Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Myeloma

Decoupling of normal CD40/interleukin-4 immunoglobulin heavy chain switch signal leads to genomic instability in SGH-MM5 and RPMI 8226 multiple myeloma cell lines

Abstract

The processes mediating genomic instability and clonal evolution are obscure in multiple myeloma (MM). Acquisition of new chromosomal translocations into the switch region of the immunoglobulin heavy chain (IgH) gene (chromosome 14q32) in MM, often heralds transformation to more aggressive disease. Since the combined effects of CD40 plus interleukin-4 (IL-4) mediate IgH isotype class switch recombination (CSR), and this process involves DNA double strand break repair (DSBR), we hypothesized that CD40 and/or IL-4 activation of MM cells could induce abnormal DNA DSBR and lead to genomic instability and clonal evolution. In this study, we show that MM cell lines that are optimally triggered via CD40 and/or IL-4 demonstrate abnormal decoupling of IL-4 signal transduction from CD40. Specifically, CD40 alone was sufficient to trigger maximal growth of tumor cells. We further demonstrate that CD40 triggering induced both DNA DSBs as well as newly acquired karyotypic abnormalities in MM cell lines. Importantly, these observations were accompanied by induction of activation induced cytidine deaminase expression, but not gross apoptosis. These data support the role of abnormal CD40 signal transduction in mediating genomic instability, suggesting a role for the CD40 pathway and intermediates in myelomagenesis and clonal evolution in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Kenter A, Wuerffel R . Immunoglobulin switch recombination may occur by a DNA end-joining mechanism. Ann NY Acad Sci 1999; 870: 206–217.

    Article  CAS  Google Scholar 

  2. Warren WD, Berton MT . Induction of germ-line gamma 1 and epsilon Ig gene expression in murine B cells. IL-4 and the CD40 ligand-CD40 interaction provide distinct but synergistic signals. J Immunol 1995; 155: 5637–5646.

    CAS  PubMed  Google Scholar 

  3. Solvason N, Wu WW, Kabra N, Wu X, Lees E, Howard MC . Induction of cell cycle regulatory proteins in anti-immunoglobulin-stimulated mature B lymphocytes. J Exp Med 1996; 184: 407–417.

    Article  CAS  Google Scholar 

  4. Lemaire C, Andr aK, Fraisse CS, Adam A, Souvannavong V . IL-4 inhibits apoptosis and prevents mitochondrial damage without inducing the switch to necrosis observed with caspase inhibitors. Cell Death Differ 1999; 6: 813–820.

    Article  CAS  Google Scholar 

  5. Teoh G, Anderson KC . Interaction of tumor and host cells with adhesion and extracellular matrix molecules in the development of multiple myeloma. Hematol Oncol Clin North Am 1997; 11: 27–42.

    Article  CAS  Google Scholar 

  6. Tai YT, Podar K, Gupta D, Lin B, Young G, Akiyama M et al. CD40 activation induces p53-dependent vascular endothelial growth factor secretion in human multiple myeloma cells. Blood 2002; 99: 1419–1427.

    Article  CAS  Google Scholar 

  7. Tai YT, Podar K, Mitsiades N, Lin B, Mitsiades C, Gupta D et al. CD40 induces human multiple myeloma cell migration via phosphatidylinositol 3-kinase/AKT/NF-kappa B signaling. Blood 2003; 101: 2762–2769.

    Article  CAS  Google Scholar 

  8. Urashima M, Chauhan D, Uchiyama H, Freeman GJ, Anderson KC . CD40 ligand triggered interleukin-6 secretion in multiple myeloma. Blood 1995; 85: 1903–1912.

    CAS  PubMed  Google Scholar 

  9. Tai YT, Li X, Tong X, Santos D, Otsuki T, Catley L et al. Human anti-CD40 antagonist antibody triggers significant antitumor activity against human multiple myeloma. Cancer Res 2005; 65: 5898–5906.

    Article  CAS  Google Scholar 

  10. Guikema JE, Vellenga E, Bakkus MH, Bos NA . Myeloma clonotypic B cells are hampered in their ability to undergo B-cell differentiation in vitro. Br J Haematol 2002; 119: 54–61.

    Article  Google Scholar 

  11. Teoh G, Anderson KC . The culture, characterization and triggering of B-lymphocytes. In: Koller MR, Palsson BO, Masters JRW (eds). Human Cell Culture Vol IV: Primary Hematopoietic Cells. Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000, pp 101–124.

    Google Scholar 

  12. Angelis KJ, Dusinska M, Collins AR . Single cell gel electrophoresis: detection of DNA damage at different levels of sensitivity. Electrophoresis 1999; 20: 2133–2138.

    Article  CAS  Google Scholar 

  13. Czepulkowski BH, Bhatt B, Rooney DE . Human Cytogenetics: A Practical Approach. In: Steven CG, Martha BK (eds). The Principles of Clinical Cytogenetics, Vol. 1, 2nd edn, Humana Press: Totowa, NJ, USA, 1992, p. 79.

    Google Scholar 

  14. Felix M, Karyotype Designation. ISCN 1995. An international system for human cytogenetic nomenclature. S. Karger Publisers: Farmington, CT, USA, 1995, 114.

    Google Scholar 

  15. Petersen S, Casellas R, Reina-San-Martin B, Chen HT, Difilippantonio MJ, Wilson PC et al. AID is required to initiate Nbs1/gamma-H2AX focus formation and mutations at sites of class switching. Nature 2001; 414: 660–665.

    Article  CAS  Google Scholar 

  16. Nakanishi K, Matsui K, Kashiwamura S, Nishioka Y, Nomura J, Nishimura Y et al. IL-4 and anti-CD40 protect against Fas-mediated B cell apoptosis and induce B cell growth and differentiation. Int Immunol 1996; 8: 791–798.

    Article  CAS  Google Scholar 

  17. Valle A, Zuber CE, Defrance T, Djossou O, De Rie M, Banchereau J . Activation of human B lymphocytes through CD40 and interleukin 4. Eur J Immunol 1989; 19: 1463–1467.

    Article  CAS  Google Scholar 

  18. Rousset F, Garcia E, Banchereau J . Cytokine-induced proliferation and immunoglobulin production of human B lymphocytes triggered through their CD40 antigen. J Exp Med 1991; 173: 705–710.

    Article  CAS  Google Scholar 

  19. Grammer AC, McFarland RD, Heaney J, Darnell BF, Lipsky PE . Expression, regulation, and function of B cell-expressed CD154 in germinal centers. J Immunol 1999; 163: 4150–4159.

    CAS  PubMed  Google Scholar 

  20. Honjo T, Kinoshita K, Muramatsu M . Molecular mechanism of class switch recombination: linkage with somatic hypermutation. Annu Rev Immunol 2002; 20: 165–196.

    Article  CAS  Google Scholar 

  21. Teoh G, Tai YT, Urashima M, Shirahama S, Matsuzaki M, Chauhan D et al. CD40 activation mediates p53-dependent cell cycle regulation in human multiple myeloma cell lines. Blood 2000; 95: 1039–1046.

    CAS  PubMed  Google Scholar 

  22. Morio T, Hanissian SH, Bacharier LB, Teraoka H, Nonoyama S, Seki M et al. Ku in the cytoplasm associates with CD40 in human B cells and translocates into the nucleus following incubation with IL-4 and anti-CD40 mAb. Immunity 1999; 11: 339–348.

    Article  CAS  Google Scholar 

  23. Dewald GW, Kyle RA, Hicks GA, Greipp PR . The clinical significance of cytogenetic studies in 100 patients with multiple myeloma, plasma cell leukemia, or amyloidosis. Blood 1985; 66: 380–390.

    CAS  PubMed  Google Scholar 

  24. Fenton JA, Pratt G, Rawstron AC, Sibley K, Rothwell D, Yates Z et al. Genomic characterization of the chromosomal breakpoints of t(4;14) of multiple myeloma suggests more than one possible aetiological mechanism. Oncogene 2003; 22: 1103–1113.

    Article  CAS  Google Scholar 

  25. Difilippantonio MJ, Petersen S, Chen HT, Johnson R, Jasin M, Kanaar R et al. Evidence for replicative repair of DNA double-strand breaks leading to oncogenic translocation and gene amplification. J Exp Med 2002; 196: 469–480.

    Article  CAS  Google Scholar 

  26. Fujieda S, Zhang K, Saxon A . IL-4 plus CD40 monoclonal antibody induces human B cells gamma subclass-specific isotype switch: switching to gamma 1, gamma 3, and gamma 4, but not gamma 2. J Immunol 1995; 155: 2318–2328.

    CAS  PubMed  Google Scholar 

  27. Revy P, Muto T, Levy Y, Geissmann F, Plebani A, Sanal O et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell 2000; 102: 565–575.

    Article  CAS  Google Scholar 

  28. Dudley DD, Manis JP, Zarrin AA, Kaylor L, Tian M, Alt FW . Internal IgH class switch region deletions are position-independent and enhanced by AID expression. Proc Natl Acad Sci USA 2002; 99: 9984–9989.

    Article  CAS  Google Scholar 

  29. Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y, Honjo T . Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 2000; 102: 553–563.

    Article  CAS  Google Scholar 

  30. Papavasiliou FN, Schatz DG . The activation-induced deaminase functions in a postcleavage step of the somatic hypermutation process. J Exp Med 2002; 195: 1193–1198.

    Article  CAS  Google Scholar 

  31. Pasqualucci L, Guglielmino R, Houldsworth J, Mohr J, Aoufouchi S, Polakiewicz R et al. Expression of the AID protein in normal and neoplastic B cells. Blood 2004; 104: 3318–3325.

    Article  CAS  Google Scholar 

  32. Greeve J, Philipsen A, Krause K, Klapper W, Heidorn K, Castle BE et al. Expression of activation-induced cytidine deaminase in human B-cell non-Hodgkin lymphomas. Blood 2003; 101: 3574–3580.

    Article  CAS  Google Scholar 

  33. Barreto V, Reina-San-Martin B, Ramiro AR, McBride KM, Nussenzweig MC . C-terminal deletion of AID uncouples class switch recombination from somatic hypermutation and gene conversion. Mol Cell 2003; 12: 501–508.

    Article  CAS  Google Scholar 

  34. Dedeoglu F, Horwitz B, Chaudhuri J, Alt FW, Geha RS . Induction of activation-induced cytidine deaminase gene expression by IL-4 and CD40 ligation is dependent on STAT6 and NFkappaB. Int Immunol 2004; 16: 395–404.

    Article  CAS  Google Scholar 

  35. Gooding RP, Bybee A, Cooke F, Little A, Marsh SG, Coelho E et al. Phenotypic and molecular analysis of six human cell lines derived from patients with plasma cell dyscrasia. Br J Haematol 1999; 106: 669–681.

    Article  CAS  Google Scholar 

  36. Bergsagel PL, Kuehl WM . Chromosome translocations in multiple myeloma. Oncogene 2001; 20: 5611–5622.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by research grants from the National Medical Research Council (NMRC), Singapore (grant #s NMRC/0489/2000, NMRC/0758/2003 and NMRC/0734/2003); SingHealth (grant #s SU007/2001, SU008/2001, SU009/2001 and SU089/2003); and the Department of Clinical Research, SGH. We gratefully acknowledge the invaluable contributions of Ms Janice Chow and Ms Lim Lay Feng (Research Coordinators, MMRL) in proofreading this manuscript, and Ms Stephanie Fook Chong (Statistician, DCR) for statistical analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Teoh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, W., Gullo, C., Shen, J. et al. Decoupling of normal CD40/interleukin-4 immunoglobulin heavy chain switch signal leads to genomic instability in SGH-MM5 and RPMI 8226 multiple myeloma cell lines. Leukemia 20, 715–723 (2006). https://doi.org/10.1038/sj.leu.2404099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404099

Keywords

Search

Quick links