Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cytogenetics and Molecular Genetics

Molecular cytogenetic study of 126 unselected T-ALL cases reveals high incidence of TCRβ locus rearrangements and putative new T-cell oncogenes

Abstract

Chromosomal aberrations of T-cell receptor (TCR) gene loci often involve the TCRαδ (14q11) locus and affect various known T-cell oncogenes. A systematic fluorescent in situ hybridization (FISH) screening for the detection of chromosomal aberrations involving the TCR loci, TCRαδ (14q11), TCRβ (7q34) and TCRγ (7p14), has not been conducted so far. Therefore, we initiated a screening of 126 T-cell acute lymphoblastic leukemia (T-ALL) and T-cell lymphoblastic lymphoma cases and 19 T-ALL cell lines using FISH break-apart assays for the different TCR loci. Genomic rearrangements of the TCRβ locus were detected in 24/126 cases (19%), most of which (58.3%) were not detected upon banding analysis. Breakpoints in the TCRαδ locus were detected in 22/126 cases (17.4%), whereas standard cytogenetics only detected 14 of these 22 cases. Cryptic TCRαδ/TCRβ chromosome aberrations were thus observed in 22 of 126 cases (17.4%). Some of these chromosome aberrations target new putative T-cell oncogenes at chromosome 11q24, 20p12 and 6q22. Five patients and one cell line carried chromosomal rearrangements affecting both TCRβ and TCRαδ loci. In conclusion, this study presents the first inventory of chromosomal rearrangements of TCR loci in T-ALL, revealing an unexpected high number of cryptic chromosomal rearrangements of the TCRβ locus and further broadening the spectrum of genes putatively implicated in T-cell oncogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Pui CH, Relling MV, Downing JR . Acute lymphoblastic leukemia. N Engl J Med 2004; 350: 1535–1548.

    Article  CAS  PubMed  Google Scholar 

  2. Uckun FM, Sensel MG, Sun L, Steinherz PG, Trigg ME, Heerema NA et al. Biology and treatment of childhood T-lineage acute lymphoblastic leukemia. Blood 1998; 91: 735–746.

    CAS  PubMed  Google Scholar 

  3. Stefan Faderl HMK, Moshe T, Zeev E . Clinical significance of cytogenetic abnormalities in adult acute lymphoblastic leukemia. Blood 1998; 91: 3995–4019.

    Google Scholar 

  4. Gritti C, Choukroun V, Soulier J, Madani A, Dastot H, Leblond V et al. Alternative origin of p13MTCP1-encoding transcripts in mature T-cell proliferations with t(X;14) translocations. Oncogene 1997; 15: 1329–1335.

    Article  CAS  PubMed  Google Scholar 

  5. Bernard OA, Busson-LeConiat M, Ballerini P, Mauchauffe M, Della Valle V, Monni R et al. A new recurrent and specific cryptic translocation, t(5;14)(q35;q32), is associated with expression of the Hox11L2 gene in T acute lymphoblastic leukemia. Leukemia 2001; 15: 1495–1504.

    Article  CAS  PubMed  Google Scholar 

  6. Wang J, Jani-Sait SN, Escalon EA, Carroll AJ, de Jong PJ, Kirsch IR et al. The t(14;21)(q11.2;q22) chromosomal translocation associated with T-cell acute lymphoblastic leukemia activates the BHLHB1 gene. Proc Natl Acad Sci USA 2000; 97: 3497–3502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Croce CM, Isobe M, Palumbo A, Puck J, Ming J, Tweardy D et al. Gene for alpha-chain of human T-cell receptor: location on chromosome 14 region involved in T-cell neoplasms. Science 1985; 227: 1044–1047.

    Article  CAS  PubMed  Google Scholar 

  8. Weng AP, Ferrando AA, Lee W, Morris JPt, Silverman LB, Sanchez-Irizarry C et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 2004; 306: 269–271.

    Article  CAS  PubMed  Google Scholar 

  9. Ferrando AA, Neuberg DS, Staunton J, Loh ML, Huard C, Raimondi SC et al. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell 2002; 1: 75–87.

    Article  CAS  PubMed  Google Scholar 

  10. Kim De Keersmaecker PM, Cools Y . Genetic insights in the pathogenesis of T-cell acute lymphoblastic leukemia. Haematol J 2005; 90: 1116–1127.

    Google Scholar 

  11. Ferrando AA, Herblot S, Palomero T, Hansen M, Hoang T, Fox EA et al. Biallelic transcriptional activation of oncogenic transcription factors in T-cell acute lymphoblastic leukemia. Blood 2004; 103: 1909–1911.

    Article  CAS  PubMed  Google Scholar 

  12. Groupe Française de Cytogénétique Hématologique (GFCH). t(10;11)(p13–14;q14–21): a new recurrent translocation in T-cell acute lymphoblastic leukemias. Genes Chromosomes Cancer 1991; 3: 411–415.

  13. Asnafi V, Radford-Weiss I, Dastugue N, Bayle C, Leboeuf D, Charrin C et al. CALM-AF10 is a common fusion transcript in T-ALL and is specific to the TCRgammadelta lineage. Blood 2003; 102: 1000–1006.

    Article  CAS  PubMed  Google Scholar 

  14. Rubnitz JE, Camitta BM, Mahmoud H, Raimondi SC, Carroll AJ, Borowitz MJ et al. Childhood acute lymphoblastic leukemia with the MLL–ENL fusion and t(11;19)(q23;p13.3) translocation. J Clin Oncol 1999; 17: 191–196.

    Article  CAS  PubMed  Google Scholar 

  15. Graux C, Cools J, Melotte C, Quentmeier H, Ferrando A, Levine R et al. Fusion of NUP214 to ABL1 on amplified episomes in T-cell acute lymphoblastic leukemia. Nat Genet 2004; 36: 1084–1089.

    Article  CAS  PubMed  Google Scholar 

  16. Quentmeier H, Cools J, Macleod RA, Marynen P, Uphoff CC, Drexler HG . e6-a2 BCR-ABL1 fusion in T-cell acute lymphoblastic leukemia. Leukemia 2005; 19: 295–296.

    Article  CAS  PubMed  Google Scholar 

  17. Speleman F, Cauwelier B, Dastugue N, Cools J, Verhasselt B, Poppe B et al. A new recurrent inversion, inv(7)(p15q34), leads to transcriptional activation of HOXA10 and HOXA11 in a subset of T-cell acute lymphoblastic leukemias. Leukemia 2005; 19: 358–366.

    Article  CAS  PubMed  Google Scholar 

  18. Soulier J, Clappier E, Cayuela JM, Regnault A, Garcia-Peydro M, Dombret H et al. HOXA genes are included in genetic and biologic networks defining human acute T-cell leukemia (T-ALL). Blood 2005; 106: 274–286.

    Article  CAS  PubMed  Google Scholar 

  19. Lawrence HJ, Fischbach NA, Largman C . HOX genes: not just myeloid oncogenes any more. Leukemia 2005; 19: 1328–1330.

    Article  CAS  PubMed  Google Scholar 

  20. Dik WA, Brahim W, Braun C, Asnafi V, Dastugue N, Bernard OA et al. CALM-AF10+ T-ALL expression profiles are characterized by overexpression of HOXA and BMI1 oncogenes. Leukemia 2005; 19: 1948–1957.

    Article  CAS  PubMed  Google Scholar 

  21. Poppe B, Cauwelier B, Van Limbergen H, Yigit N, Philippe J, Verhasselt B et al. Novel cryptic chromosomal rearrangements in childhood acute lymphoblastic leukemia detected by multiple color fluorescent in situ hybridization. Haematologica 2005; 90: 1179–1185.

    CAS  PubMed  Google Scholar 

  22. Bene MC, Castoldi G, Knapp W, Ludwig WD, Matutes E, Orfao A et al. Proposals for the immunological classification of acute leukemias. European group for the immunological characterization of leukemias (EGIL). Leukemia 1995; 9: 1783–1786.

    CAS  PubMed  Google Scholar 

  23. Mitelman F . An International System for Human Cytogenetic Nomenclature. 1995 ISCN, S Karger, Basel.

  24. Van Limbergen H, Poppe B, Michaux L, Herens C, Brown J, Noens L et al. Identification of cytogenetic subclasses and recurring chromosomal aberrations in AML and MDS with complex karyotypes using M-FISH. Genes Chromosomes Cancer 2002; 33: 60–72.

    Article  CAS  PubMed  Google Scholar 

  25. Hughes S, Arneson N, Done S, Squire J . The use of whole genome amplification in the study of human disease. Prog Biophys Mol Biol 2005; 88: 173–189.

    Article  CAS  PubMed  Google Scholar 

  26. Martin-Subero JI, Harder L, Gesk S, Schlegelberger B, Grote W, Martinez-Climent JA et al. Interphase FISH assays for the detection of translocations with breakpoints in immunoglobulin light chain loci. Int J Cancer 2002; 98: 470–474.

    Article  CAS  PubMed  Google Scholar 

  27. Schneider NR, Carroll AJ, Shuster JJ, Pullen DJ, Link MP, Borowitz MJ et al. New recurring cytogenetic abnormalities and association of blast cell karyotypes with prognosis in childhood T-cell acute lymphoblastic leukemia: a pediatric oncology group report of 343 cases. Blood 2000; 96: 2543–2549.

    CAS  PubMed  Google Scholar 

  28. Bernard O, Groettrup M, Mugneret F, Berger R, Azogui O . Molecular analysis of T-cell receptor transcripts in a human T-cell leukemia bearing a t(1;14) and an inv(7); cell surface expression of a TCR-beta chain in the absence of alpha chain. Leukemia 1993; 7: 1645–1653.

    CAS  PubMed  Google Scholar 

  29. Heerema NA, Palmer CG, Weetman R, Bertolone S . Cytogenetic analysis in relapsed childhood acute lymphoblastic leukemia. Leukemia 1992; 6: 185–192.

    CAS  PubMed  Google Scholar 

  30. Groupe Française de Cytogénétique Hématologique (GFCH). Cytogenetic abnormalities in adult acute lymphoblastic leukemia: correlations with hematologic findings outcome. Blood 1996; 87: 3135–3142.

  31. Raimondi SC, Pui CH, Behm FG, Williams DL . 7q32–q36 translocations in childhood T cell leukemia: cytogenetic evidence for involvement of the T cell receptor beta-chain gene. Blood 1987; 69: 131–134.

    CAS  PubMed  Google Scholar 

  32. Hebert J, Cayuela JM, Berkeley J, Sigaux F . Candidate tumor-suppressor genes MTS1 (p16INK4A) and MTS2 (p15INK4B) display frequent homozygous deletions in primary cells from T- but not from B-cell lineage acute lymphoblastic leukemias. Blood 1994; 84: 4038–4044.

    CAS  PubMed  Google Scholar 

  33. Bertin R, Acquaviva C, Mirebeau D, Guidal-Giroux C, Vilmer E, Cave H . CDKN2A, CDKN2B, and MTAP gene dosage permits precise characterization of mono- and bi-allelic 9p21 deletions in childhood acute lymphoblastic leukemia. Genes Chromosomes Cancer 2003; 37: 44–57.

    Article  CAS  PubMed  Google Scholar 

  34. Douet-Guilbert N, Morel F, Le Bris MJ, Herry A, Le Calvez G, Marion V et al. Cytogenetic studies in T-cell acute lymphoblastic leukemia (1981–2002). Leukemia Lymphoma 2004; 45: 287–290.

    Article  PubMed  Google Scholar 

  35. United Kingdom Cancer Cytogenetics Group (UKCCG). Translocations involving 9p and/or 12p in acute lymphoblastic leukemia. Genes Chromosomes Cancer 1992; 5: 255–259.

  36. Lipkowitz S, Stern MH, Kirsch IR . Hybrid T cell receptor genes formed by interlocus recombination in normal and ataxia–telangiectasis lymphocytes. J Exp Med 1990; 172: 409–418.

    Article  CAS  PubMed  Google Scholar 

  37. Tycko B, Palmer JD, Sklar J . T cell receptor gene trans-rearrangements: chimeric gamma-delta genes in normal lymphoid tissues. Science 1989; 245: 1242–1246.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Fonds voor Wetenschappelijk Onderzoek-Vlaanderen, Grants Nos. G.0310.01 and G.0106.05, and GOA, Grant No. 12051203. This text presents research results of the Belgian program of Interuniversity Poles of Attraction initiated by the Belgian State, Prime Minister's Office, Science Policy Programming. The scientific responsibility is assumed by the authors. BC is supported by the Belgian program of Interuniversity Poles of Attraction. We are thankful to Betty Emanuel and Nurten Yigit for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Cauwelier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cauwelier, B., Dastugue, N., Cools, J. et al. Molecular cytogenetic study of 126 unselected T-ALL cases reveals high incidence of TCRβ locus rearrangements and putative new T-cell oncogenes. Leukemia 20, 1238–1244 (2006). https://doi.org/10.1038/sj.leu.2404243

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404243

Keywords

This article is cited by

Search

Quick links