Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Cytogenetics and molecular genetics of T-cell acute lymphoblastic leukemia: from thymocyte to lymphoblast

Abstract

For long, T-cell acute lymphoblastic leukemia (T-ALL) remained in the shadow of precursor B-ALL because it was more seldom, and showed a normal karyotype in more than 50% of cases. The last decennia, intense research has been carried out on different fronts. On one side, development of normal thymocyte and its regulation mechanisms have been studied in multiple mouse models and subsequently validated. On the other side, molecular cytogenetics (fluorescence in situ hybridization) and mutation analysis revealed cytogenetically cryptic aberrations in almost all cases of T-ALL. Also, expression microarray analysis disclosed gene expression signatures that recapitulate specific stages of thymocyte development. Investigations are still very much actual, fed by the discovery of new genetic aberrations. In this review, we present a summary of the current cytogenetic changes associated with T-ALL. The genes deregulated by translocations or mutations appear to encode proteins that are also implicated in T-cell development, which prompted us to review the ‘normal’ and ‘leukemogenic’ functions of these transcription regulators. To conclude, we show that the paradigm of multistep leukemogenesis is very much applicable to T-ALL and that the different genetic insults collaborate to maintain self-renewal capacity, and induce proliferation and differentiation arrest of T-lymphoblasts. They also open perspectives for targeted therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Pui CH, Relling MV, Downing JR . Acute lymphoblastic leukemia. N Engl J Med 2004; 350: 1535–1548.

    Article  CAS  PubMed  Google Scholar 

  2. Harrison CJ, Foroni L . Cytogenetics and molecular genetics of acute lymphoblastic leukemia. Rev Clin Exp Hematol 2002; 6: 91–113.

    Article  CAS  PubMed  Google Scholar 

  3. Ferrando AA, Neuberg DS, Staunton J, Loh ML, Huard C, Raimondi SC et al. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell 2002; 1: 75–87.

    Article  CAS  PubMed  Google Scholar 

  4. Soulier J, Clappier E, Cayuela JM, Regnault A, Garcia-Peydro M, Dombret H et al. HOXA genes are included in genetic and biologic networks defining human acute T-cell leukemia (T-ALL). Blood 2005; 106: 274–286.

    Article  CAS  PubMed  Google Scholar 

  5. Weng AP, Ferrando AA, Lee W, Morris JP, Silverman LB, Sanchez-Irizarry C et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 2004; 306: 269–271.

    Article  CAS  PubMed  Google Scholar 

  6. Dik WA, Brahim W, Braun C, Asnafi V, Dastugue N, Bernard OA et al. CALM-AF10+ T-ALL expression profiles are characterized by overexpression of HOXA and BMI1 oncogenes. Leukemia 2005; 19: 1948–1957.

    Article  CAS  PubMed  Google Scholar 

  7. Ferrando AA, Herblot S, Palomero T, Hansen M, Hoang T, Fox EA et al. Biallelic transcriptional activation of oncogenic transcription factors in T-cell acute lymphoblastic leukemia. Blood 2004; 103: 1909–1911.

    Article  CAS  PubMed  Google Scholar 

  8. Tonegawa S . Somatic generation of antibody diversity. Nature 1983; 302: 575–581.

    Article  CAS  PubMed  Google Scholar 

  9. Garcia KC, Teyton L, Wilson IA . Structural basis of T cell recognition. Annu Rev Immunol 1999; 17: 369–397.

    Article  CAS  PubMed  Google Scholar 

  10. Zipfel PA, Zhang W, Quiroz M, Pendergast AM . Requirement for Abl kinases in T cell receptor signaling. Curr Biol 2004; 14: 1222–1231.

    Article  CAS  PubMed  Google Scholar 

  11. Wange RL . TCR signaling: another Abl-bodied kinase joins the cascade. Curr Biol 2004; 14: R562–R564.

    Article  CAS  PubMed  Google Scholar 

  12. Plum J, De Smedt M, Leclercq G, Verhasselt B, Vandekerckhove B . Interleukin-7 is a critical growth factor in early human T-cell development. Blood 1996; 88: 4239–4245.

    CAS  PubMed  Google Scholar 

  13. Carrasco YR, Navarro MN, de Yebenes VG, Ramiro AR, Toribio ML . Regulation of surface expression of the human pre-T cell receptor complex. Semin Immunol 2002; 14: 325–334.

    Article  CAS  PubMed  Google Scholar 

  14. Murre C . Intertwining proteins in thymocyte development and cancer. Nat Immunol 2000; 1: 97–98.

    Article  CAS  PubMed  Google Scholar 

  15. Engel I, Murre C . E2A proteins enforce a proliferation checkpoint in developing thymocytes. EMBO J 2004; 23: 202–211.

    Article  CAS  PubMed  Google Scholar 

  16. Bene MC, Castoldi G, Knapp W, Ludwig WD, Matutes E, Orfao A et al. Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). Leukemia 1995; 9: 1783–1786.

    CAS  PubMed  Google Scholar 

  17. Asnafi V, Beldjord K, Boulanger E, Comba B, Le Tutour P, Estienne MH et al. Analysis of TCR, pT alpha, and RAG-1 in T-acute lymphoblastic leukemias improves understanding of early human T-lymphoid lineage commitment. Blood 2003; 101: 2693–2703.

    Article  CAS  PubMed  Google Scholar 

  18. Cauwelier B, Dastugue N, Cools J, Poppe B, Herens C, De Paepe A et al. Molecular cytogenetic study of 126 unselected T-ALL cases reveals high incidence of TCRbeta locus rearrangements and putative new T-cell oncogenes. Leukemia 2006; e-pub: ahead of print.

  19. Asnafi V, Radford-Weiss I, Dastugue N, Bayle C, Leboeuf D, Charrin C et al. CALM-AF10 is a common fusion transcript in T-ALL and is specific to the TCRgammadelta lineage. Blood 2003; 102: 1000–1006.

    Article  CAS  PubMed  Google Scholar 

  20. Hayette S, Tigaud I, Maguer-Satta V, Bartholin L, Thomas X, Charrin C et al. Recurrent involvement of the MLL gene in adult T-lineage acute lymphoblastic leukemia. Blood 2002; 99: 4647–4649.

    Article  CAS  PubMed  Google Scholar 

  21. Graux C, Cools J, Melotte C, Quentmeier H, Ferrando A, Levine R et al. Fusion of NUP214 to ABL1 on amplified episomes in T-cell acute lymphoblastic leukemia. Nat Genet 2004; 36: 1084–1089.

    Article  CAS  PubMed  Google Scholar 

  22. Hussey DJ, Nicola M, Moore S, Peters GB, Dobrovic A . The (4;11)(q21;p15) translocation fuses the NUP98 and RAP1GDS1 genes and is recurrent in T-cell acute lymphocytic leukemia. Blood 1999; 94: 2072–2079.

    CAS  PubMed  Google Scholar 

  23. Lahortiga I, Vizmanos JL, Agirre X, Vazquez I, Cigudosa JC, Larrayoz MJ et al. NUP98 is fused to adducin 3 in a patient with T-cell acute lymphoblastic leukemia and myeloid markers, with a new translocation t(10;11)(q25;p15). Cancer Res 2003; 63: 3079–3083.

    CAS  PubMed  Google Scholar 

  24. Hebert J, Cayuela JM, Berkeley J, Sigaux F . Candidate tumor-suppressor genes MTS1 (p16INK4A) and MTS2 (p15INK4B) display frequent homozygous deletions in primary cells from T- but not from B-cell lineage acute lymphoblastic leukemias. Blood 1994; 84: 4038–4044.

    CAS  PubMed  Google Scholar 

  25. Sinclair PB, Sorour A, Martineau M, Harrison CJ, Mitchell WA, O'Neill E et al. A fluorescence in situ hybridization map of 6q deletions in acute lymphocytic leukemia: identification and analysis of a candidate tumor suppressor gene. Cancer Res 2004; 64: 4089–4098.

    Article  CAS  PubMed  Google Scholar 

  26. Lai EC . Notch signaling: control of cell communication and cell fate. Development 2004; 131: 965–973.

    Article  CAS  PubMed  Google Scholar 

  27. Duncan AW, Rattis FM, DiMascio LN, Congdon KL, Pazianos G, Zhao C et al. Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nat Immunol 2005; 6: 314–322.

    Article  CAS  PubMed  Google Scholar 

  28. Maillard I, Fang T, Pear WS . Regulation of lymphoid development, differentiation, and function by the Notch pathway. Annu Rev Immunol 2005; 23: 945–974.

    Article  CAS  PubMed  Google Scholar 

  29. Radtke F, Wilson A, Stark G, Bauer M, van Meerwijk J, MacDonald HR et al. Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity 1999; 10: 547–558.

    Article  CAS  PubMed  Google Scholar 

  30. Ciofani M, Schmitt TM, Ciofani A, Michie AM, Cuburu N, Aublin A et al. Obligatory role for cooperative signaling by pre-TCR and Notch during thymocyte differentiation. J Immunol 2004; 172: 5230–5239.

    Article  CAS  PubMed  Google Scholar 

  31. Wolfer A, Wilson A, Nemir M, MacDonald HR, Radtke F . Inactivation of Notch1 impairs VDJbeta rearrangement and allows pre-TCR-independent survival of early alpha beta lineage thymocytes. Immunity 2002; 16: 869–879.

    Article  CAS  PubMed  Google Scholar 

  32. Nie L, Xu M, Vladimirova A, Sun XH . Notch-induced E2A ubiquitination and degradation are controlled by MAP kinase activities. EMBO J 2003; 22: 5780–5792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schweisguth F . Notch signaling activity. Curr Biol 2004; 14: R129–R138.

    Article  CAS  PubMed  Google Scholar 

  34. Pear WS, Aster JC, Scott ML, Hasserjian RP, Soffer B, Sklar J et al. Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles. J Exp Med 1996; 183: 2283–2291.

    Article  CAS  PubMed  Google Scholar 

  35. Ellisen LW, Bird J, West DC, Soreng AL, Reynolds TC, Smith SD et al. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 1991; 66: 649–661.

    Article  CAS  PubMed  Google Scholar 

  36. Aster JC . Deregulated NOTCH signaling in acute T-cell lymphoblastic leukemia/lymphoma: new insights, questions, and opportunities. Int J Hematol 2005; 82: 295–301.

    Article  CAS  PubMed  Google Scholar 

  37. Jones S . An overview of the basic helix–loop–helix proteins. Genome Biol 2004; 5: 226.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Tremblay M, Herblot S, Lecuyer E, Hoang T . Regulation of pT alpha gene expression by a dosage of E2A, HEB, and SCL. J Biol Chem 2003; 278: 12680–12687.

    Article  CAS  PubMed  Google Scholar 

  39. Sawada S, Littman DR . A heterodimer of HEB and an E12-related protein interacts with the CD4 enhancer and regulates its activity in T-cell lines. Mol Cell Biol 1993; 13: 5620–5628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bain G, Engel I, Robanus Maandag EC, te Riele HP, Voland JR, Sharp LL et al. E2A deficiency leads to abnormalities in alphabeta T-cell development and to rapid development of T-cell lymphomas. Mol Cell Biol 1997; 17: 4782–4791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yan W, Young AZ, Soares VC, Kelley R, Benezra R, Zhuang Y . High incidence of T-cell tumors in E2A-null mice and E2A/Id1 double-knockout mice. Mol Cell Biol 1997; 17: 7317–7327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bain G, Romanow WJ, Albers K, Havran WL, Murre C . Positive and negative regulation of V(D)J recombination by the E2A proteins. J Exp Med 1999; 189: 289–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Engel I, Murre C . Ectopic expression of E47 or E12 promotes the death of E2A-deficient lymphomas. Proc Natl Acad Sci USA 1999; 96: 996–1001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pagliuca A, Gallo P, De Luca P, Lania L . Class A helix–loop–helix proteins are positive regulators of several cyclin-dependent kinase inhibitors' promoter activity and negatively affect cell growth. Cancer Res 2000; 60: 1376–1382.

    CAS  PubMed  Google Scholar 

  45. Kim D, Peng XC, Sun XH . Massive apoptosis of thymocytes in T-cell-deficient Id1 transgenic mice. Mol Cell Biol 1999; 19: 8240–8253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Begley CG, Aplan PD, Denning SM, Haynes BF, Waldmann TA, Kirsch IR . The gene SCL is expressed during early hematopoiesis and encodes a differentiation-related DNA-binding motif. Proc Natl Acad Sci USA 1989; 86: 10128–10132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Baer R . TAL1, TAL2 and LYL1: a family of basic helix–loop–helix proteins implicated in T cell acute leukaemia. Semin Cancer Biol 1993; 4: 341–347.

    CAS  PubMed  Google Scholar 

  48. Carroll AJ, Crist WM, Link MP, Amylon MD, Pullen DJ, Ragab AH et al. The t(1;14)(p34;q11) is nonrandom and restricted to T-cell acute lymphoblastic leukemia: a Pediatric Oncology Group study. Blood 1990; 76: 1220–1224.

    CAS  PubMed  Google Scholar 

  49. Brown L, Cheng JT, Chen Q, Siciliano MJ, Crist W, Buchanan G et al. Site-specific recombination of the tal-1 gene is a common occurrence in human T cell leukemia. EMBO J 1990; 9: 3343–3351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Janssen JW, Ludwig WD, Sterry W, Bartram CR . SIL-TAL1 deletion in T-cell acute lymphoblastic leukemia. Leukemia 1993; 7: 1204–1210.

    CAS  PubMed  Google Scholar 

  51. Aplan PD, Raimondi SC, Kirsch IR . Disruption of the SCL gene by a t(1;3) translocation in a patient with T cell acute lymphoblastic leukemia. J Exp Med 1992; 176: 1303–1310.

    Article  CAS  PubMed  Google Scholar 

  52. Bash RO, Hall S, Timmons CF, Crist WM, Amylon M, Smith RG et al. Does activation of the TAL1 gene occur in a majority of patients with T-cell acute lymphoblastic leukemia? A pediatric oncology group study. Blood 1995; 86: 666–676.

    CAS  PubMed  Google Scholar 

  53. Robb L, Lyons I, Li R, Hartley L, Kontgen F, Harvey RP et al. Absence of yolk sac hematopoiesis from mice with a targeted disruption of the scl gene. Proc Natl Acad Sci USA 1995; 92: 7075–7079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shivdasani RA, Mayer EL, Orkin SH . Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL. Nature 1995; 373: 432–434.

    Article  CAS  PubMed  Google Scholar 

  55. Visvader JE, Fujiwara Y, Orkin SH . Unsuspected role for the T-cell leukemia protein SCL/tal-1 in vascular development. Genes Dev 1998; 12: 473–479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Herblot S, Steff AM, Hugo P, Aplan PD, Hoang T . SCL and LMO1 alter thymocyte differentiation: inhibition of E2A-HEB function and pre-T alpha chain expression. Nat Immunol 2000; 1: 138–144.

    Article  CAS  PubMed  Google Scholar 

  57. O'Neil J, Shank J, Cusson N, Murre C, Kelliher M . TAL1/SCL induces leukemia by inhibiting the transcriptional activity of E47/HEB. Cancer Cell 2004; 5: 587–596.

    Article  CAS  PubMed  Google Scholar 

  58. Aplan PD, Jones CA, Chervinsky DS, Zhao X, Ellsworth M, Wu C et al. An scl gene product lacking the transactivation domain induces bony abnormalities and cooperates with LMO1 to generate T-cell malignancies in transgenic mice. EMBO J 1997; 16: 2408–2419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. O'Neil J, Billa M, Oikemus S, Kelliher M . The DNA binding activity of TAL-1 is not required to induce leukemia/lymphoma in mice. Oncogene 2001; 20: 3897–3905.

    Article  CAS  PubMed  Google Scholar 

  60. Mellentin JD, Smith SD, Cleary ML . lyl-1, a novel gene altered by chromosomal translocation in T cell leukemia, codes for a protein with a helix–loop–helix DNA binding motif. Cell 1989; 58: 77–83.

    Article  CAS  PubMed  Google Scholar 

  61. Xia Y, Brown L, Yang CY, Tsan JT, Siciliano MJ, Espinosa III R et al. TAL2, a helix-loop-helix gene activated by the (7;9)(q34;q32) translocation in human T-cell leukemia. Proc Natl Acad Sci USA 1991; 88: 11416–11420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang J, Jani-Sait SN, Escalon EA, Carroll AJ, de Jong PJ, Kirsch IR et al. The t(14;21)(q11.2;q22) chromosomal translocation associated with T-cell acute lymphoblastic leukemia activates the BHLHB1 gene. Proc Natl Acad Sci USA 2000; 97: 3497–3502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rabbitts TH . LMO T-cell translocation oncogenes typify genes activated by chromosomal translocations that alter transcription and developmental processes. Genes Dev 1998; 12: 2651–2657.

    Article  CAS  PubMed  Google Scholar 

  64. McGuire EA, Hockett RD, Pollock KM, Bartholdi MF, O'Brien SJ, Korsmeyer SJ . The t(11;14)(p15;q11) in a T-cell acute lymphoblastic leukemia cell line activates multiple transcripts, including Ttg-1, a gene encoding a potential zinc finger protein. Mol Cell Biol 1989; 9: 2124–2132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Royer-Pokora B, Loos U, Ludwig WD . TTG-2, a new gene encoding a cysteine-rich protein with the LIM motif, is overexpressed in acute T-cell leukaemia with the t(11;14)(p13;q11). Oncogene 1991; 6: 1887–1893.

    CAS  PubMed  Google Scholar 

  66. Asnafi V, Beldjord K, Libura M, Villarese P, Millien C, Ballerini P et al. Age-related phenotypic and oncogenic differences in T-cell acute lymphoblastic leukemias may reflect thymic atrophy. Blood 2004; 104: 4173–4180.

    Article  CAS  PubMed  Google Scholar 

  67. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003; 302: 415–419.

    Article  CAS  PubMed  Google Scholar 

  68. Hammond SM, Crable SC, Anderson KP . Negative regulatory elements are present in the human LMO2 oncogene and may contribute to its expression in leukemia. Leuk Res 2005; 29: 89–97.

    Article  CAS  PubMed  Google Scholar 

  69. Warren AJ, Colledge WH, Carlton MB, Evans MJ, Smith AJ, Rabbitts TH . The oncogenic cysteine-rich LIM domain protein rbtn2 is essential for erythroid development. Cell 1994; 78: 45–57.

    Article  CAS  PubMed  Google Scholar 

  70. Wadman IA, Osada H, Grutz GG, Agulnick AD, Westphal H, Forster A et al. The LIM-only protein Lmo2 is a bridging molecule assembling an erythroid, DNA-binding complex which includes the TAL1, E47, GATA-1 and Ldb1/NLI proteins. EMBO J 1997; 16: 3145–3157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ono Y, Fukuhara N, Yoshie O . TAL1 and LIM-only proteins synergistically induce retinaldehyde dehydrogenase 2 expression in T-cell acute lymphoblastic leukemia by acting as cofactors for GATA3. Mol Cell Biol 1998; 18: 6939–6950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Larson RC, Osada H, Larson TA, Lavenir I, Rabbitts TH . The oncogenic LIM protein Rbtn2 causes thymic developmental aberrations that precede malignancy in transgenic mice. Oncogene 1995; 11: 853–862.

    CAS  PubMed  Google Scholar 

  73. Larson RC, Lavenir I, Larson TA, Baer R, Warren AJ, Wadman I et al. Protein dimerization between Lmo2 (Rbtn2) and Tal1 alters thymocyte development and potentiates T cell tumorigenesis in transgenic mice. EMBO J 1996; 15: 1021–1027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gehring WJ, Qian YQ, Billeter M, Furukubo-Tokunaga K, Schier AF, Resendez-Perez D et al. Homeodomain-DNA recognition. Cell 1994; 78: 211–223.

    Article  CAS  PubMed  Google Scholar 

  75. Lawrence PA, Morata G . Homeobox genes: their function in Drosophila segmentation and pattern formation. Cell 1994; 78: 181–189.

    Article  CAS  PubMed  Google Scholar 

  76. van Oostveen J, Bijl J, Raaphorst F, Walboomers J, Meijer C . The role of homeobox genes in normal hematopoiesis and hematological malignancies. Leukemia 1999; 13: 1675–1690.

    Article  CAS  PubMed  Google Scholar 

  77. Taghon T, Thys K, De Smedt M, Weerkamp F, Staal FJ, Plum J et al. Homeobox gene expression profile in human hematopoietic multipotent stem cells and T-cell progenitors: implications for human T-cell development. Leukemia 2003; 17: 1157–1163.

    Article  CAS  PubMed  Google Scholar 

  78. Izon DJ, Rozenfeld S, Fong ST, Komuves L, Largman C, Lawrence HJ . Loss of function of the homeobox gene Hoxa-9 perturbs early T-cell development and induces apoptosis in primitive thymocytes. Blood 1998; 92: 383–393.

    CAS  PubMed  Google Scholar 

  79. Kroon E, Krosl J, Thorsteinsdottir U, Baban S, Buchberg AM, Sauvageau G . Hoxa9 transforms primary bone marrow cells through specific collaboration with Meis1a but not Pbx1b. EMBO J 1998; 17: 3714–3725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sauvageau G, Thorsteinsdottir U, Hough MR, Hugo P, Lawrence HJ, Largman C et al. Overexpression of HOXB3 in hematopoietic cells causes defective lymphoid development and progressive myeloproliferation. Immunity 1997; 6: 13–22.

    Article  CAS  PubMed  Google Scholar 

  81. Speleman F, Cauwelier B, Dastugue N, Cools J, Verhasselt B, Poppe B et al. A new recurrent inversion, inv(7)(p15q34), leads to transcriptional activation of HOXA10 and HOXA11 in a subset of T-cell acute lymphoblastic leukemias. Leukemia 2005; 19: 358–366.

    Article  CAS  PubMed  Google Scholar 

  82. Look AT . Oncogenic transcription factors in the human acute leukemias. Science 1997; 278: 1059–1064.

    Article  CAS  PubMed  Google Scholar 

  83. Ferrando AA, Armstrong SA, Neuberg DS, Sallan SE, Silverman LB, Korsmeyer SJ et al. Gene expression signatures in MLL-rearranged T-lineage and B-precursor acute leukemias: dominance of HOX dysregulation. Blood 2003; 102: 262–268.

    Article  CAS  PubMed  Google Scholar 

  84. Owens BM, Hawley RG . HOX and non-HOX homeobox genes in leukemic hematopoiesis. Stem Cells 2002; 20: 364–379.

    Article  CAS  PubMed  Google Scholar 

  85. Roberts CW, Shutter JR, Korsmeyer SJ . Hox11 controls the genesis of the spleen. Nature 1994; 368: 747–749.

    Article  CAS  PubMed  Google Scholar 

  86. Hatano M, Roberts CW, Minden M, Crist WM, Korsmeyer SJ . Deregulation of a homeobox gene, HOX11, by the t(10;14) in T cell leukemia. Science 1991; 253: 79–82.

    Article  CAS  PubMed  Google Scholar 

  87. Brake RL, Kees UR, Watt PM . Multiple negative elements contribute to repression of the HOX11 proto-oncogene. Oncogene 1998; 17: 1787–1795.

    Article  CAS  PubMed  Google Scholar 

  88. Kees UR, Heerema NA, Kumar R, Watt PM, Baker DL, La MK et al. Expression of HOX11 in childhood T-lineage acute lymphoblastic leukaemia can occur in the absence of cytogenetic aberration at 10q24: a study from the Children's Cancer Group (CCG). Leukemia 2003; 17: 887–893.

    Article  CAS  PubMed  Google Scholar 

  89. Watt PM, Kumar R, Kees UR . Promoter demethylation accompanies reactivation of the HOX11 proto-oncogene in leukemia. Genes Chromosomes Cancer 2000; 29: 371–377.

    Article  CAS  PubMed  Google Scholar 

  90. Ferrando AA, Neuberg DS, Dodge RK, Paietta E, Larson RA, Wiernik PH et al. Prognostic importance of TLX1 (HOX11) oncogene expression in adults with T-cell acute lymphoblastic leukaemia. Lancet 2004; 363: 535–536.

    Article  CAS  PubMed  Google Scholar 

  91. Hawley RG, Fong AZ, Lu M, Hawley TS . The HOX11 homeobox-containing gene of human leukemia immortalizes murine hematopoietic precursors. Oncogene 1994; 9: 1–12.

    CAS  PubMed  Google Scholar 

  92. Hawley RG, Fong AZ, Reis MD, Zhang N, Lu M, Hawley TS . Transforming function of the HOX11/TCL3 homeobox gene. Cancer Res 1997; 57: 337–345.

    CAS  PubMed  Google Scholar 

  93. Owens BM, Zhu YX, Suen TC, Wang PX, Greenblatt JF, Goss PE et al. Specific homeodomain–DNA interactions are required for HOX11-mediated transformation. Blood 2003; 101: 4966–4974.

    Article  CAS  PubMed  Google Scholar 

  94. Kawabe T, Muslin AJ, Korsmeyer SJ . HOX11 interacts with protein phosphatases PP2A and PP1 and disrupts a G2/M cell-cycle checkpoint. Nature 1997; 385: 454–458.

    Article  CAS  PubMed  Google Scholar 

  95. Riz I, Hawley RG . G1/S transcriptional networks modulated by the HOX11/TLX1 oncogene of T-cell acute lymphoblastic leukemia. Oncogene 2005; 24: 5561–5575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bernard OA, Busson-LeConiat M, Ballerini P, Mauchauffe M, Della VV, Monni R et al. A new recurrent and specific cryptic translocation, t(5;14)(q35;q32), is associated with expression of the Hox11L2 gene in T acute lymphoblastic leukemia. Leukemia 2001; 15: 1495–1504.

    Article  CAS  PubMed  Google Scholar 

  97. Nagel S, Kaufmann M, Drexler HG, MacLeod RA . The cardiac homeobox gene NKX2-5 is deregulated by juxtaposition with BCL11B in pediatric T-ALL cell lines via a novel t(5;14)(q35.1;q32.2). Cancer Res 2003; 63: 5329–5334.

    CAS  PubMed  Google Scholar 

  98. Su XY, Busson M, Della VV, Ballerini P, Dastugue N, Talmant P et al. Various types of rearrangements target TLX3 locus in T-cell acute lymphoblastic leukemia. Genes Chromosomes Cancer 2004; 41: 243–249.

    Article  CAS  PubMed  Google Scholar 

  99. Hansen-Hagge TE, Schafer M, Kiyoi H, Morris SW, Whitlock JA, Koch P et al. Disruption of the RanBP17/Hox11L2 region by recombination with the TCRdelta locus in acute lymphoblastic leukemias with t(5;14)(q34;q11). Leukemia 2002; 16: 2205–2212.

    Article  CAS  PubMed  Google Scholar 

  100. Ballerini P, Blaise A, Busson-Le Coniat M, Su XY, Zucman-Rossi J, Adam M et al. HOX11L2 expression defines a clinical subtype of pediatric T-ALL associated with poor prognosis. Blood 2002; 100: 991–997.

    Article  CAS  PubMed  Google Scholar 

  101. Cave H, Suciu S, Preudhomme C, Poppe B, Robert A, Uyttebroeck A et al. Clinical significance of HOX11L2 expression linked to t(5;14)(q35;q32), of HOX11 expression, and of SIL-TAL fusion in childhood T-cell malignancies: results of EORTC studies 58881 and 58951. Blood 2004; 103: 442–450.

    Article  CAS  PubMed  Google Scholar 

  102. Ballerini P, Busson M, Fasola S, van den AJ, Lapillonne H, Romana SP et al. NUP214-ABL1 amplification in t(5;14)/HOX11L2-positive ALL present with several forms and may have a prognostic significance. Leukemia 2005; 19: 468–470.

    Article  CAS  PubMed  Google Scholar 

  103. Yu BD, Hess JL, Horning SE, Brown GA, Korsmeyer SJ . Altered Hox expression and segmental identity in Mll-mutant mice. Nature 1995; 378: 505–508.

    Article  CAS  PubMed  Google Scholar 

  104. Schumacher A, Magnuson T . Murine Polycomb- and trithorax-group genes regulate homeotic pathways and beyond. Trends Genet 1997; 13: 167–170.

    Article  CAS  PubMed  Google Scholar 

  105. Milne TA, Briggs SD, Brock HW, Martin ME, Gibbs D, Allis CD et al. MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol Cell 2002; 10: 1107–1117.

    Article  CAS  PubMed  Google Scholar 

  106. Meyer C, Schneider B, Jacob S, Strehl S, Attarbaschi A, Schnittger S et al. The MLL recombinome of acute leukemias. Leukemia 2006; 20: 777–784.

    Article  CAS  PubMed  Google Scholar 

  107. Armstrong SA, Staunton JE, Silverman LB, Pieters R, den Boer ML, Minden MD et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet 2002; 30: 41–47.

    Article  CAS  PubMed  Google Scholar 

  108. Yeoh EJ, Ross ME, Shurtleff SA, Williams WK, Patel D, Mahfouz R et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 2002; 1: 133–143.

    Article  CAS  PubMed  Google Scholar 

  109. Pui CH, Evans WE . Treatment of acute lymphoblastic leukemia. N Engl J Med 2006; 354: 166–178.

    Article  CAS  PubMed  Google Scholar 

  110. Rubnitz JE, Camitta BM, Mahmoud H, Raimondi SC, Carroll AJ, Borowitz MJ et al. Childhood acute lymphoblastic leukemia with the MLL-ENL fusion and t(11;19)(q23;p13.3) translocation. J Clin Oncol 1999; 17: 191–196.

    Article  CAS  PubMed  Google Scholar 

  111. Groupe Francais de Cytogenetique Hematologique (GFCH). t(10;11)(p13–14;q14–21): a new recurrent translocation in T-cell acute lymphoblastic leukemias. Genes Chromosomes Cancer 1991; 3: 411–415.

  112. Dreyling MH, Martinez-Climent JA, Zheng M, Mao J, Rowley JD, Bohlander SK . The t(10;11)(p13;q14) in the U937 cell line results in the fusion of the AF10 gene and CALM, encoding a new member of the AP-3 clathrin assembly protein family. Proc Natl Acad Sci USA 1996; 93: 4804–4809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Dreyling MH, Schrader K, Fonatsch C, Schlegelberger B, Haase D, Schoch C et al. MLL and CALM are fused to AF10 in morphologically distinct subsets of acute leukemia with translocation t(10;11): both rearrangements are associated with a poor prognosis. Blood 1998; 91: 4662–4667.

    CAS  PubMed  Google Scholar 

  114. Park IK, Qian D, Kiel M, Becker MW, Pihalja M, Weissman IL et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 2003; 423: 302–305.

    Article  CAS  PubMed  Google Scholar 

  115. Jacobs JJ, Kieboom K, Marino S, DePinho RA, van Lohuizen M . The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 1999; 397: 164–168.

    Article  CAS  PubMed  Google Scholar 

  116. Wong S, Witte ON . The BCR-ABL story: bench to bedside and back. Annu Rev Immunol 2004; 22: 247–306.

    Article  CAS  PubMed  Google Scholar 

  117. Quentmeier H, Cools J, MacLeod RA, Marynen P, Uphoff CC, Drexler HG . e6-a2 BCR-ABL1 fusion in T-cell acute lymphoblastic leukemia. Leukemia 2005; 19: 295–296.

    Article  CAS  PubMed  Google Scholar 

  118. Bernasconi P, Calatroni S, Giardini I, Inzoli A, Castagnola C, Cavigliano PM et al. ABL1 amplification in T-cell acute lymphoblastic leukemia. Cancer Genet Cytogenet 2005; 162: 146–150.

    Article  CAS  PubMed  Google Scholar 

  119. Golub TR, Goga A, Barker GF, Afar DE, McLaughlin J, Bohlander SK et al. Oligomerization of the ABL tyrosine kinase by the Ets protein TEL in human leukemia. Mol Cell Biol 1996; 16: 4107–4116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. De Keersmaecker K, Graux C, Odero MD, Mentens N, Somers R, Maertens J et al. Fusion of EML1 to ABL1 in T-cell acute lymphoblastic leukemia with cryptic t(9;14)(q34;q32). Blood 2005; 105: 4849–4852.

    Article  CAS  PubMed  Google Scholar 

  121. Griesinger F, Janke A, Podleschny M, Bohlander SK . Identification of an ETV6-ABL2 fusion transcript in combination with an ETV6 point mutation in a T-cell acute lymphoblastic leukaemia cell line. Br J Haematol 2002; 119: 454–458.

    Article  CAS  PubMed  Google Scholar 

  122. Peeters P, Raynaud SD, Cools J, Wlodarska I, Grosgeorge J, Philip P et al. Fusion of TEL, the ETS-variant gene 6 (ETV6), to the receptor-associated kinase JAK2 as a result of t(9;12) in a lymphoid and t(9;15;12) in a myeloid leukemia. Blood 1997; 90: 2535–2540.

    CAS  PubMed  Google Scholar 

  123. Lacronique V, Boureux A, Valle VD, Poirel H, Quang CT, Mauchauffe M et al. A TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia. Science 1997; 278: 1309–1312.

    Article  CAS  PubMed  Google Scholar 

  124. Burnett RC, Thirman MJ, Rowley JD, Diaz MO . Molecular analysis of the T-cell acute lymphoblastic leukemia-associated t(1;7)(p34;q34) that fuses LCK and TCRB. Blood 1994; 84: 1232–1236.

    CAS  PubMed  Google Scholar 

  125. Tycko B, Smith SD, Sklar J . Chromosomal translocations joining LCK and TCRB loci in human T cell leukemia. J Exp Med 1991; 174: 867–873.

    Article  CAS  PubMed  Google Scholar 

  126. Paietta E, Ferrando AA, Neuberg D, Bennett JM, Racevskis J, Lazarus H et al. Activating FLT3 mutations in CD117/KIT(+) T-cell acute lymphoblastic leukemias. Blood 2004; 104: 558–560.

    Article  CAS  PubMed  Google Scholar 

  127. Van Vlierberghe P, Meijerink JP, Stam RW, van der SW, van Wering ER, Beverloo HB et al. Activating FLT3 mutations in CD4+/CD8- pediatric T-cell acute lymphoblastic leukemias. Blood 2005; 106: 4414–4415.

    Article  CAS  PubMed  Google Scholar 

  128. Bos JL . ras oncogenes in human cancer: a review. Cancer Res 1989; 49: 4682–4689.

    CAS  PubMed  Google Scholar 

  129. Neubauer A, Dodge RK, George SL, Davey FR, Silver RT, Schiffer CA et al. Prognostic importance of mutations in the ras proto-oncogenes in de novo acute myeloid leukemia. Blood 1994; 83: 1603–1611.

    CAS  PubMed  Google Scholar 

  130. Yokota S, Nakao M, Horiike S, Seriu T, Iwai T, Kaneko H et al. Mutational analysis of the N-ras gene in acute lymphoblastic leukemia: a study of 125 Japanese pediatric cases. Int J Hematol 1998; 67: 379–387.

    Article  CAS  PubMed  Google Scholar 

  131. von Lintig FC, Huvar I, Law P, Diccianni MB, Yu AL, Boss GR . Ras activation in normal white blood cells and childhood acute lymphoblastic leukemia. Clin Cancer Res 2000; 6: 1804–1810.

    CAS  PubMed  Google Scholar 

  132. Goemans BF, Zwaan CM, Harlow A, Loonen AH, Gibson BE, Hahlen K et al. In vitro profiling of the sensitivity of pediatric leukemia cells to tipifarnib: identification of T-cell ALL and FAB M5 AML as the most sensitive subsets. Blood 2005; 106: 3532–3537.

    Article  CAS  PubMed  Google Scholar 

  133. Seminario MC, Wange RL . Lipid phosphatases in the regulation of T cell activation: living up to their PTEN-tial. Immunol Rev 2003; 192: 80–97.

    Article  CAS  PubMed  Google Scholar 

  134. Ward SG, Cantrell DA . Phosphoinositide 3-kinases in T lymphocyte activation. Curr Opin Immunol 2001; 13: 332–338.

    Article  CAS  PubMed  Google Scholar 

  135. Uddin S, Hussain A, Al Hussein K, Platanias LC, Bhatia KG . Inhibition of phosphatidylinositol 3′-kinase induces preferentially killing of PTEN-null T leukemias through AKT pathway. Biochem Biophys Res Commun 2004; 320: 932–938.

    Article  CAS  PubMed  Google Scholar 

  136. Stone S, Jiang P, Dayananth P, Tavtigian SV, Katcher H, Parry D et al. Complex structure and regulation of the P16 (MTS1) locus. Cancer Res 1995; 55: 2988–2994.

    CAS  PubMed  Google Scholar 

  137. Stone S, Dayananth P, Jiang P, Weaver-Feldhaus JM, Tavtigian SV, Cannon-Albright L et al. Genomic structure, expression and mutational analysis of the P15 (MTS2) gene. Oncogene 1995; 11: 987–991.

    CAS  PubMed  Google Scholar 

  138. Lowe SW, Sherr CJ . Tumor suppression by Ink4a-Arf: progress and puzzles. Curr Opin Genet Dev 2003; 13: 77–83.

    Article  CAS  PubMed  Google Scholar 

  139. Sherr CJ, Weber JD . The ARF/p53 pathway. Curr Opin Genet Dev 2000; 10: 94–99.

    Article  CAS  PubMed  Google Scholar 

  140. Cayuela JM, Madani A, Sanhes L, Stern MH, Sigaux F . Multiple tumor-suppressor gene 1 inactivation is the most frequent genetic alteration in T-cell acute lymphoblastic leukemia. Blood 1996; 87: 2180–2186.

    CAS  PubMed  Google Scholar 

  141. Okamoto A, Demetrick DJ, Spillare EA, Hagiwara K, Hussain SP, Bennett WP et al. Mutations and altered expression of p16INK4 in human cancer. Proc Natl Acad Sci USA 1994; 91: 11045–11049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Garcia-Manero G, Jeha S, Daniel J, Williamson J, Albitar M, Kantarjian HM et al. Aberrant DNA methylation in pediatric patients with acute lymphocytic leukemia. Cancer 2003; 97: 695–702.

    Article  CAS  PubMed  Google Scholar 

  143. Omura-Minamisawa M, Diccianni MB, Batova A, Chang RC, Bridgeman LJ, Yu J et al. Universal inactivation of both p16 and p15 but not downstream components is an essential event in the pathogenesis of T-cell acute lymphoblastic leukemia. Clin Cancer Res 2000; 6: 1219–1228.

    CAS  PubMed  Google Scholar 

  144. Ramakers-van Woerden NL, Pieters R, Slater RM, Loonen AH, Beverloo HB, van Drunen E et al. In vitro drug resistance and prognostic impact of p16INK4A/P15INK4B deletions in childhood T-cell acute lymphoblastic leukaemia. Br J Haematol 2001; 112: 680–690.

    Article  CAS  PubMed  Google Scholar 

  145. Clappier E, Cuccuini W, Cayuela JM, Vecchione D, Baruchel A, Dombret H et al. Cyclin D2 dysregulation by chromosomal translocations to TCR loci in T-cell acute lymphoblastic leukemias. Leukemia 2006; 20: 82–86.

    Article  CAS  PubMed  Google Scholar 

  146. Vogelstein B, Kinzler KW . The multistep nature of cancer. Trends Genet 1993; 9: 138–141.

    Article  CAS  PubMed  Google Scholar 

  147. Hansson A, Manetopoulos C, Jonsson JI, Axelson H . The basic helix–loop–helix transcription factor TAL1/SCL inhibits the expression of the p16INK4A and pTalpha genes. Biochem Biophys Res Commun 2003; 312: 1073–1081.

    Article  CAS  PubMed  Google Scholar 

  148. Weng AP, Nam Y, Wolfe MS, Pear WS, Griffin JD, Blacklow SC et al. Growth suppression of pre-T acute lymphoblastic leukemia cells by inhibition of notch signaling. Mol Cell Biol 2003; 23: 655–664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. De Keersmaecker K, Marynen P, Cools J . Genetic insights in the pathogenesis of T-cell acute lymphoblastic leukemia. Haematologica 2005; 90: 1116–1127.

    CAS  PubMed  Google Scholar 

  150. Res P, Martinez-Caceres E, Cristina JA, Staal F, Noteboom E, Weijer K et al. CD34+CD38dim cells in the human thymus can differentiate into T, natural killer, and dendritic cells but are distinct from pluripotent stem cells. Blood 1996; 87: 5196–5206.

    CAS  PubMed  Google Scholar 

  151. Blom B, Verschuren MC, Heemskerk MH, Bakker AQ, Gastel-Mol EJ, Wolvers-Tettero IL et al. TCR gene rearrangements and expression of the pre-T cell receptor complex during human T-cell differentiation. Blood 1999; 93: 3033–3043.

    CAS  PubMed  Google Scholar 

  152. Spits H . Development of alphabeta T cells in the human thymus. Nat Rev Immunol 2002; 2: 760–772.

    Article  CAS  PubMed  Google Scholar 

  153. von Boehmer H, Fehling HJ . Structure and function of the pre-T cell receptor. Annu Rev Immunol 1997; 15: 433–452.

    Article  CAS  PubMed  Google Scholar 

  154. Kruisbeek AM, Haks MC, Carleton M, Michie AM, Zuniga-Pflucker JC, Wiest DL . Branching out to gain control: how the pre-TCR is linked to multiple functions. Immunol Today 2000; 21: 637–644.

    Article  CAS  PubMed  Google Scholar 

  155. Kim D, Xu M, Nie L, Peng XC, Jimi E, Voll RE et al. Helix–loop–helix proteins regulate pre-TCR and TCR signaling through modulation of Rel/NF-kappaB activities. Immunity 2002; 16: 9–21.

    Article  CAS  PubMed  Google Scholar 

  156. Voll RE, Jimi E, Phillips RJ, Barber DF, Rincon M, Hayday AC et al. NF-kappa B activation by the pre-T cell receptor serves as a selective survival signal in T lymphocyte development. Immunity 2000; 13: 677–689.

    Article  CAS  PubMed  Google Scholar 

  157. Weng AP, Aster JC . No T without D3: a critical role for cyclin D3 in normal and malignant precursor T cells. Cancer Cell 2003; 4: 417–418.

    Article  CAS  PubMed  Google Scholar 

  158. Blom B, Spits H . Development of human lymphoid cells. Annu Rev Immunol 2006; 24: 287–320.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This text presents research results of the Belgian programme on Interuniversity Poles of Attraction initiated by the Belgian State, Prime Minister's Office, Science Policy Programming. The scientific responsibility is assumed by the authors. JC is a postdoctoral researcher, and PV is a clinical investigator of the ‘Fonds voor Wetenschappelijk Onderzoek Vlaanderen’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Hagemeijer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graux, C., Cools, J., Michaux, L. et al. Cytogenetics and molecular genetics of T-cell acute lymphoblastic leukemia: from thymocyte to lymphoblast. Leukemia 20, 1496–1510 (2006). https://doi.org/10.1038/sj.leu.2404302

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404302

Keywords

This article is cited by

Search

Quick links