Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Animal Models

Evaluation of ex vivo expanded human NK cells on antileukemia activity in SCID-beige mice

Abstract

The possibility of using natural killer (NK) cells in treatment of human hematological malignancies has increased in recent years. One factor contributing to this is the introduction of new methods for ex vivo generation of enriched populations of clinical grade NK cells. The objective of the present study was to evaluate the safety and efficacy of human ex vivo expanded clinical grade NK cells against K562 leukemia cells in severe combined immunodeficiency disease (SCID)-beige mice. Irradiated SCID-beige mice were injected intravenously (i.v.) with K562 leukemia cells. Following leukemia cell injection, mice were injected with ex vivo expanded human NK cells. NK cells were followed in vivo and mice monitored for survival from leukemia. Administration of these ex vivo expanded clinical grade NK cells was safe and prevented leukemia development. In conclusion, these results imply possibilities for the use of this NK cell preparation in treatment trials of human hematological malignancies and possibly other forms of cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Rosenberg SA, Yang JC, Restifo NP . Cancer immunotherapy: moving beyond current vaccines. Nat Med 2004; 10: 909–915.

    Article  CAS  Google Scholar 

  2. Overwijk WW, Theoret MR, Finkelstein SE, Surman DR, de Jong LA, Vyth-Dreese FA et al. Tumor regression and autoimmunity after reversal of a functionally tolerant state of self-reactive CD8+ T cells. J Exp Med 2003; 198: 569–580.

    Article  CAS  Google Scholar 

  3. Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ et al. Cancer regression and autoimmunity in patients following clonal repopulation with anti-tumor lymphocytes. Science 2002; 298: 850–854.

    Article  CAS  Google Scholar 

  4. Eberlein TJ, Rosenstein M, Rosenberg SA . Successful systemic adoptive immunotherapy of a disseminated solid syngeneic murine tumor with long-term cultured T cells. Transp Proc 1983; 15: 396–398.

    Google Scholar 

  5. Hanson HL, Donermeyer DL, Ikeda H, White JM, Shankaran V, Old LJ et al. Eradication of established tumors by CD8+ T cell adoptive immunotherapy. Immunity 2000; 13: 265–277.

    Article  CAS  Google Scholar 

  6. May Jr KF, Chen L, Zheng P, Liu Y . Anti-4-1BB monoclonal antibody enhances rejection of large tumor burden by promoting survival but not clonal expansion of tumor-specific CD8+ T Cells. Cancer Res 2002; 62: 3459–3465.

    CAS  PubMed  Google Scholar 

  7. Miller JS, Soignier Y, Panoskaltsis-Mortari A, McNearney SA, Yun GH, Fautsch SK et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 2005; 105: 3051–3057.

    Article  CAS  Google Scholar 

  8. Moretta A, Bottino C, Mingari MC, Biassoni R, Moretta L . What is a natural killer cell? Nat Immunol 2002; 3: 6–8.

    Article  CAS  Google Scholar 

  9. Wu J, Lanier LL . Natural killer cells and cancer. Adv Cancer Res 2003; 90: 127–156.

    Article  CAS  Google Scholar 

  10. French AR, Yokoyama WM . Natural killer cells and viral infections. Curr Opin Immunol 2003; 15: 45–51.

    Article  CAS  Google Scholar 

  11. Cerwenka A, Lanier LL . Natural killer cells, viruses and cancer. Nat Rev Immunol 2001; 1: 41–49.

    Article  CAS  Google Scholar 

  12. Moretta L, Moretta A . Unravelling natural killer cell function: triggering and inhibitory human NK receptors. EMBO J 2004; 23: 255–259.

    Article  CAS  Google Scholar 

  13. Lanier LL . NK cell recognition. Annu Rev Immunol 2005; 23: 225–274.

    Article  CAS  Google Scholar 

  14. Ljunggren HG, Karre K . In search of the ‘missing self’: MHC molecules and NK cell recognition. Immunol Today 1990; 11: 237–244.

    Article  CAS  Google Scholar 

  15. Jiang YZ, Barrett AJ, Goldman JM, Mavroudis DA . Association of natural killer cell immune recovery with a graft-versus-leukemia effect independent of graft-versus-host disease following allogeneic bone marrow transplantation. Ann Hematol 1997; 74: 1–6.

    Article  CAS  Google Scholar 

  16. Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, Tosti A et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 2002; 295: 2097–2100.

    Article  CAS  Google Scholar 

  17. Carlens S, Gilljam M, Chambers BJ, Aschan J, Guven H, Ljunggren HG et al. A new method for in vitro expansion of cytotoxic human CD3−CD56+ natural killer cells. Hum Immunol 2001; 62: 1092–1098.

    Article  CAS  Google Scholar 

  18. Guven H, Gilljam M, Chambers BJ, Ljunggren HG, Christensson B, Kimby E et al. Expansion of natural killer (NK) and natural killer-like T (NKT)-cell populations derived from patients with B-chronic lymphocytic leukemia (B-CLL): a potencial source for cellular immunotherapy. Leukemia 2003; 17: 1973–1980.

    Article  CAS  Google Scholar 

  19. Lyons AB . Analysing cell division in vivo and in vitro using flow cytometric measurement of CFSE dye dilution. J Immunol Methods 2000; 243: 147–154.

    Article  CAS  Google Scholar 

  20. Mule JJ, Shu S, Schwarz SL, Rosenberg SA . Adoptive immunotherapy of established pulmonary metastases with LAK cells and recombinant IL-2. Science 1984; 225: 1487–1489.

    Article  CAS  Google Scholar 

  21. Rosenberg SA . Lymphokine-activated killer cells: a new approach to immunotherapy of cancer. JNCI 1985; 75: 595–603.

    CAS  PubMed  Google Scholar 

  22. Rosenberg SA, Lotze MT, Muul LM, Leitman S, Chang AE, Ettinghausen SE et al. Observations on the systemic administration of autologous LAK cells and rIL-2 to patients with metastatic cancer. N Engl J Med 1985; 313: 1485–1492.

    Article  CAS  Google Scholar 

  23. Lafreniere R, Rosenberg SA . Successful immunotherapy of murine experimental hepatic metastases with LAK cells and rIL-2. Cancer Res 1985; 45: 3735–3741.

    CAS  PubMed  Google Scholar 

  24. Takahashi H, Nakada T, Puisieux I . Inhibition of human colon cancer growth by antibody-directed human LAK cells in SCID mice. Science 1993; 259: 1460–1463.

    Article  CAS  Google Scholar 

  25. Ramsdell FJ, Golub SH . Generation of LAK cell activity from human thymocytes. J Immunol 1987; 139: 1446–1453.

    CAS  PubMed  Google Scholar 

  26. Michon JM, Caligiuri MA, Hazanow SM, Levine H, Schlossman SF, Ritz J . Induction of natural killer effectors from human thymus with recombinant IL-2. J Immunol 1988; 140: 3660–3667.

    CAS  PubMed  Google Scholar 

  27. Goldman J . Chronic myeloid leukemia. In: Weatherall DJ, Ledihghan JGG, Warrell DA (eds). Oxford textbook of medicine. Vol. 3, 3rd edn, London, England: Oxford University Press, 1996, 3415–3420.

    Google Scholar 

  28. Maki G, Tam YK, Berkahn L, Klingemann HG . Ex vivo purging with NK-92 prior to autografting for chronic myelogenous leukemia. Bone Marrow Transplant 2003; 31: 1119–1125.

    Article  CAS  Google Scholar 

  29. Gale RP, Horowitz MM, Ash RC, Champlin RE, Goldman JM, Rimm AA et al. Identical-twin bone marrow transplantations for leukemia. Ann Intern Med 1994; 12083: 646–652.

    Article  Google Scholar 

  30. Cervantes F, Pierson BA, McGlave PB, Verfaillie CM, Miller JS . Autologous activated natural killer cells suppress primitive chronic myelogenous leukemia progenitors in long term culture. Blood 1996; 87: 2476–2485.

    CAS  PubMed  Google Scholar 

  31. Engel H, Drach J, Keyhani A, Jiang S, Van NT, Kimmel M et al. Quantitation of minimal residual disease in acute myelogenous leukemia and myelodysplastic syndromes in complete remission by molecular cytogenetics of progenitor cells. Leukemia 1999; 13: 568–577.

    Article  CAS  Google Scholar 

  32. Botti C, Negri DR, Seregni E, Ramakrishna V, Arienti F, Maffioli L et al. Comparison of three different methods for radiolabelling human activated T lymphocytes. Eur J Nucl Med 1997; 24: 497–504.

    CAS  PubMed  Google Scholar 

  33. Wiltrout RH, Gorelik E, Brunda MJ, Holden HT, Herberman RB . Assessment of in vivo natural antitumor resistance and lymphocyte migration in mice: comparison of 125 niododeoxyuridine with 111-indium-oxide and 51-chromium as cell labels. Cancer Immunol Immunoth 1983; 14: 172–179.

    Article  CAS  Google Scholar 

  34. Beider K, Nagler A, Wald O, Franitza S, Dagan-Berger M, Wald H et al. Involvement of CXCR4 and IL-2 in the homing and retention of human NK and NKT cells to the bone marrow and spleen of NOD/SCID mice. Blood 2003; 102: 1951–1958.

    Article  CAS  Google Scholar 

  35. Brand JM, Meller B, Von Hof K, Luhm J, Bahre M, Kirchner H et al. Kinetics and organ distribution of allogeneic natural killer lymphocytes transfused into patients suffering from renal cell carcinoma. Stem Cells and Development 2004; 13: 307–314.

    Article  CAS  Google Scholar 

  36. Lyons AB . Analysing cell division in vivo and in vitro using flow cytometric measurement of CFSE dye dilution. J Immunol Methods 2000; 243: 147–154.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C Jonson, B Garmelius, A Fredriksson, M Gilljiam, B Stellan and H Concha for skillful technical assistance. This work was supported by grants from the Swedish Cancer Society, the Swedish Research Council, and the Swedish Foundation for Strategic Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M S Dilber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

GuimarĂ£es, F., Guven, H., Donati, D. et al. Evaluation of ex vivo expanded human NK cells on antileukemia activity in SCID-beige mice. Leukemia 20, 833–839 (2006). https://doi.org/10.1038/sj.leu.2404147

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404147

Keywords

This article is cited by

Search

Quick links