Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Differentiation

SET-induced calcium signaling and MAPK/ERK pathway activation mediate dendritic cell-like differentiation of U937 cells

Abstract

Human SET, a target of chromosomal translocation in human leukemia encodes a highly conserved, ubiquitously expressed, nuclear phosphoprotein. SET mediates many functions including chromatin remodeling, transcription, apoptosis and cell cycle control. We report that overexpression of SET directs differentiation of the human promonocytic cell line U937 along the dendritic cell (DC) pathway, as cells display typical morphologic changes associated with DC fate and express the DC surface markers CD11b and CD86. Differentiation occurs via a calcium-dependent mechanism involving the CaMKII and MAPK/ERK pathways. Similar responses are elicited by interferon-γ (IFN-γ) treatment with the distinction that IFN-γ signaling activates the DNA-binding activity of STAT1 whereas SET overexpression does not. In addition, unlike IFN-γ signaling, SET generated stress-induced p38/MAPK activity. Interestingly, IFN-γ treatment transiently upregulated endogenous SET in a dose-dependent manner. These results suggest that SET is part of both IFN-γ-mediated and stress-mediated cellular responses and that SET induces cell differentiation via calcium and MAPK/ERK pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Wen C, Levitan D, Li X, Greenwald I . spr-2, a suppressor of the egg-laying defect caused by loss of sel-12 presenilin in Caenorhabditis elegans, is a member of the SET protein subfamily. Proc Natl Acad Sci USA 2000; 97: 14524–14529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. von Lindern M, van Baal S, Wiegant J, Raap A, Hagemeijer A, Grosveld G . Can, a putative oncogene associated with myeloid leukemogenesis, may be activated by fusion of its 3′ half to different genes: characterization of the set gene. Mol Cell Biol 1992; 12: 3346–3355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vaesen M, Barnikol-Watanabe S, Gotz H, Awni LA, Cole T, Zimmermann B et al. Purification and characterization of two putative HLA class II associated proteins: PHAPI and PHAPII. Biol Chem Hoppe Seyler 1994; 375: 113–126.

    Article  CAS  PubMed  Google Scholar 

  4. Adachi Y, Pavlakis GN, Copeland TD . Identification and characterization of SET, a nuclear phosphoprotein encoded by the translocation break point in acute undifferentiated leukemia. J Biol Chem 1994; 269: 2258–2262.

    CAS  PubMed  Google Scholar 

  5. Beresford PJ, Zhang D, Oh DY, Fan Z, Greer EL, Russo ML et al. Granzyme A activates an endoplasmic reticulum-associated caspase-independent nuclease to induce single-stranded DNA nicks. J Biol Chem 2001; 276: 43285–43293.

    Article  CAS  PubMed  Google Scholar 

  6. Fan Z, Beresford PJ, Oh DY, Zhang D, Lieberman J . Tumor suppressor NM23-H1 is a granzyme A-activated DNase during CTL-mediated apoptosis, and the nucleosome assembly protein SET is its inhibitor. Cell 2003; 112: 659–672.

    Article  CAS  PubMed  Google Scholar 

  7. Seo SB, McNamara P, Heo S, Turner A, Lane WS, Chakravarti D . Regulation of histone acetylation and transcription by INHAT, a human cellular complex containing the set oncoprotein. Cell 2001; 104: 119–130.

    Article  CAS  PubMed  Google Scholar 

  8. Compagnone NA, Zhang P, Vigne JL, Mellon SH . Novel role for the nuclear phosphoprotein SET in transcriptional activation of P450c17 and initiation of neurosteroidogenesis. Mol Endocrinol 2000; 14: 875–888.

    Article  CAS  PubMed  Google Scholar 

  9. Brennan CM, Gallouzi IE, Steitz JA . Protein ligands to HuR modulate its interaction with target mRNAs in vivo. J Cell Biol 2000; 151: 1–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li M, Makkinje A, Damuni Z . The myeloid leukemia-associated protein SET is a potent inhibitor of protein phosphatase 2A. J Biol Chem 1996; 271: 11059–11062.

    Article  CAS  PubMed  Google Scholar 

  11. Estanyol JM, Jaumot M, Casanovas O, Rodriguez-Vilarrupla A, Agell N, Bachs O . The protein SET regulates the inhibitory effect of p21(Cip1) on cyclin E-cyclin-dependent kinase 2 activity. J Biol Chem 1999; 274: 33161–33165.

    Article  CAS  PubMed  Google Scholar 

  12. Saito S, Miyaji-Yamaguchi M, Shimoyama T, Nagata K . Functional domains of template-activating factor-I as a protein phosphatase 2A inhibitor. Biochem Biophys Res Commun 1999; 259: 471–475.

    Article  CAS  PubMed  Google Scholar 

  13. Canela N, Rodriguez-Vilarrupla A, Estanyol JM, Diaz C, Pujol MJ, Agell N et al. The SET protein regulates G2/M transition by modulating cyclin B-cyclin-dependent kinase 1 activity. J Biol Chem 2003; 278: 1158–1164.

    Article  CAS  PubMed  Google Scholar 

  14. Adler HT, Nallaseth FS, Walter G, Tkachuk DC . HRX leukemic fusion proteins form a heterocomplex with the leukemia-associated protein SET and protein phosphatase 2A. J Biol Chem 1997; 272: 28407–28414.

    Article  CAS  PubMed  Google Scholar 

  15. Shenolikar S, Nairn AC . Protein phosphatases: recent progress. Adv Second Messenger Phosphoprotein Res 1991; 23: 1–121.

    CAS  PubMed  Google Scholar 

  16. Mumby MC, Walter G . Protein serine/threonine phosphatases: structure, regulation, and functions in cell growth. Physiol Rev 1993; 73: 673–699.

    Article  CAS  PubMed  Google Scholar 

  17. Harmala-Brasken AS, Mikhailov A, Soderstrom TS, Meinander A, Holmstrom TH, Damuni Z et al. Type-2A protein phosphatase activity is required to maintain death receptor responsiveness. Oncogene 2003; 22: 7677–7686.

    Article  PubMed  Google Scholar 

  18. Qu D, Li Q, Lim HY, Cheung NS, Li R, Wang JH et al. The protein SET binds the neuronal Cdk5 activator p35nck5a and modulates Cdk5/p35nck5a activity. J Biol Chem 2002; 277: 7324–7332.

    Article  CAS  PubMed  Google Scholar 

  19. Kellogg DR, Kikuchi A, Fujii-Nakata T, Turck CW, Murray AW . Members of the NAP/SET family of proteins interact specifically with B-type cyclins. J Cell Biol 1995; 130: 661–673.

    Article  CAS  PubMed  Google Scholar 

  20. Chai Z, Sarcevic B, Mawson A, Toh BH . SET-related cell division autoantigen-1 (CDA1) arrests cell growth. J Biol Chem 2001; 276: 33665–33674.

    Article  CAS  PubMed  Google Scholar 

  21. Kandilci A, Mientjes E, Grosveld G . Effects of SET and SET-CAN on the differentiation of the human promonocytic cell line U937. Leukemia 2004; 18: 337–340.

    Article  CAS  PubMed  Google Scholar 

  22. Lee Y, Miller HL, Jensen P, Hernan R, Connelly M, Wetmore C et al. A molecular fingerprint for medulloblastoma. Cancer Res 2003; 63: 5428–5437.

    CAS  PubMed  Google Scholar 

  23. Liu M, Lee MH, Cohen M, Bommakanti M, Freedman LP . Transcriptional activation of the Cdk inhibitor p21 by vitamin D3 leads to the induced differentiation of the myelomonocytic cell line U937. Genes Dev 1996; 10: 142–153.

    Article  CAS  PubMed  Google Scholar 

  24. Hwang O, Choi HJ, Park SY . Up-regulation of GTP cyclohydrolase I and tetrahydrobiopterin by calcium influx. Neuroreport 1999; 10: 3611–3614.

    Article  CAS  PubMed  Google Scholar 

  25. Su B, Jacinto E, Hibi M, Kallunki T, Karin M, Ben-Neriah Y . JNK is involved in signal integration during costimulation of T lymphocytes. Cell 1994; 77: 727–736.

    Article  PubMed  Google Scholar 

  26. Berger I, Bieniossek C, Schaffitzel C, Hassler M, Santelli E, Richmond TJ . Direct interaction of Ca2+/calmodulin inhibits histone deacetylase 5 repressor core binding to myocyte enhancer factor 2. J Biol Chem 2003; 278: 17625–17635.

    Article  CAS  PubMed  Google Scholar 

  27. Loomis-Husselbee JW, Walker CD, Bottomley JR, Cullen PJ, Irvine RF, Dawson AP . Modulation of Ins(2,4,5)P3-stimulated Ca2+ mobilization by ins(1,3,4, 5)P4: enhancement by activated G-proteins, and evidence for the involvement of a GAP1 protein, a putative Ins(1,3,4,5)P4 receptor. Biochem J 1998; 331 (Part 3): 947–952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jongstra-Bilen J, Young AJ, Chong R, Jongstra J . Human and mouse LSP1 genes code for highly conserved phosphoproteins. J Immunol 1990; 144: 1104–1110.

    CAS  PubMed  Google Scholar 

  29. Hattori M, Suzuki AZ, Higo T, Nakamura T, Inoue T, Mikoshiba K . Distinct roles of inositol 1,4,5-trisphosphate receptor types 1 and 3 in Ca2+ signaling. J Biol Chem 2004; 279: 11967–11975.

    Article  CAS  PubMed  Google Scholar 

  30. Koski GK, Schwartz GN, Weng DE, Czerniecki BJ, Carter C, Gress RE et al. Calcium mobilization in human myeloid cells results in acquisition of individual dendritic cell-like characteristics through discrete signaling pathways. J Immunol 1999; 163: 82–92.

    CAS  PubMed  Google Scholar 

  31. Engels FH, Kreisel D, Faries MB, Bedrosian I, Koski GK, Cohen PA et al. Calcium ionophore activation of chronic myelogenous leukemia progenitor cells into dendritic cells is mediated by calcineurin phosphatase. Leuk Res 2000; 24: 795–804.

    Article  CAS  PubMed  Google Scholar 

  32. Tebar F, Villalonga P, Sorkina T, Agell N, Sorkin A, Enrich C . Calmodulin regulates intracellular trafficking of epidermal growth factor receptor and the MAPK signaling pathway. Mol Biol Cell 2002; 13: 2057–2068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Egea J, Espinet C, Soler RM, Peiro S, Rocamora N, Comella JX . Nerve growth factor activation of the extracellular signal-regulated kinase pathway is modulated by Ca(2+) and calmodulin. Mol Cell Biol 2000; 20: 1931–1946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Illario M, Cavallo AL, Bayer KU, Di Matola T, Fenzi G, Rossi G et al. Calcium/calmodulin-dependent protein kinase II binds to Raf-1 and modulates integrin-stimulated ERK activation. J Biol Chem 2003; 278: 45101–45108.

    Article  CAS  PubMed  Google Scholar 

  35. Ardeshna KM, Pizzey AR, Devereux S, Khwaja A . The PI3 kinase, p38 SAP kinase, and NF-kappaB signal transduction pathways are involved in the survival and maturation of lipopolysaccharide-stimulated human monocyte-derived dendritic cells. Blood 2000; 96: 1039–1046.

    CAS  PubMed  Google Scholar 

  36. Balkwill F, Taylor-Papadimitriou J . Interferon affects both G1 and S+G2 in cells stimulated from quiescence to growth. Nature 1978; 274: 798–800.

    Article  CAS  PubMed  Google Scholar 

  37. Ziegler I, Schott K, Lubbert M, Herrmann F, Schwulera U, Bacher A . Control of tetrahydrobiopterin synthesis in T lymphocytes by synergistic action of interferon-gamma and interleukin-2. J Biol Chem 1990; 265: 17026–17030.

    CAS  PubMed  Google Scholar 

  38. Li J, Colovai AI, Cortesini R, Suciu-Foca N . Cloning and functional characterization of the 5′-regulatory region of the human CD86 gene. Hum Immunol 2000; 61: 486–498.

    Article  CAS  PubMed  Google Scholar 

  39. Sedo A, Van Weyenbergh J, Rouillard D, Bauvois B . Synergistic effect of prolactin on IFN-gamma-mediated growth arrest in human monoblastic cells: correlation with the up-regulation of IFN-gamma receptor gene expression. Immunol Lett 1996; 53: 125–130.

    Article  CAS  PubMed  Google Scholar 

  40. Nair JS, DaFonseca CJ, Tjernberg A, Sun W, Darnell JE, Chait BT et al. Requirement of Ca2+ and CaMKII for Stat1 Ser-727 phosphorylation in response to IFN-gamma. Proc Natl Acad Sci USA 2002; 99: 5971–5976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hu J, Roy SK, Shapiro PS, Rodig SR, Reddy SP, Platanias LC et al. ERK1 and ERK2 activate CCAAAT/enhancer-binding protein-beta-dependent gene transcription in response to interferon-gamma. J Biol Chem 2001; 276: 287–297.

    Article  CAS  PubMed  Google Scholar 

  42. Meraz MA, White JM, Sheehan KC, Bach EA, Rodig SJ, Dighe AS et al. Targeted disruption of the Stat1 gene in mice reveals unexpected physiologic specificity in the JAK-STAT signaling pathway. Cell 1996; 84: 431–442.

    Article  CAS  PubMed  Google Scholar 

  43. Schroder K, Hertzog PJ, Ravasi T, Hume DA . Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 2004; 75: 163–189.

    Article  CAS  PubMed  Google Scholar 

  44. Darnell Jr JE . STATs and gene regulation. Science 1997; 277: 1630–1635.

    Article  CAS  PubMed  Google Scholar 

  45. Dolmetsch RE, Xu K, Lewis RS . Calcium oscillations increase the efficiency and specificity of gene expression. Nature 1998; 392: 933–936.

    Article  CAS  PubMed  Google Scholar 

  46. Garcia A, Serrano A, Abril E, Jimenez P, Real LM, Canton J et al. Differential effect on U937 cell differentiation by targeting transcriptional factors implicated in tissue- or stage-specific induced integrin expression. Exp Hematol 1999; 27: 353–364.

    Article  CAS  PubMed  Google Scholar 

  47. Hwang J, Bragado MJ, Duan RD, Williams JA . Protein phosphatase inhibitors potentiate Ca2+/calmodulin-dependent protein kinase II activity in rat pancreatic acinar cells. Biochem Biophys Res Commun 1996; 225: 520–524.

    Article  CAS  PubMed  Google Scholar 

  48. Pollock J, McFarlane SM, Connell MC, Zehavi U, Vandenabeele P, MacEwan DJ et al. TNF-alpha receptors simultaneously activate Ca2+ mobilisation and stress kinases in cultured sensory neurones. Neuropharmacology 2002; 42: 93–106.

    Article  CAS  PubMed  Google Scholar 

  49. Brody JR, Kadkol SS, Hauer MC, Rajaii F, Lee J, Pasternack GR . pp32 reduction induces differentiation of TSU-Pr1 cells. Am J Pathol 2004; 164: 273–283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fan XC, Steitz JA . HNS, a nuclear-cytoplasmic shuttling sequence in HuR. Proc Natl Acad Sci USA 1998; 95: 15293–15298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Peng SS, Chen CY, Xu N, Shyu AB . RNA stabilization by the AU-rich element binding protein, HuR, an ELAV protein. EMBO J 1998; 17: 3461–3470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Caput D, Beutler B, Hartog K, Thayer R, Brown-Shimer S, Cerami A . Identification of a common nucleotide sequence in the 3′-untranslated region of mRNA molecules specifying inflammatory mediators. Proc Natl Acad Sci USA 1986; 83: 1670–1674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shaw G, Kamen R . A conserved AU sequence from the 3′ untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 1986; 46: 659–667.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Youngsoo Lee for expert help with the microarray data analysis and real time RT-PCR experiments, Dr T Copeland for SET antibody, Drs Ann-Mary Hamilton-Easton and Richard Ashmun for FACS analysis, Dr Susan Magdaleno for light microscopy and Charlette Hill for secretarial assistance. This work was supported by NIH Grant CA-76480-05, Cancer Center Support CA-21765 and by the American Lebanese Syrian Associated Charities (ALSAC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G C Grosveld.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kandilci, A., Grosveld, G. SET-induced calcium signaling and MAPK/ERK pathway activation mediate dendritic cell-like differentiation of U937 cells. Leukemia 19, 1439–1445 (2005). https://doi.org/10.1038/sj.leu.2403826

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403826

Keywords

This article is cited by

Search

Quick links