Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Non Lymphocytic Leukemia

A novel and cytogenetically cryptic t(7;21)(p22;q22) in acute myeloid leukemia results in fusion of RUNX1 with the ubiquitin-specific protease gene USP42

Abstract

Although many of the chromosomal abnormalities in hematologic malignancies are identifiable cytogenetically, some are only detectable using molecular methods. We describe a novel cryptic t(7;21)(p22;q22) in acute myeloid leukemia (AML). FISH, 3′RACE, and RT-PCR revealed a fusion involving RUNX1 and the ubiquitin-specific protease (USP) gene USP42. The genomic breakpoint was in intron 7 of RUNX1 and intron 1 of USP42. The reciprocal chimera was not detected – neither on the transcriptional nor on the genomic level – and FISH showed that the 5′ part of USP42 was deleted. USP42 maps to a 7p22 region characterized by segmental duplications. Notably, 17 kb duplicons are present 1 Mb proximal to USP42 and 3 Mb proximal to RUNX1; these may be important in the genesis of t(7;21). This is the second cryptic RUNX1 translocation in hematologic malignancies and the first in AML. The USPs have not previously been reported to be rearranged in leukemias. The cellular context in which USP42 is active is unknown, but we here show that it is expressed in normal bone marrow, in primary AMLs, and in cancer cell lines. Its involvement in the t(7;21) suggests that deregulation of ubiquitin-associated pathways may be pathogenetically important in AML.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Rowley JD . Chromosome translocations: dangerous liaisons revisited. Nat Rev Cancer 2001; 1: 245–250.

    Article  CAS  Google Scholar 

  2. Johansson B, Mertens F, Mitelman F . Primary vs. secondary neoplasia-associated chromosomal abnormalities – balanced rearrangements vs. genomic imbalances? Genes Chromosomes Cancer 1996; 16: 155–163.

    Article  CAS  Google Scholar 

  3. Johansson B, Mertens F, Mitelman F . Clinical and biological importance of cytogenetic abnormalities in childhood and adult acute lymphoblastic leukemia. Ann Med 2004; 36: 492–503.

    Article  CAS  Google Scholar 

  4. Gotlib J, Cools J, Malone III JM, Schrier SL, Gilliland DG, Coutré SE . The FIP1L1-PDGFRα fusion tyrosine kinase in hypereosinophilic syndrome and chronic eosinophilic leukemia: implications for diagnosis, classification, and management. Blood 2004; 103: 2879–2891.

    Article  CAS  Google Scholar 

  5. Miyoshi H, Shimizu K, Kozu T, Maseki N, Kaneko Y, Ohki M . t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1. Proc Natl Acad Sci USA 1991; 88: 10431–10434.

    Article  CAS  Google Scholar 

  6. Song W-J, Sullivan MG, Legare RD, Hutchings S, Tan X, Kufrin D et al. Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat Genet 1999; 23: 166–175.

    Article  CAS  Google Scholar 

  7. Osato M . Point mutations in the RUNX1/AML1 gene: another actor in RUNX leukemia. Oncogene 2004; 23: 4284–4296.

    Article  CAS  Google Scholar 

  8. Kurokawa M, Hirai H . Role of AML1/Runx1 in the pathogenesis of hematological malignancies. Cancer Sci 2003; 94: 841–846.

    Article  CAS  Google Scholar 

  9. Liu P, Tarlé SA, Hajra A, Claxton DF, Marlton P, Freedman M et al. Fusion between transcription factor CBFβ/PEBP2β and a myosin heavy chain in acute myeloid leukemia. Science 1993; 261: 1041–1044.

    Article  CAS  Google Scholar 

  10. Golub TR, Barker GF, Bohlander SK, Hiebert SW, Ward DC, Bray-Ward P et al. Fusion of the TEL gene on 12p13 to the AML1 gene on 21q22 in acute lymphoblastic leukemia. Proc Natl Acad Sci USA 1995; 92: 4917–4921.

    Article  CAS  Google Scholar 

  11. Mikhail FM, Coignet L, Hatem N, Mourad ZI, Farawela HM, El Kaffash DM et al. A novel gene, FGA7, is fused to RUNX1/AML1 in a t(4;21)(q28;q22) in a patient with T-cell acute lymphoblastic leukemia. Genes Chromosomes Cancer 2004; 39: 110–118.

    Article  CAS  Google Scholar 

  12. Miyoshi H, Kozu T, Shimizu K, Enomoto K, Maseki N, Kaneko Y et al. The t(8;21) translocation in acute myeloid leukemia results in production of an AML1-MTG8 fusion transcript. EMBO J 1993; 12: 2715–2721.

    Article  CAS  Google Scholar 

  13. Nucifora G, Begy CR, Kobayashi H, Roulston D, Claxton D, Pedersen-Bjergaard J et al. Consistent intergenic splicing and production of multiple transcripts between AML1 at 21q22 and unrelated genes at 3q26 in (3;21)(q26;q22) translocations. Proc Natl Acad Sci USA 1994; 91: 4004–4008.

    Article  CAS  Google Scholar 

  14. Gamou T, Kitamura E, Hosoda F, Shimizu K, Shinohara K, Hayashi Y et al. The partner gene of AML1 in t(16;21) myeloid malignancies is a novel member of the MTG8 (ETO) family. Blood 1998; 91: 4028–4037.

    CAS  PubMed  Google Scholar 

  15. Zhang Y, Emmanuel N, Kamboj G, Chen J, Shurafa M, Van Dyke DL et al. PRDX4, a member of the peroxiredoxin family, is fused to AML1 (RUNX1) in an acute myeloid leukemia patient with a t(X;21)(p22;q22). Genes Chromosomes Cancer 2004; 40: 365–370.

    Article  CAS  Google Scholar 

  16. Chan EM, Comer EM, Brown FC, Richkind KE, Holmes ML, Chong BH et al. AML1-FOG2 fusion protein in myelodysplasia. Blood 2005; 105: 4523–4526.

    Article  CAS  Google Scholar 

  17. Quesada V, Díaz-Perales A, Gutiérrez-Fernández A, Garabaya C, Cal S, López-Otín C . Cloning and enzymatic analysis of 22 novel human ubiquitin-specific proteases. Biochem Biophys Res Commun 2004; 314: 54–62.

    Article  CAS  Google Scholar 

  18. Lie SO, Abrahamsson J, Clausen N, Forestier E, Hasle H, Hovi L et al. Treatment stratification based on initial in vivo response in acute myeloid leukaemia in children without Down's syndrome: results of NOPHO-AML trials. Br J Haematol 2003; 122: 217–225.

    Article  Google Scholar 

  19. Tanke HJ, Wiegant J, van Gijlswijk RPM, Bezrookove V, Pattenier H, Heetebrij RJ et al. New strategy for multi-colour fluorescence in situ hybridisation: COBRA: COmbined Binary RAtio labelling. Eur J Hum Genet 1999; 7: 2–11.

    Article  CAS  Google Scholar 

  20. Scherer SW, Green ED . Human chromosome 7 circa 2004: a model for structural and functional studies of the human genome. Hum Mol Genet 2004; 13: R303–R313.

    Article  CAS  Google Scholar 

  21. Slater RM, v Drunen E, Kroes WG, Weghuis DO, van den Berg E, Smit EM et al. t(7;12)(q36;p13) and t(7;12)(q32;p13) – translocations involving ETV6 in children 18 months of age or younger with myeloid disorders. Leukemia 2001; 15: 915–920.

    Article  CAS  Google Scholar 

  22. Kolomietz E, Al-Maghrabi J, Brennan S, Karaskova J, Minkin S, Lipton J et al. Primary chromosomal rearrangements of leukemia are frequently accompanied by extensive submicroscopic deletions and may lead to altered prognosis. Blood 2001; 97: 3581–3588.

    Article  CAS  Google Scholar 

  23. Saglio G, Storlazzi CT, Giugliano E, Surace C, Anelli L, Rege-Cambrin G et al. A 76-kb duplicon maps close to the BCR gene on chromosome 22 and the ABL gene on chromosome 9: possible involvement in the genesis of the Philadelphia chromosome translocation. Proc Natl Acad Sci USA 2002; 99: 9882–9887.

    Article  CAS  Google Scholar 

  24. Graner E, Tang D, Rossi S, Baron A, Migita T, Weinstein LJ et al. The isopeptidase USP2a regulates the stability of fatty acid synthase in prostate cancer. Cancer Cell 2004; 5: 253–261.

    Article  CAS  Google Scholar 

  25. Liu L-Q, Ilaria R, Kingsley PD, Iwama A, van Etten RA, Palis J et al. A novel ubiquitin-specific protease, UBP43, cloned from leukemia fusion protein AML1-ETO-expressing mice, functions in hematopoietic cell differentiation. Mol Cell Biol 1999; 19: 3029–3038.

    Article  CAS  Google Scholar 

  26. De Pittà C, Tombolan L, Campo Dell'Orto M, Accordi B, te Kronnie G, Romualdi C et al. A leukemia-enriched cDNA microarray platform identifies new transcripts with relevance to the biology of pediatric acute lymphoblastic leukemia. Haematologica 2005; 90: 890–898.

    PubMed  Google Scholar 

  27. Oliveira AM, Perez-Atayde AR, Dal Cin P, Gebhardt MC, Chen C-J, Neff JR et al. Aneurysmal bone cyst variant translocations upregulate USP6 transcription by promoter swapping with the ZNF9, COL1A1, TRAP150, and OMD genes. Oncogene 2005; 24: 3419–3426.

    Article  CAS  Google Scholar 

  28. Roulston D, Espinosa III R, Nucifora G, Larson RA, Le Beau MM, Rowley JD . CBFA2(AML1) translocations with novel partner chromosomes in myeloid leukemias: association with prior therapy. Blood 1998; 92: 2879–2885.

    CAS  PubMed  Google Scholar 

  29. Preudhomme C, Warot-Loze D, Roumier C, Grardel-Duflos N, Garand R, Lai JL et al. High incidence of biallelic point mutations in the Runt domain of the AML1/PEBP2αB gene in Mo acute myeloid leukemia and in myeloid malignancies with acquired trisomy 21. Blood 2000; 96: 2862–2869.

    CAS  PubMed  Google Scholar 

  30. Huang G, Shigesada K, Ito K, Wee H-J, Yokomizo T, Ito Y . Dimerization with PEBP2β protects RUNX1/AML1 from ubiquitin–proteasome-mediated degradation. EMBO J 2001; 20: 723–733.

    Article  CAS  Google Scholar 

  31. Kourlas PJ, Strout MP, Becknell B, Veronese ML, Croce CM, Theil KS et al. Identification of a gene at 11q23 encoding a guanine nucleotide exchange factor: evidence for its fusion with MLL in acute myeloid leukemia. Proc Natl Acad Sci USA 2000; 97: 2145–2150.

    Article  CAS  Google Scholar 

  32. Fu J-F, Hsu J-J, Tang T-C, Shih L-Y . Identification of CBL, a proto-oncogene at 11q23.3, as a novel MLL fusion partner in a patient with de novo acute myeloid leukemia. Genes Chromosomes Cancer 2003; 37: 214–219.

    Article  CAS  Google Scholar 

  33. Jaju RJ, Fidler C, Haas OA, Strickson AJ, Watkins F, Clark K et al. A novel gene, NSD1, is fused to NUP98 in the t(5;11)(q35;p15.5) in de novo childhood acute myeloid leukemia. Blood 2001; 98: 1264–1267.

    Article  CAS  Google Scholar 

  34. Bullinger L, Döhner K, Bair E, Fröhling S, Schlenk RF, Tibshirani R et al. Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N Engl J Med 2004; 350: 1605–1616.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Swedish Cancer Society, the Swedish Children's Cancer Foundation, and Gunnar Nilsson's Cancer Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Paulsson.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paulsson, K., Békássy, A., Olofsson, T. et al. A novel and cytogenetically cryptic t(7;21)(p22;q22) in acute myeloid leukemia results in fusion of RUNX1 with the ubiquitin-specific protease gene USP42. Leukemia 20, 224–229 (2006). https://doi.org/10.1038/sj.leu.2404076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404076

Keywords

This article is cited by

Search

Quick links