Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Role of cytokines in the treatment of acute leukemias: a review

Abstract

Myeloid growth factors, such as granulocyte colony-stimulating factor and granulocyte–macrophage colony-stimulating factor, have been used to decrease the duration of chemotherapy-induced neutropenia and thereby reduce the incidence and severity of infections in various regimens used to treat acute myeloid leukemia and acute lymphoblastic leukemia. These growth factors have also been used to recruit dormant myeloid leukemia cells into the S phase of cell cycle in order to increase their susceptibility to the antileukemic effects of agents such as cytarabine. Multiple prospective randomized trials have examined the benefit and safety of the addition of growth factors before, during, and after chemotherapy. A reduction in the duration of neutropenia has been the most consistent finding; this has not been associated with stimulation of leukemia cells, the main concern of using this strategy. Unfortunately, few studies have reported a benefit in prolonging the duration of disease-free survival or overall survival. Other cytokines, including interleukins and thrombopoietin, have also been evaluated for their theoretical ability to recruit immune mechanisms to eradicate residual leukemia burden after chemotherapy, and to stimulate platelet production. In this review, we summarize the clinical experience with these growth factors in treating acute leukemias.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Schiffer CA . Hematopoietic growth factors as adjuncts to the treatment of acute myeloid leukemia. Blood 1996; 88: 3675–3685.

    CAS  PubMed  Google Scholar 

  2. Geller RB . Use of cytokines in the treatment of acute myelocytic leukemia: a critical review. J Clin Oncol 1996; 14: 1371–1382.

    Article  CAS  PubMed  Google Scholar 

  3. Estey EH . Growth factors in acute myeloid leukaemia. Best Pract Res Clin Haematol 2001; 14: 175–187.

    Article  CAS  PubMed  Google Scholar 

  4. Rowe JM, Liesveld JL . Hematopoietic growth factors in acute leukemia. Leukemia 1997; 11: 328–341.

    Article  CAS  PubMed  Google Scholar 

  5. Schiffer CA . Hematopoietic growth factors and the future of therapeutic research on acute myeloid leukemia. N Engl J Med 2003; 349: 727–729.

    Article  PubMed  Google Scholar 

  6. Miyauchi J, Kelleher CA, Wang C, Minkin S, MCculloch EA . Growth factors influence the sensitivity of leukemic stem cells to cytosine arabinoside in culture. Blood 1989; 73: 1272–1278.

    CAS  PubMed  Google Scholar 

  7. Cannistra SA, Groshek P, Griffin JD . Granulocyte–macrophage colony-stimulating factor enhances the cytotoxic effects of cytosine arabinoside in acute myeloblastic leukemia and in the myeloid blast crisis phase of chronic myeloid leukemia. Leukemia 1989; 3: 328–334.

    CAS  PubMed  Google Scholar 

  8. Bhalla K, Holladay C, Arlin Z, Grant S, Ibrado AM, Jasiok M . Treatment with interleukin-3 plus granulocyte–macrophage colony-stimulating factors improves the selectivity of Ara-C in vitro against acute myeloid leukemia blasts. Blood 1991; 78: 2674–2679.

    CAS  PubMed  Google Scholar 

  9. te Boekhorst PA, Lowenberg B, Vlastuin M, Sonneveld P . Enhanced chemosensitivity of clonogenic blasts from patients with acute myeloid leukemia by G-CSF, IL-3 or GM-CSF stimulation. Leukemia 1993; 7: 1191–1198.

    CAS  PubMed  Google Scholar 

  10. Inatomi Y, Toyama K, Clark SC, Shimizu K, Miyauchi J . Combinations of stem cell factor with other hematopoietic growth factors enhance growth and sensitivity to cytosine arabinoside of blast progenitors in acute myelogenous leukemia. Cancer Res 1994; 54: 455–462.

    CAS  PubMed  Google Scholar 

  11. Hiddemann W, Kiehl M, Zuhlsdorf M, Busemann C, Schleyer E, Wormann B et al. Granulocyte–macrophage colony-stimulating factor and interleukin-3 enhance the incorporation of cytosine arabinoside into the DNA of leukemic blasts and the cytotoxic effect on clonogenic cells from patients with acute myeloid leukemia. Semin Oncol 1992; 19 (Suppl 4): 31–37.

    CAS  PubMed  Google Scholar 

  12. Stone RM, Berg DT, George SL, Dodge RK, Paciucci PA, Schulmann P et al. Granulocyte–macrophage colony-stimulating factor after initial chemotherapy for elderly patients with primary acute myelogenous leukemia. Cancer and Leukemia Group B. N Engl J Med 1995; 332: 1671–1677.

    Article  CAS  PubMed  Google Scholar 

  13. Rowe JM, Andersen JW, Mazza JJ, Bennett JM, Paietta E, Hayes FA et al. A randomized placebo-controlled phase III study of granulocyte–macrophage colony-stimulating factor in adult patients (>55 to 70 years of age) with acute myelogenous leukemia: a study of the Eastern Cooperative Oncology Group (E1490). Blood 1995; 86: 457–462.

    CAS  PubMed  Google Scholar 

  14. Dombret H, Chastang C, Fenaux P, Reiffers J, Bordessoule D, Bouabdallah R et al. A controlled study of recombinant human granulocyte colony-stimulating factor in elderly patients after treatment for acute myelogenous leukemia. AML Cooperative Study Group. N Engl J Med 1995; 332: 1678–1683.

    Article  CAS  PubMed  Google Scholar 

  15. Godwin JE, Kopecky KJ, Head DR, Willman CL, Leith CP, Hynes HE et al. A double-blind placebo-controlled trial of granulocyte colony-stimulating factor in elderly patients with previously untreated acute myeloid leukemia: a Southwest oncology group study (9031). Blood 1998; 91: 3607–3615.

    CAS  PubMed  Google Scholar 

  16. Heil G, Hoelzer D, Sanz MA, Lechner K, Liu Yin, Papa G et al. A randomized, double-blind, placebo-controlled, phase III study of filgrastim in remission induction and consolidation therapy for adults with de novo acute myeloid leukemia. The International Acute Myeloid Leukemia Study Group. Blood 1997; 90: 4710–4718.

    CAS  PubMed  Google Scholar 

  17. Bradstock K, Matthews J, Young G, Lowenthal R, Baxter H, Arthur C et al. Effects of glycosylated recombinant human granulocyte colony-stimulating factor after high-dose cytarabine-based induction chemotherapy for adult acute myeloid leukaemia. Leukemia 2001; 15: 1331–1338.

    Article  CAS  PubMed  Google Scholar 

  18. Usuki K, Urabe A, Masaoka T, Ohno R, Mizoguchi H, Hamajima N et al. Efficacy of granulocyte colony-stimulating factor in the treatment of acute myelogenous leukaemia: a multicentre randomized study. Br J Haematol 2002; 116: 103–112.

    Article  CAS  PubMed  Google Scholar 

  19. Goldstone AH, Burnett AK, Wheatley K, Snith AG, Hutchinson RM, Clark RE . Attempts to improve treatment outcomes in acute myeloid leukemia (AML) in older patients: the results of the United Kingdom Medical Research Council AML11 trial. Blood 2001; 98: 1302–1311.

    Article  CAS  PubMed  Google Scholar 

  20. Harousseau JL, Witz B, Lioure B, Hunault-Berger M, Desablens B, Desablens B et al. Granulocyte colony-stimulating factor after intensive consolidation chemotherapy in acute myeloid leukemia: results of a randomized trial of the Groupe Ouest-Est Leucemies Aigues Myeloblastiques. J Clin Oncol 2000; 18: 780–787.

    Article  CAS  PubMed  Google Scholar 

  21. Lowenberg B, Boogaerts MA, Daenen SM, Verhoef GE, Hagenbeek A, Vellenga E et al. Value of different modalities of granulocyte–macrophage colony-stimulating factor applied during or after induction therapy of acute myeloid leukemia. J Clin Oncol 1997; 15: 3496–3506.

    Article  CAS  PubMed  Google Scholar 

  22. Moore JO, Dodge RK, Amrein PC, Kolitz J, Lee EJ, Powell B et al. Granulocyte-colony stimulating factor (filgrastim) accelerates granulocyte recovery after intensive postremission chemotherapy for acute myeloid leukemia with aziridinyl benzoquinone and mitoxantrone: Cancer and Leukemia Group B study 9022. Blood 1997; 89: 780–788.

    CAS  PubMed  Google Scholar 

  23. Zittoun R, Suciu S, Mandelli F, de Witte T, Thaler J, Stryckmans P et al. Granulocyte–macrophage colony-stimulating factor associated with induction treatment of acute myelogenous leukemia: a randomized trial by the European Organization for Research and Treatment of Cancer Leukemia Cooperative Group. J Clin Oncol 1996; 14: 2150–2159.

    Article  CAS  PubMed  Google Scholar 

  24. Amadori S, Suciu S, Jehn U, Stasi R, Thomas X, Marie JP et al. Use of glycosylated recombinant human G-CSF (lenograstim) during and/or after induction chemotherapy in patients 61 years of age and older with acute myeloid leukemia: final results of AML-13, a randomized phase-3 study. Blood 2005; 106: 27–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bennett CL, Hynes D, Godwin J, Stinson TJ, Golub RM, Appelbaum FR . Economic analysis of granulocyte colony stimulating factor as adjunct therapy for older patients with acute myelogenous leukemia (AML): estimates from a Southwest Oncology Group clinical trial. Cancer Invest 2001; 19: 603–610.

    Article  CAS  PubMed  Google Scholar 

  26. Bennett CL, Stinson TJ, Tallman MS, Stadtmauer EA, Marsh RW, Friedenberg W et al. Economic analysis of a randomized placebo-controlled phase III study of granulocyte–macrophage colony stimulating factor in adult patients (>55 to 70 years of age) with acute myelogenous leukemia. Eastern Cooperative Oncology Group (E1490). Ann Oncol 1999; 10: 177–182.

    Article  CAS  PubMed  Google Scholar 

  27. Lowenberg B, Downing JR, Burnett A . Acute myeloid leukemia. N Engl J Med 1999; 341: 1051–1062.

    Article  CAS  PubMed  Google Scholar 

  28. Cannistra SA, DiCarlo J, Groshek P, Kanakura Y, Berg D, Mayer RJ et al. Simultaneous administration of granulocyte–macrophage colony-stimulating factor and cytosine arabinoside for the treatment of relapsed acute myeloid leukemia. Leukemia 1991; 5: 230–238.

    CAS  PubMed  Google Scholar 

  29. Witz F, Sadoun A, Perrin MC, Berthou C, Briere J, Cahn JY et al. A placebo-controlled study of recombinant human granulocyte–macrophage colony-stimulating factor administered during and after induction treatment for de novo acute myelogenous leukemia in elderly patients. Groupe Ouest Est Leucemies Aigues Myeloblastiques (GOELAM). Blood 1998; 91: 2722–2730.

    CAS  PubMed  Google Scholar 

  30. Lowenberg B, van Putten W, Theobald M, Gmur J, Verdonck L, Sonneveld S et al. Effect of priming with granulocyte colony-stimulating factor on the outcome of chemotherapy for acute myeloid leukemia. N Engl J Med 2003; 349: 743–752.

    Article  PubMed  Google Scholar 

  31. Lofgren C, Paul C, Astrom M, Hast R, Hedenius M, Lerner R et al. Granulocyte–macrophage colony-stimulating factor to increase efficacy of mitoxantrone, etoposide and cytarabine in previously untreated elderly patients with acute myeloid leukaemia: a Swedish multicentre randomized trial. Br J Haematol 2004; 124: 474–480.

    Article  CAS  PubMed  Google Scholar 

  32. Lowenberg B, Suciu S, Archimbaud E, Ossenkoppele G, Verhoef GE, Vellenga E et al. Use of recombinant GM-CSF during and after remission induction chemotherapy in patients aged 61 years and older with acute myeloid leukemia: final report of AML-11, a phase III randomized study of the Leukemia Cooperative Group of European Organisation for the Research and Treatment of Cancer and the Dutch Belgian Hemato-Oncology Cooperative Group. Blood 1997; 90: 2952–2961.

    CAS  PubMed  Google Scholar 

  33. Heil G, Chadid L, Hoelzer D, Seipelt G, Mitrou P, Huber C et al. GM-CSF in a double-blind randomized, placebo controlled trial in therapy of adult patients with de novo acute myeloid leukemia (AML). Leukemia 1995; 9: 3–9.

    CAS  PubMed  Google Scholar 

  34. Hast R, Hellstrom-Lindberg E, Ohm L, Bjorkholm M, Celsing F, Dahl IM et al. No benefit from adding GM-CSF to induction chemotherapy in transforming myelodysplastic syndromes: better outcome in patients with less proliferative disease. Leukemia 2003; 17: 1827–1833.

    Article  CAS  PubMed  Google Scholar 

  35. Uyl-de Groot CA, Lowenberg B, Vellenga E, Suciu S, Willemze R, Rutten FF et al. Cost-effectiveness and quality-of-life assessment of GM-CSF as an adjunct to intensive remission induction chemotherapy in elderly patients with acute myeloid leukemia. Br J Haematol 1998; 100: 629–636.

    Article  CAS  PubMed  Google Scholar 

  36. Ohno R, Naoe T, Kanamaru A, Yoshida M, Hiraoka A, Kobayashi T et al. A double-blind controlled study of granulocyte colony-stimulating factor started two days before induction chemotherapy in refractory acute myeloid leukemia. Kohseisho Leukemia Study Group. Blood 1994; 83: 2086–2092.

    CAS  PubMed  Google Scholar 

  37. Thomas X, Fenaux P, Dombret H, Delair S, Dreyfus F, Tilly H et al. Granulocyte–macrophage colony-stimulating factor (GM-CSF) to increase efficacy of intensive sequential chemotherapy with etoposide, mitoxantrone and cytarabine (EMA) in previously treated acute myeloid leukemia: a multicenter randomized placebo-controlled trial (EMA91 Trial). Leukemia 1999; 13: 1214–1220.

    Article  CAS  PubMed  Google Scholar 

  38. Rossi HA, O'Donnell J, Sarcinelli F, Stewart FM, Quesenberry PJ, Becker PS . Granulocyte–macrophage colony-stimulating factor (GM-CSF) priming with successive concomitant low-dose Ara-C for elderly patients with secondary/refractory acute myeloid leukemia or advanced myelodysplastic syndrome. Leukemia 2002; 16: 310–315.

    Article  CAS  PubMed  Google Scholar 

  39. He XY, Pohlman B, Lichtin A, Rybicki L, Kalaycio M . Timed-sequential chemotherapy with concomitant granulocyte colony-stimulating factor for newly diagnosed de novo acute myelogenous leukemia. Leukemia 2003; 17: 1078–1084.

    Article  CAS  PubMed  Google Scholar 

  40. Rowe JM, Neuberg D, Friedenberg W, Bennett JM, Paietta E, Makary AZ et al. A phase 3 study of three induction regimens and of priming with GM-CSF in older adults with acute myeloid leukemia: a trial by the Eastern Cooperative Oncology Group. Blood 2004; 103: 479–485.

    Article  CAS  PubMed  Google Scholar 

  41. Jahns-Streubel G, Reuter C, Auf der Landwehr U, Unterhalt M, Schleyer E, Wormann B et al. Activity of thymidine kinase and of polymerase alpha as well as activity and gene expression of deoxycytidine deaminase in leukemic blasts are correlated with clinical response in the setting of granulocyte–macrophage colony-stimulating factor-based priming before and during TAD-9 induction therapy in acute myeloid leukemia. Blood 1997; 90: 1968–1976.

    CAS  PubMed  Google Scholar 

  42. Pui CH, Campana D, Evans WE . Childhood acute lymphoblastic leukaemia--current status and future perspectives. Lancet Oncol 2001; 2: 597–607.

    Article  CAS  PubMed  Google Scholar 

  43. Faderl S, Jeha S, Kantarjian HM . The biology and therapy of adult acute lymphoblastic leukemia. Cancer 2003; 98: 1337–1354.

    Article  PubMed  Google Scholar 

  44. Hoelzer D, Gokbuget N . Recent approaches in acute lymphoblastic leukemia in adults. Crit Rev Oncol Hematol 2000; 36: 49–58.

    Article  CAS  PubMed  Google Scholar 

  45. Kantarjian HM, Estey E, O'Brien S, Anaissie E, Beran M, Pierce S et al. Granulocyte colony-stimulating factor supportive treatment following intensive chemotherapy in acute lymphocytic leukemia in first remission. Cancer 1993; 72: 2950–2955.

    Article  CAS  PubMed  Google Scholar 

  46. Bassan R, Lerede T, Di Bona E, Rossi G, Pogliani E, Rambaldi A et al. Granulocyte colony-stimulating factor (G-CSF, filgrastim) after or during an intensive remission induction therapy for adult acute lymphoblastic leukaemia: effects, role of patient pretreatment characteristics, and costs. Leuk Lymphoma 1997; 26: 153–161.

    Article  CAS  PubMed  Google Scholar 

  47. Ottmann OG, Ganser A, Freund M, Heil G, Hiddenmann W, Heit W et al. Simultaneous administration of granulocyte colony-stimulating factor (Filgrastim) and induction chemotherapy in acute lymphoblastic leukemia. A pilot study. Ann Hematol 1993; 67: 161–167.

    Article  CAS  PubMed  Google Scholar 

  48. Kantarjian HM, O'Brien S, Smith TL, Cortes J, Giles FJ, Beran M et al. Results of treatment with hyper-CVAD, a dose-intensive regimen, in adult acute lymphocytic leukemia. J Clin Oncol 2000; 18: 547–561.

    Article  CAS  PubMed  Google Scholar 

  49. Welte K, Reiter A, Mempel K, Pfetsch M, Schwab G, Schrappe M et al. A randomized phase-III study of the efficacy of granulocyte colony-stimulating factor in children with high-risk acute lymphoblastic leukemia. Berlin-Frankfurt-Munster Study Group. Blood 1996; 87: 3143–3150.

    CAS  PubMed  Google Scholar 

  50. Laver J, Amylon M, Desai S, Link M, Schwenn M, Mahmoud H et al. Randomized trial of r-metHu granulocyte colony-stimulating factor in an intensive treatment for T-cell leukemia and advanced-stage lymphoblastic lymphoma of childhood: a Pediatric Oncology Group pilot study. J Clin Oncol 1998; 16: 522–526.

    Article  CAS  PubMed  Google Scholar 

  51. Clarke V, Dunstan FD, Webb DK . Granulocyte colony-stimulating factor ameliorates toxicity of intensification chemotherapy for acute lymphoblastic leukemia. Med Pediatr Oncol 1999; 32: 331–335.

    Article  CAS  PubMed  Google Scholar 

  52. Michel G, Landman-Parker J, Auclerc MF, Mathey C, Leblanc T, Legall E et al. Use of recombinant human granulocyte colony-stimulating factor to increase chemotherapy dose-intensity: a randomized trial in very high-risk childhood acute lymphoblastic leukemia. J Clin Oncol 2000; 18: 1517–1524.

    Article  CAS  PubMed  Google Scholar 

  53. Little MA, Morland B, Chisholm J, Hole A, Shankar A, Devine T et al. A randomised study of prophylactic G-CSF following MRC UKALL XI intensification regimen in childhood ALL and T-NHL. Med Pediatr Oncol 2002; 38: 98–103.

    Article  CAS  PubMed  Google Scholar 

  54. Heath JA, Steinherz PG, Altman A, Sather H, Jhanwar S, Halpern S et al. Human granulocyte colony-stimulating factor in children with high-risk acute lymphoblastic leukemia: a Children's Cancer Group Study. J Clin Oncol 2003; 21: 1612–1617.

    Article  CAS  PubMed  Google Scholar 

  55. Pui CH, Boyett JM, Hughes WT, Rivera GK, Hancock ML, Sandlund JT et al. Human granulocyte colony-stimulating factor after induction chemotherapy in children with acute lymphoblastic leukemia. N Engl J Med 1997; 336: 1781–1787.

    Article  CAS  PubMed  Google Scholar 

  56. Ottmann OG, Hoelzer D, Gracien E, Ganser A, Kelly K, Reutzel R et al. Concomitant granulocyte colony-stimulating factor and induction chemoradiotherapy in adult acute lymphoblastic leukemia: a randomized phase III trial. Blood 1995; 86: 444–450.

    CAS  PubMed  Google Scholar 

  57. Ohno R, Tomonaga M, Ohshima T, Masaoka T, Asou N, Oh H et al. A randomized controlled study of granulocyte colony stimulating factor after intensive induction and consolidation therapy in patients with acute lymphoblastic leukemia. Japan Adult Leukemia Study Group. Int J Hematol 1993; 58: 73–81.

    CAS  PubMed  Google Scholar 

  58. Geissler K, Koller E, Hubmann E, Niederwieser D, Hinterberger W, Geissler D et al. Granulocyte colony-stimulating factor as an adjunct to induction chemotherapy for adult acute lymphoblastic leukemia--a randomized phase-III study. Blood 1997; 90: 590–596.

    CAS  PubMed  Google Scholar 

  59. Larson RA, Dodge RK, Linker CA, Stone RM, Powell BL, Lee EJ et al. A randomized controlled trial of filgrastim during remission induction and consolidation chemotherapy for adults with acute lymphoblastic leukemia: CALGB study 9111. Blood 1998; 92: 1556–1564.

    CAS  PubMed  Google Scholar 

  60. Ifrah N, Witz F, Jouet JP, Francois S, Lamy T, Linassier C et al. Intensive short term therapy with granulocyte–macrophage-colony stimulating factor support, similar to therapy for acute myeloblastic leukemia, does not improve overall results for adults with acute lymphoblastic leukemia. GOELAMS Group. Cancer Oct 15; 1999: 86 (8):1496–1505.

    Google Scholar 

  61. Holowiecki J, Giebel S, Krzemien S, Krawczyk-Kulis M, Jagoda K, Kopera M et al. G-CSF administered in time-sequenced setting during remission induction and consolidation therapy of adult acute lymphoblastic leukemia has beneficial influence on early recovery and possibly improves long-term outcome: a randomized multicenter study. Leuk Lymphoma 2002; 43: 315–325.

    Article  PubMed  CAS  Google Scholar 

  62. Delorme J, Badin S, Le Corroller AG, Auvrignon AA, Auclere MF, Gandemer V et al. Economic evaluation of recombinant human granulocyte colony-stimulating factor in very high-risk childhood acute lymphoblastic leukemia. J Pediatr Hematol Oncol 2003; 25: 441–447.

    Article  PubMed  Google Scholar 

  63. Lotzova E, Savary CA, Herberman RB . Inhibition of clonogenic growth of fresh leukemia cells by unstimulated and IL-2 stimulated NK cells of normal donors. Leuk Res 1987; 11: 1059–1066.

    Article  CAS  PubMed  Google Scholar 

  64. Oshimi K, Oshimi Y, Akutsu M, Takei Y, Saito H, Okada M et al. Cytotoxicity of interleukin 2-activated lymphocytes for leukemia and lymphoma cells. Blood 1986; 68: 938–948.

    CAS  PubMed  Google Scholar 

  65. Margolin K, Forman SJ . Immunotherapy with interleukin-2 after hematopoietic cell transplantation for hematologic malignancy. Cancer J Sci Am 2000; 6 (Suppl 1): S33–S38.

    PubMed  Google Scholar 

  66. Foa R, Meloni G, Tosti S, Novarino A, Fenu S, Gavosto F et al. Treatment of acute myeloid leukaemia patients with recombinant interleukin 2: a pilot study. Br J Haematol 1991; 77: 491–496.

    Article  CAS  PubMed  Google Scholar 

  67. Meloni G, Foa R, Vignetti M, Guarini A, Fenu S, Tosti S et al. Interleukin-2 may induce prolonged remissions in advanced acute myelogenous leukemia. Blood 1994; 84: 2158–2163.

    CAS  PubMed  Google Scholar 

  68. Meloni G, Vignetti M, Pogliani E, Invernizzi R, Allione B, Mirto S et al. Interleukin-2 therapy in relapsed acute myelogenous leukemia. Cancer J Sci Am 1997; 3 (Suppl 1): S43–S47.

    PubMed  Google Scholar 

  69. Goodman M, Cabral L, Cassileth P . Interleukin-2 and leukemia. Leukemia 1998; 12: 1671–1675.

    Article  CAS  PubMed  Google Scholar 

  70. Bergmann L, Heil G, Kolbe K, Lengfelder E, Puzicha E, Martin H et al. Interleukin-2 bolus infusion as late consolidation therapy in 2nd remission of acute myeloblastic leukemia. Leuk Lymphoma 1995; 16: 271–279.

    Article  CAS  PubMed  Google Scholar 

  71. Meloni G, Vignetti M, Andrizzi C, Capria S, Foa R, Mandelli F . Interleukin-2 for the treatment of advanced acute myelogenous leukemia patients with limited disease: updated experience with 20 cases. Leuk Lymphoma 1996; 21: 429–435.

    Article  CAS  PubMed  Google Scholar 

  72. Soiffer RJ, Murray C, Cochran K, Cameron C, Wang E, Schow PW et al. Clinical and immunologic effects of prolonged infusion of low-dose recombinant interleukin-2 after autologous and T-cell-depleted allogeneic bone marrow transplantation. Blood 1992; 79: 517–526.

    CAS  PubMed  Google Scholar 

  73. Soiffer RJ, Murray C, Gonin R, Ritz J . Effect of low-dose interleukin-2 on disease relapse after T-cell-depleted allogeneic bone marrow transplantation. Blood 1994; 84: 964–971.

    CAS  PubMed  Google Scholar 

  74. Klingemann HG, Phillips GL . Is there a place for immunotherapy with interleukin-2 to prevent relapse after autologous stem cell transplantation for acute leukemia? Leuk Lymphoma 1995; 16: 397–405.

    Article  CAS  PubMed  Google Scholar 

  75. Robinson N, Sanders JE, Benyunes MC, Beach K, Lindgren C, Thompson JA et al. Phase I trial of interleukin-2 after unmodified HLA-matched sibling bone marrow transplantation for children with acute leukemia. Blood 1996; 87: 1249–1254.

    CAS  PubMed  Google Scholar 

  76. Blaise D, Attal M, Pico JL, Reiffers J, Stoppa AM, Bellanger C et al. The use of a sequential high dose recombinant interleukin 2 regimen after autologous bone marrow transplantation does not improve the disease free survival of patients with acute leukemia transplanted in first complete remission. Leuk Lymphoma 1997; 25: 469–478.

    Article  CAS  PubMed  Google Scholar 

  77. Attal M, Blaise D, Marit G, Payen C, Michallet M, Vernant JP et al. Consolidation treatment of adult acute lymphoblastic leukemia: a prospective, randomized trial comparing allogeneic versus autologous bone marrow transplantation and testing the impact of recombinant interleukin-2 after autologous bone marrow transplantation. BGMT Group Blood 1995; 86: 1619–1628.

    CAS  PubMed  Google Scholar 

  78. Cortes JE, Kantarjian HM, O'Brien S, Giles F, Keating MJ, Freireich EJ et al. A pilot study of interleukin-2 for adult patients with acute myelogenous leukemia in first complete remission. Cancer 1999; 85: 1506–1513.

    Article  CAS  PubMed  Google Scholar 

  79. Farag SS, George SL, Lee EJ, Baer M, Dodge RK, Becknell B et al. Postremission therapy with low-dose interleukin 2 with or without intermediate pulse dose interleukin 2 therapy is well tolerated in elderly patients with acute myeloid leukemia: Cancer and Leukemia Group B study 9420. Clin Cancer Res 2002; 8: 2812–2819.

    CAS  PubMed  Google Scholar 

  80. Sievers EL, Lange BJ, Sondel PM, Krailo MD, Gan J, Liu-Mares W et al. Feasibility, toxicity, and biologic response of interleukin-2 after consolidation chemotherapy for acute myelogenous leukemia: a report from the Children's Cancer Group. J Clin Oncol 1998; 16: 914–919.

    Article  CAS  PubMed  Google Scholar 

  81. Schiffer CA, Miller K, Larson RA, Amrein PC, Antin JH, Zani VJ et al. A double-blind, placebo-controlled trial of pegylated recombinant human megakaryocyte growth and development factor as an adjunct to induction and consolidation therapy for patients with acute myeloid leukemia. Blood 2000; 95: 2530–2535.

    CAS  PubMed  Google Scholar 

  82. Archimbaud E, Ottmann OG, Yin JA, Lechner K, Dombret H, Sanz MA et al. A randomized, double-blind, placebo-controlled study with pegylated recombinant human megakaryocyte growth and development factor (PEG-rHuMGDF) as an adjunct to chemotherapy for adults with de novo acute myeloid leukemia. Blood 1999; 94: 3694–3701.

    CAS  PubMed  Google Scholar 

  83. Basser RL, O'Flaherty E, Green M, Edmonds M, Nichol J, Menchaca DM et al. Development of pancytopenia with neutralizing antibodies to thrombopoietin after multicycle chemotherapy supported by megakaryocyte growth and development factor. Blood 2002; 99: 2599–2602.

    Article  CAS  PubMed  Google Scholar 

  84. Estey EH, Thall PF, Giles FJ, Wang XM, Cortes JE, Beran M et al. Gemtuzumab ozogamicin with or without interleukin 11 in patients 65 years of age or older with untreated acute myeloid leukemia and high-risk myelodysplastic syndrome: comparison with idarubicin plus continuous-infusion, high-dose cytosine arabinoside. Blood 2002; 99: 4343–4349.

    Article  CAS  PubMed  Google Scholar 

  85. Ellis M, Zwaan F, Hedstrom U, Poynton C, Kristensen J, Jumaa P et al. Recombinant human interleukin 11 and bacterial infection in patients with [correction of] haematological malignant disease undergoing chemotherapy: a double-blind placebo-controlled randomised trial. Lancet 2003; 361: 275–280.

    Article  CAS  PubMed  Google Scholar 

  86. Wielenga JJ, Vellenga E, Groenewegen A, Sonneveld P, Lowenberg B . Recombinant human interleukin-3 (rH IL-3) in combination with remission induction chemotherapy in patients with relapsed acute myelogenous leukemia (AML): a phase I/II study. Leukemia 1996; 10: 43–47.

    CAS  PubMed  Google Scholar 

  87. Zwierzina H, Suciu S, Loeffler-Ragg J, Neuwirtova R, Fenaux P, Beksac M et al. Low-dose cytosine arabinoside (LD-AraC) vs LD-AraC plus granulocyte/macrophage colony stimulating factor vs LD-AraC plus Interleukin-3 for myelodysplastic syndrome patients with a high risk of developing acute leukemia: final results of a randomized phase III study (06903) of the EORTC Leukemia Cooperative Group. Leukemia 2005; 19: 1929–1933.

    Article  CAS  PubMed  Google Scholar 

  88. Rubin JS, Osada H, Finch PW, Taylor WG, Rudikoff S, Aaronson SA . Purification and characterization of a newly identified growth factor specific for epithelial cells. Proc Natl Acad Sci USA 1989; 86: 802–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Spielberger R, Stiff P, Bensinger W, Gentile T, Weisdorf D, Kewalramani T et al. Palifermin for oral mucositis after intensive therapy for hematologic cancers. N Engl J Med 2004; 351: 2590–2598.

    Article  CAS  PubMed  Google Scholar 

  90. Wang B, Nichol JL, Sullivan JT . Pharmacodynamics and pharmacokinetics of AMG 531, a novel thrombopoietin receptor ligand. Clin Pharmacol Ther 2004; 76: 628–638.

    Article  CAS  PubMed  Google Scholar 

  91. Estey EH, Thall PF, Pierce S, Cortes J, Beran M, Kantarjian H et al. Randomized phase II study of fludarabine + cytosine arabinoside + idarubicin +/− all-trans retinoic acid +/− granulocyte colony-stimulating factor in poor prognosis newly diagnosed acute myeloid leukemia and myelodysplastic syndrome. Blood 1999; 93: 2478–2484.

    CAS  PubMed  Google Scholar 

  92. Buchner T, Berdel WE, Hiddemann W . Priming with granulocyte colony-stimulating factor – relation to high-dose cytarabine in acute myeloid leukemia. N Engl J Med 2004; 350: 2215–2216.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Ravandi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ravandi, F. Role of cytokines in the treatment of acute leukemias: a review. Leukemia 20, 563–571 (2006). https://doi.org/10.1038/sj.leu.2404152

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404152

Keywords

This article is cited by

Search

Quick links