Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Leukemias

Cytotoxic activity of gemtuzumab ozogamicin (Mylotarg) in acute myeloid leukemia correlates with the expression of protein kinase Syk

Abstract

Acute myeloid leukemia (AML) cells express the cell surface antigen CD33 that, upon ligation with a monoclonal antibody (mAb), is a downregulator of cell growth in a Syk-dependent manner. An anti-CD33 mAb coupled to a toxin, gemtuzumab ozogamicin (GO), is used for the treatment of AML (Mylotarg). Therefore, we investigated whether the response of AML cells to GO treatment also depends on Syk expression. Forty primary AML samples (25 Syk-positive and 15 Syk-negative) were tested for their response to the anti-proliferative effects of GO and unmodified anti-CD33 mAb. A correlation between Syk expression and the response of leukemia cells to GO and anti-CD33 mAb was found. ‘Blocking’ of Syk by small interfering RNA resulted in unresponsiveness of AML cells to both GO and anti-CD33 mAb-mediated cytotoxicity. Syk upregulation by the de-methylating agent 5-azacytidine (5-aza) induced re-expression of Syk in some cases, resulting in enhanced GO and anti-CD33-mediated inhibition of leukemia cell growth. Thus, the cytotoxicity of both GO and anti-CD33 in primary AML samples was associated with Syk expression. 5-Aza restored Syk and increased the sensitivity of originally Syk-negative, non-responsive cells to CD33 ligation to levels of Syk-positive cells. These data have clinical significance for predicting response to GO and designing clinical trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Griffin JD, Linch D, Sabbath K, Larcom P, Schlossman SF . A monoclonal antibody reactive with normal and leukemic human myeloid progenitor cells. Leukemia Res 1984; 8: 521–527.

    Article  CAS  Google Scholar 

  2. Sievers EL, Appelbaum FR, Spielberger RT . Selective ablation of acute myeloid leukemia using antibody-targeted chemotherapy: a phase I study of an anti-CD33 calicheamycin immunoconjugate. Blood 1999; 93: 3678–3684.

    CAS  PubMed  Google Scholar 

  3. Freeman SD, Kelm S, Barber EK, Crocker PR . Characterization of CD33 as a new member of the sialoadhesin family of cellular interaction molecules. Blood 1995; 85: 2005–2012.

    CAS  PubMed  Google Scholar 

  4. Ulyanova T, Blasioli J, Woodford-Thomas TA, Thomas ML . The sialoadhesin CD33 is a myeloid-specific inhibitory receptor. Eur J Immunol 1999; 29: 3440–3449.

    Article  CAS  Google Scholar 

  5. Taylor VC, Buckley CD, Douglas M, Cody AJ, Simmons DL, Freeman SD . The myeloid-specific scialic acid-binding receptor, CD33, associates with the protein tyrosine phosphatases, SHP-1 and SHP-2. J Biol Chem 1999; 274: 11505–11512.

    Article  CAS  Google Scholar 

  6. Paul SP, Taylor LS, Sansbury EK, McVicar DW . Myeloid specific human CD33 is an inhibitory receptor with differential ITIM function in recruiting the phosphatases SHP-1 and SHP-2. Blood 2000; 96: 483–490.

    CAS  PubMed  Google Scholar 

  7. Vitale C, Romagnani C, Falco M, Ponte M, Mingari MC . Engagement of p75/AIRM1 or CD33 inhibits the proliferation of normal or leukemic myeloid cells. Proc Natl Acad Sci USA 1999; 96: 15091–15096.

    Article  CAS  Google Scholar 

  8. Vitale C, Romagnani C, Puccetti A, Olive D, Mingari MC . Surface expression and function of p75/AIRM-1 or CD33 in acute myeloid leukemias: engagement of CD33 induces apoptosis of leukemic cells. Proc Natl Acad Sci USA 2001; 98: 5764–5769.

    Article  CAS  Google Scholar 

  9. Mingari MC, Vitale C, Romagnani C, Falco M, Moretta L . p75/AIRM1 and CD33, two sialoadhesin receptors that regulate the proliferation or the survival of normal and leukemic myeloid cells. Immunol Rev 2001; 181: 260–268.

    Article  CAS  Google Scholar 

  10. Bae J, Martinson JA, Klingemann HG . Heteroclitic CD33 peptide with enhanced anti-acute myeloid leukemic immunogenicity. Clin Cancer Res 2004; 10: 7043–7052.

    Article  CAS  Google Scholar 

  11. Sievers EL . Targeted therapy of acute myeloid leukemia with monoclonal antibodies and immunoconjugates. Cancer Chemother Pharmacol 2000; 46: 18–22.

    Article  Google Scholar 

  12. Qin S, Yamamura H . Up-regulation of Syk activity during HL60 cell differentiation into granulocyte but not into monocyte/macrophage-lineage. Biochem Biophys Res Commun 1997; 236: 697–701.

    Article  CAS  Google Scholar 

  13. Tsubokawa M, Tohyama Y, Tohyama K, Asahi M, Inazu T, Nakamura H et al. Interleukin-3 activates Syk in a human myeloblastic leukemia cell line, AML-193. Eur J Biochem 1997; 249: 792–796.

    Article  CAS  Google Scholar 

  14. Raeder EM, Mansfield PJ, Hinkovska-Galcheva V, Shayman JA, Boxer LA . Syk activation initiates downstream signaling events during human polymorphonuclear leukocyte phagocytosis. J Immunol 1999; 163: 6785–6793.

    CAS  PubMed  Google Scholar 

  15. Cambien B, Pomeranz M, Millet MA, Rossi B, Schmid-Alliana A . Signal transduction involved in MCP-1-mediated monocytic trans-endothelian migration. Blood 2001; 97: 359–366.

    Article  CAS  Google Scholar 

  16. Nakashima K, Kokubo T, Shichijo M, Li YF, Yura T, Yamamoto N . A novel Syk kinase-selective inhibitor blocks antigen presentation of immune complexes in dendritic cells. Eur J Pharmacol 2004; 505: 223–228.

    Article  CAS  Google Scholar 

  17. Shen L, Lang ML, Wade WF . The ins and outs of getting in: structures and signals that enhance BCR or Fc receptor-mediated antigen presentation. Immunopharmacology 2000; 49: 227–240.

    Article  CAS  Google Scholar 

  18. Dustin LB, Plas DR, Wong J, Hu YT, Soto C, Chan AC et al. Expression of dominant-negative src-homology domain 2-containing protein tyrosine phosphatase –1 results in increased Syk tyrosine kinase activity and B cell activation. J Immunol 1999; 162: 2717–2724.

    CAS  PubMed  Google Scholar 

  19. Kraft S, Katoh N, Novak N, Koch S, Bieber T . Unexpected functions of FcepsilonRI on antigen-presenting cells. Int Arch Allergy Immunol 2001; 124: 35–37.

    Article  CAS  Google Scholar 

  20. Hamawy MM, Fischler C, Zhang J, Siraganian RP . Fc epsilon RI aggregation induces tyrosine phosphorylation of a novel 72 kDa protein downstream of Syk. Biochem Biophys Res Commun 1997; 239: 670–675.

    Article  CAS  Google Scholar 

  21. Xu R, Seger R, Pecht I . Cutting edge: extracellular signal-regulated kinase activates syk: a new potential feedback regulation of Fc epsilon receptor signaling. J Immunol 1999; 163: 1110–1114.

    CAS  PubMed  Google Scholar 

  22. Ma H, Yankee TM, Hu J, Asai DJ, Harrison ML, Geahlen RL . Visualization of Syk-antigen receptor interactions using green fluorescent protein: differential roles for Syk and Lyn in the regulation of receptor capping and internalization. J Immunol 2001; 166: 1507–1516.

    Article  CAS  Google Scholar 

  23. Ebel C, Schmidt RE, Hundt M . Signal transduction via both human low-affinity IgG Fc receptors, Fc gamma RIIa and Fc gamma RIIIb, depends on the activity of different families of intracellular kinases. Immunobiology 2001; 203: 616–628.

    Article  CAS  Google Scholar 

  24. Law CL, Sidorenko SP, Chandran KA, Zhao Z, Shen SH, Fischer EH et al. CD22 associates with protein tyrosine phosphatase 1C, Syk and phospholipase C-gamma 1 upon B cell activation. J Exp Med 1996; 183: 547–560.

    Article  CAS  Google Scholar 

  25. Tuscano JM, Engel P, Tedder TF, Agarval A, Kehrl JH . Involvement of p72syk kinase, p53/56lyn kinase and phosphatidyl inositol-3 kinase in signal transduction via the human B lymphocyte antigen CD22. Eur J Immunol 1996; 26: 1246–1252.

    Article  CAS  Google Scholar 

  26. Yohannan J, Wienands J, Coggeshall KM, Justement LB . Analysis of tyrosine phosphorylation-dependent interactions between stimulatory effector proteins and the B cell co-receptor CD22. J Biol Chem 1999; 274: 18769–18776.

    Article  CAS  Google Scholar 

  27. Otipoby KL, Draves KE, Clark EA . CD22 regulates B cell receptor-mediated signals via two domains that independently recruit Grb2 and SHP-1. J Biol Chem 2001; 276: 44315–44322.

    Article  CAS  Google Scholar 

  28. Balaian L, Ball ED . Direct effect of bispecific anti-CD33 × anti-CD64 antibody on proliferation and signaling in myeloid cells. Leukemia Res 2001; 25: 1115–1125.

    Article  CAS  Google Scholar 

  29. Balaian L, Zhong RK, Ball ED . The inhibitory effect of anti-CD33 monoclonal antibodies on AML cells growth correlates with Syk and/or ZAP-70 expression. Exp Hematol 2003; 5: 363–371.

    Article  Google Scholar 

  30. Goodman PA, Wood CM, Vassilev A, Mao C, Uckun FM . Spleen tyrosine kinase (Syk) deficiency in childhood pro-B cell acute lymphoblastic leukemia. Oncogene 2001; 20: 3969–3978.

    Article  CAS  Google Scholar 

  31. Goodman PA, Burkhardt N, Juran B, Tibbles HE, Uckun FM . Hypermethylation of the spleen tyrosine kinase promoter in T-lineage acute lymphoblastic leukemia. Oncogene 2003; 22: 2504–2514.

    Article  CAS  Google Scholar 

  32. Ushmorov A, Leithauser F, Sakk O, Weinhausel A, Popov S, Moller P et al. Epigenetic process play a major role in B-cell-specific gene silencing in classical Hodgkin lymphoma. Blood 2006; 107: 2493–2500.

    Article  CAS  Google Scholar 

  33. Coopman PJ, Mueller SC . The Syk tyrosine kinase: a new negative regulator in tumor growth and progression. Cancer Lett 2006; 241: 159–173.

    Article  CAS  Google Scholar 

  34. Stewart ZA, Pieterpol JA . Syk: a new player in the field of breast cancer. Breast Cancer Res 2001; 3: 5–7.

    Article  CAS  Google Scholar 

  35. Coopman PJ, Do MT, Barth M, Bowden ET, Hayes AJ, Basyuk E et al. The Syk tyrosine kinase suppresses malignant growth of human breast cancer cells. Nature 2000; 406: 742–747.

    Article  CAS  Google Scholar 

  36. Yuan Y, Mendez R, Sahin A, Dai JL . Hypermethylation leads to silencing of the SYK gene in human breast cancer. Cancer Res 2001; 61: 5558–5561.

    CAS  PubMed  Google Scholar 

  37. Yuan Y, Liu H, Sahin A, Le Dai J . Reactivation of syk expression by inhibition of DNA methylation suppresses breast cancer cell invasiveness. Int J cancer 2005; 113: 654–659.

    Article  CAS  Google Scholar 

  38. Jabbour EJ, Giles EJ . New agents in myelodysplastic syndromes. Curr Hematol Rep 2005; 4: 191–199.

    CAS  PubMed  Google Scholar 

  39. Fenaux P . Inhibitors of DNA methylation: beyond myelodysplastic syndromes. Natl Clin Pract Oncol 2005; 2: 836–844.

    Article  Google Scholar 

  40. Claus L, Almstedt M, Lubbert M . Epigenetic treatment of hematopoietic malignancies: in vivo targets of demethylating agents. Semin Oncol 2005; 32: 511–520.

    Article  CAS  Google Scholar 

  41. Balaian L, Ball ED . Anti-CD33 monoclonal antibodies enhance the cytotoxic effects of cytosine arabinoside and idarubicin on acute myeloid leukemia (AML) cells through similarities in their signaling pathways. Exp Hematol 2005; 33: 199–211.

    Article  CAS  Google Scholar 

  42. Esteller M . DNA methylation and cancer therapy: new developments and expectations. Curr Opin Oncol 2005; 17: 55–60.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Larisa Balain designed and performed all of the experiments and prepared the paper. Edward D Ball co-designed the experiments and co-wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E D Ball.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balaian, L., Ball, E. Cytotoxic activity of gemtuzumab ozogamicin (Mylotarg) in acute myeloid leukemia correlates with the expression of protein kinase Syk. Leukemia 20, 2093–2101 (2006). https://doi.org/10.1038/sj.leu.2404437

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404437

Keywords

This article is cited by

Search

Quick links