M, Pioltelli P et al. The tyrosine kinase abl-related gene ARG is fused to ETV6 in an AML-M4Eo patient with a t(1;12)(q25;p13): molecular cloning of both reciprocal transcripts. Blood 1999; 94: 4370–4373.

    CAS  PubMed  Google Scholar 

  17. Knezevich S, McFadden D, Tao W, Lim J, Sorensen P . A novel ETV6-NTRK3 gene fusion in congenital fibrosarcoma. Nat Genet 1998; 18: 184–187.

    Article  CAS  PubMed  Google Scholar 

  18. Tognon C, Knezevich SR, Huntsman D, Roskelley CD, Melnyk N, Mathers JA et al. Expression of the ETV6-NTRK3 gene fusion as a primary event in human secretory breast carcinoma. Cancer Cell 2002; 2: 367–376.

    Article  CAS  PubMed  Google Scholar 

  19. Carron C, Cormier F, Janin A, Lacronique V, Giovannini M, Daniel MT et al. TEL-JAK2 transgenic mice develop T-cell leukemia. Blood 2000; 95: 3891–3999.

    CAS  PubMed  Google Scholar 

  20. Golub TR, Barker GF, Stegmaier K, Gilliland DG . Involvement of the TEL gene in hematologic malignancy by diverse molecular genetic mechanisms. Curr Top Microbiol Immunol 1996; 211: 279–288.

    CAS  PubMed  Google Scholar 

  21. Liu Q, Schwaller J, Kutok J, Cain D, Aster JC, Williams IR et al. Signal transduction and transforming properties of the TEL-TRKC fusions associated with t(12;15)(p13;q25) in congenital fibrosarcoma and acute myelogenous leukemia. EMBO J 2000; 19: 1827–1838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schwaller J, Frantsve J, Aster J, Williams IR, Tomasson MH, Ross TS et al. Transformation of hematopoietic cell lines to growth-factor independence and induction of a fatal myelo- and lymphoproliferative disease in mice by retrovirally transduced TEL/JAK2 fusion genes. EMBO J 1998; 17: 5321–5333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sjoblom T, Boureux A, Ronnstrand L, Heldin CH, Ghysdael J, Ostman A . Characterization of the chronic myelomonocytic leukemia associated TEL-PDGF beta R fusion protein. Oncogene 1999; 18: 7055–7062.

    Article  CAS  PubMed  Google Scholar 

  24. Tomasson MH, Williams IR, Hasserjian R, Udomsakdi C, McGrath SM, Schwaller J et al. TEL/PDGFbetaR induces hematologic malignancies in mice that respond to a specific tyrosine kinase inhibitor. Blood 1999; 93: 1707–1714.

    CAS  PubMed  Google Scholar 

  25. Fears S, Gavin M, Zhang D, Hetherinton C, Ben-David Y, Rowley J et al. Functional characterization of ETV6 and ETV6/CBFA2 in the regulation of the MCSFR proximal promoter. Proc Natl Acad Sci USA 1997; 94: 1949–1954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fenrick R, Hiebert SW . Role of histone deacetylases in acute leukemia. J Cell Biochem Suppl 1998; 30–31: 194–202.

    Article  PubMed  Google Scholar 

  27. Hiebert SW, Sun W, Davis JN, Golub T, Shurtleff S, Buijs A et al. The t(12;21) translocation converts AML-1B from an activator to a repressor of transcription. Mol Cell Biol 1996; 16: 1349–1355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nucifora G . The EVI1 gene in myeloid leukemia. Leukemia 1997; 11: 2022–2031.

    Article  CAS  PubMed  Google Scholar 

  29. Chase A, Reiter A, Burci L, Cazzaniga G, Biondi A, Pickard J et al. Fusion of ETV6 to the caudal-related homeobox gene CDX2 in acute myeloid leukemia with the t(12;13)(p13;q12). Blood 1999; 93: 1025–1031.

    CAS  PubMed  Google Scholar 

  30. Beverloo HB, Panagopoulos I, Isaksson M, van Wering E, van Drunen E, de Klein A et al. Fusion of the homeobox gene HLXB9 and the ETV6 gene in infant acute myeloid leukemias with the t(7;12)(q36;p13). Cancer Res 2001; 61: 5374–5377.

    CAS  PubMed  Google Scholar 

  31. Cazzaniga G, Daniotti M, Tosi S, Giudici G, Aloisi A, Pogliani E et al. The paired box domain gene PAX5 is fused to ETV6/TEL in an acute lymphoblastic leukemia case. Cancer Res 2001; 61: 4666–4670.

    CAS  PubMed  Google Scholar 

  32. Cools J, Bilhou-Nabera C, Wlodarska I, Cabrol C, Talmant P, Bernard P et al. Fusion of a novel gene, BTL, to ETV6 in acute myeloid leukemias with a t(4;12)(q11–q12;p13). Blood 1999; 94: 1820–1824.

    CAS  PubMed  Google Scholar 

  33. Lekanne Deprez RH, Riegman PH, Groen NA, Warringa UL, van Biezen NA, Molijn AC et al. Cloning and characterization of MN1, a gene from chromosome 22q11, which is disrupted by a balanced translocation in a meningioma. Oncogene 1995; 10: 1521–1528.

    CAS  PubMed  Google Scholar 

  34. van Wely KH, Molijn AC, Buijs A, Meester-Smoor MA, Aarnoudse AJ, Hellemons A et al. The MN1 oncoprotein synergizes with coactivators RAC3 and p300 in RAR-RXR-mediated transcription. Oncogene 2003; 22: 699–709.

    Article  CAS  PubMed  Google Scholar 

  35. Kawagoe H, Grosveld GC . Conditional MN1-TEL knock-in mice develop acute myeloid leukemia in conjunction with overexpression of HOXA9. Blood 2005; 106: 4269–4277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kawagoe H, Grosveld GC . MN1-TEL myeloid oncoprotein expressed in multipotent progenitors perturbs both myeloid and lymphoid growth and causes T-lymphoid tumors in mice. Blood 2005; 106: 4278–4286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cardone M, Kandilci A, Carella C, Nilsson JA, Brennan JA, Sirma S et al. The novel ETS factor TEL2 cooperates with Myc in B lymphomagenesis. MCB 2005; 25: 2395–2405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Carella C, Potter M, Bonten J, Rehg JE, Neale G, Grosveld GC . The ETS factor TEL2 is a hematopoietic onco-protein. Blood 2005; 107: 1124–1132.

    Article  PubMed  Google Scholar 

  39. Goodell MA, McKinney-Freeman S, Camargo FD . Isolation and characterization of side population cells. Methods Mol Biol 2005; 290: 343–352.

    PubMed  Google Scholar 

  40. Burroughs J, Gupta P, Blazar BR, Verfaillie CM . Diffusible factors from the murine cell line M2–10B4 support human in vitro hematopoiesis. Exp Hematol 1994; 22: 1095–1101.

    CAS  PubMed  Google Scholar 

  41. Higuchi M, O'Brien D, Kumaravelu P, Lenny N, Yeoh EJ, Downing JR . Expression of a conditional AML1-ETO oncogene bypasses embryonic lethality and establishes a murine model of human t(8;21) acute myeloid leukemia. Cancer Cell 2002; 1: 63–74.

    Article  CAS  PubMed  Google Scholar 

  42. Lavau C, Szilvassy SJ, Slany R, Cleary ML . Immortalization and leukemic transformation of a myelomonocytic precursor by retrovirally transduced HRX-ENL. EMBO J 1997; 16: 4226–4237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Boisvert FM, Cote J, Boulanger MC, Richard S . A proteomic analysis of arginine-methylated protein complexes. Mol Cell Proteomics 2003; 2: 1319–1330.

    Article  CAS  PubMed  Google Scholar 

  44. Xu W, Chen H, Du K, Asahara H, Tini M, Emerson BM et al. A transcriptional switch mediated by cofactor methylation. Science 2001; 294: 2507–2511.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Blake McGourty for the supply of C57BL/6/129svJ-mixed background mice and technical assistance. We gratefully acknowledge Ann-Marie Hamilton Easton and Richard Ashmun for expert FACS analysis, and we thank Charlette Hill for editing the manuscript. We are grateful to Luc van Rompaey who initiated these experiments. This work was supported by NCI Grant CA72999, the cancer center (CORE) support grant CA217G and by the American Lebanese Syrian Associated Charities (ALSAC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G C Grosveld.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carella, C., Bonten, J., Rehg, J. et al. MN1-TEL, the product of the t(12;22) in human myeloid leukemia, immortalizes murine myeloid cells and causes myeloid malignancy in mice. Leukemia 20, 1582–1592 (2006). https://doi.org/10.1038/sj.leu.2404298

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404298

Keywords

This article is cited by

Search

Quick links