Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Mini Review
  • Published:

Genetic heterogeneity in multiple myeloma

Abstract

In the past decade, many progresses have been made in our knowledge of the genetics of multiple myeloma. The use of molecular cytogenetic techniques has led to the identification of several recurrent (cyto)genetic abnormalities, representing either prognostic markers, or novel therapeutic targets. More global analyses of this genetic heterogeneity using expression array technologies should further extend our understanding of the disease, hopefully enabling some improvements in the treatment of the patients. The goal of this minireview is to summarize these recent advances.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Dewald GW, Kyle RA, Hicks GA, Greipp PR . The clinical significance of cytogenetic studies in 100 patients with multiple myeloma, plasma cell leukemia, or amyloidosis. Blood 1985; 66: 380–390.

    CAS  PubMed  Google Scholar 

  2. Gould J, Alexanian R, Goodacre A, Pathak S, Hecht B, Barlogie B . Plasma cell karyotype in multiple myeloma. Blood 1988; 71: 453–456.

    CAS  PubMed  Google Scholar 

  3. Laï JL, Zandecki M, Mary JY, Bernardi F, Izydorczyk V, Flactif M et al. Improved cytogenetics in multiple myeloma: a study of 151 patients including 117 patients at diagnosis. Blood 1995; 85: 2490–2497.

    PubMed  Google Scholar 

  4. Sawyer JR, Waldron JA, Jagannath S, Barlogie B . Cytogenetic finding in 200 patients with multiple myeloma. Cancer Genet Cytogenet 1995; 82: 41–49.

    Article  CAS  Google Scholar 

  5. Smadja NV, Bastard C, Brigaudeau C, Leroux D, Fruchart C . Hypodiploidy is a major prognostic factor in multiple myeloma. Blood 2001; 98: 2229–2238.

    Article  CAS  Google Scholar 

  6. Latreille J, Barlogie B, Dosik G, Johnston DA, Drewinko B, Alexanian R . Cellular DNA content as a marker of human multiple myeloma. Blood 1980; 55: 403–408.

    CAS  PubMed  Google Scholar 

  7. Barlogie B, Alexanian R, Dixon D, Smith L, Smallwood L, Delasalle K . Prognostic implications of tumor cell DNA and RNA content in multiple myeloma. Blood 1985; 66: 338–341.

    CAS  PubMed  Google Scholar 

  8. Tienhaara A, Pelliniemi TT . Flow cytometric DNA analysis and clinical correlations in multiple myeloma. Am J Clin Pathol 1992; 97: 322–330.

    Article  CAS  Google Scholar 

  9. Drach J, Schuster J, Nowotny H, Angerler J, Rosenthal F, Fiegl M et al. Multiple myeloma: high incidence of chromosomal aneuploidy as detected by interphase fluorescence in situ hybridization. Cancer Res 1995; 55: 3854–3859.

    CAS  PubMed  Google Scholar 

  10. Flactif M, Zandecki M, Lai JL, Bernardi F, Obein V, Bauters F et al. Interphase fluorescence in situ hybridization (FISH) as a powerful tool for the detection of aneuploidy in multiple myeloma. Leukemia 1995; 9: 2109–2114.

    CAS  PubMed  Google Scholar 

  11. Debes-Marun CS, Dewald GW, Bryant S, Picken E, Santana-Davila R, Gonzalez-Paz N et al. Chromosome abnormalities clustering and its implications for pathogenesis and prognosis in myeloma. Leukemia 2003; 17: 427–436.

    Article  CAS  Google Scholar 

  12. Nishida K, Tamura A, Nakazawa N, Ueda Y, Abe T, Matsuda F et al. The Ig heavy chain is frequently involved in chromosomal translocations in multiple myeloma and plasma cell leukemia as detected by in situ hybridization. Blood 1997; 90: 526–534.

    CAS  PubMed  Google Scholar 

  13. Fonseca R, Oken MM, Harrington D, Bailey RJ, Van Wier SA, Henderson KJ et al. Deletions of chromosome 13 in multiple myeloma identified by interphase FISH usually denote large deletions of the q arm or monosomy. Leukemia 2001; 15: 981–986.

    Article  CAS  Google Scholar 

  14. Avet-Loiseau H, Li JY, Facon T, Brigaudeau C, Morineau N, Maloisel F et al. High incidence of translocations t(11;14)(q13;q32) and t(4;14)(p16;q32) in patients with plasma cell malignancies. Cancer Res 1998; 58: 5640–5645.

    CAS  PubMed  Google Scholar 

  15. Kuppers R, Dalla-Favera R . Mechanisms of chromosomal translocations in B cell lymphomas. Oncogene 2001; 20: 5580–5594.

    Article  CAS  Google Scholar 

  16. Bergsagel PL, Chesi M, Nardini E, Brents LA, Kirby SL, Kuehl WM . Promiscuous translocations into immunoglobulin heavy chain switch regions in multiple myeloma. Proc Natl Acad Sci USA 1996; 93: 13931–13936.

    Article  CAS  Google Scholar 

  17. Avet-Loiseau H, Facon T, Grosbois B, Magrangeas F, Rapp MJ, Harousseau JL, et al., for the Intergroupe Francophone du Myélome (IFM). Oncogenesis of multiple myeloma: 14q32 and 13q chromosomal abnormalities are not randomly distributed, but correlate with natural history, immunological features and clinical presentation. Blood 2002; 99: 2185–2191.

    Article  CAS  Google Scholar 

  18. Avet-Loiseau H, Facon T, Daviet A, Godon C, Rapp MJ, Harousseau JL, et al., on behalf of the Intergroupe Francophone du Myélome. 14q32 translocations and monosomy 13 observed in monoclonal gammopathy of undetermined significance delineate a multistep process for the oncogenesis of multiple myeloma. Cancer Res 1999; 59: 4546–4550.

    CAS  PubMed  Google Scholar 

  19. Chesi M, Bergsagel PL, Brents LA, Smith CM, Gerhard DS, Kuehl WM . Dysregulation of cyclin D1 by translocation into an IgH gamma switch region in two multiple myeloma cell lines. Blood 1996; 88: 674–681.

    CAS  PubMed  Google Scholar 

  20. Fonseca R, Blood EA, Oken MM, Kyle RA, Dewald GW, Bailey RJ et al. Myeloma and the t(11;14)(q13;q32); evidence for a biologically defined unique subset of patients. Blood 2002; 99: 3735–3741.

    Article  CAS  Google Scholar 

  21. Garand R, Avet-Loiseau H, Accard F, Moreau P, Harousseau JL, Bataille R . t(11;14) and t(4;14) translocations correlated with mature lymphoplasmacytoid and immature morphology, respectively, in multiple myeloma. Leukemia 2003; 17: 2032–2035.

    Article  CAS  Google Scholar 

  22. Chesi M, Bergsagel PL, Shonukan OO, Martelli ML, Brents LA, Chen T et al. Frequent dysregulation of the c-maf proto-oncogene at 16q23 by translocation to an Ig locus in multiple myeloma. Blood 1998; 91: 4457–4463.

    CAS  PubMed  Google Scholar 

  23. Hurt EM, Wiestner A, Rosenwald A, Shaffer AL, Campo E, Grogan T et al. Overexpression of c-maf is a frequent oncogenic event in multiple myeloma that promotes proliferation and pathological interactions with bone marrow stroma. Cancer Cell 2004; 5: 191–199.

    Article  CAS  Google Scholar 

  24. Chesi M, Nardini E, Brents LA, Schröck E, Ried T, Kuehl WM et al. Frequent translocation t(4;14)(p16.3;q32.3) in multiple myeloma is associated with increased expression and activating mutations of fibroblast growth factor receptor 3. Nat Genet 1997; 16: 260–264.

    Article  CAS  Google Scholar 

  25. Keats JJ, Reiman T, Maxwell CA, Taylor BJ, Larratt LM, Mant MJ et al. In multiple myeloma, t(4;14)(p16;q32) is an adverse prognostic factor irrespective of FGFR3 expression. Blood 2003; 101: 1520–1529.

    Article  CAS  Google Scholar 

  26. Santra M, Zhan F, Tian E, Barlogie B, Shaughnessy Jr J . A subset of multiple myeloma harboring the t(4;14)(p16;q32) translocation lacks FGFR3 expression but maintains an IGH/MMSET fusion transcript. Blood 2003; 101: 2374–2376.

    Article  CAS  Google Scholar 

  27. Fonseca R, Blood E, Rue M, Harrington D, Oken MM, Kyle RA et al. Clinical and biologic implications of recurrent genomic aberrations in myeloma. Blood 2003; 101: 4569–4575.

    Article  CAS  Google Scholar 

  28. Fonseca R, Debes-Marun CS, Picken EB, Dewald GW, Bryant SC, Winkler JM et al. The recurrent IgH translocations are highly associated with nonhyperdiploid variant multiple myeloma. Blood 2003; 102: 2562–2567.

    Article  CAS  Google Scholar 

  29. Fonseca R, Bailey RJ, Ahmann GJ, Rajkumar SV, Hoyer JD, Lust JA et al. Genomic abnormalities in monoclonal gammopathy of undetermined significance. Blood 2002; 100: 1417–1424.

    CAS  PubMed  Google Scholar 

  30. Avet-Loiseau H, Andree-Ashley LE, Moore II D, Mellerin MP, Feusner J, Bataille R et al. Molecular cytogenetic abnormalities in multiple myeloma measured using comparative genomic hybridization. Genes Chromosom Cancer 1997; 19: 124–133.

    Article  CAS  Google Scholar 

  31. Shaughnessy J, Tian E, Sawyer J, Bumm K, Landes R, Badros A et al. High incidence of chromosome 13 deletion in multiple myeloma detected by multiprobe interphase FISH. Blood 2000; 96: 1505–1511.

    CAS  PubMed  Google Scholar 

  32. Avet-Loiseau H, Daviet A, Saunier S, Bataille R . Chromosome 13 abnormalities in multiple myeloma are mostly monosomies 13. Br J Haematol 2001; 111: 1116–1118.

    Google Scholar 

  33. Konigsberg R, Zojer N, Ackermann J, Kromer E, Kittler H, Fritz E et al. Predictive role of interphase cytogenetics for survival of patients with multiple myeloma. J Clin Oncol 2000; 18: 804–812.

    Article  CAS  Google Scholar 

  34. Fonseca R, Oken MM, Greipp PR . The t(4;14)(p16.3;q32) is strongly associated with chromosome 13 abnormalities in both multiple myeloma and monoclonal gammopathy of undetermined significance. Blood 2001; 98: 1271–1272.

    Article  CAS  Google Scholar 

  35. Facon T, Avet-Loiseau H, Guillerm G, Moreau P, Geneviève F, Zandecki M et al. Chromosome 13 abnormalities identified by FISH analysis and serum β2-microglobulin produce a very powerful myeloma staging system for patients receiving high dose therapy. Blood 2001; 97: 1566–1571.

    Article  CAS  Google Scholar 

  36. Zojer N, Konigsberg R, Ackermann J, Fritz E, Dallinger S, Kromer E et al. Deletion of 13q14 remains an independent adverse prognostic variable in multiple myeloma despite its frequent detection by interphase fluorescence in situ hybridization. Blood 2000; 95: 1925–1930.

    CAS  PubMed  Google Scholar 

  37. Kroger N, Schilling G, Einsele H, Liebisch P, Shimoni A, Nagler A et al. Deletion of chromosome band 13q14 as detected by fluorescence in situ hybridization is a prognostic factor in patients with multiple myeloma who are receiving allogeneic dose-reduced stem cell transplantation. Blood 2004; 103: 4056–4061.

    Article  Google Scholar 

  38. Shaughnessy Jr J, Tian E, Sawyer J, McCoy J, Tricot G, Jacobson J et al. Prognostic impact of cytogenetic and interphase fluorescence in situ hybridization-defined chromosome 13 deletion in multiple myeloma: early results of total therapy II. Br J Haematol 2003; 120: 44–52.

    Article  Google Scholar 

  39. Kaufmann H, Kromer E, Nosslinger T, Weltermann A, Ackermann J, Reisner R et al. Both chromosome 13 abnormalities by metaphase cytogenetics and deletion of 13q by interphase FISH only are prognostically relevant in multiple myeloma. Eur J Haematol 2003; 71: 179–183.

    Article  CAS  Google Scholar 

  40. Moreau P, Facon T, Leleu X, Morineau N, Huyghe P, Harousseau JL, et al., for the Intergroupe Francophone du Myélome. Recurrent 14q32 translocations determine the prognosis of multiple myeloma especially in patients receiving intensive chemotherapy. Blood 2002; 100: 1579–1583.

    Article  CAS  Google Scholar 

  41. Chang H, Sloan S, Li D, Zhuang L, Yi QL, Chen CI et al. The t(4;14) is associated with poor prognosis in myeloma patients undergoing autologous stem cell transplant. Br J Haematol 2004; 125: 64–68.

    Article  Google Scholar 

  42. Fonseca R, Witzig TE, Gertz MA, Kyle RA, Hoyer JD, Jalal SM et al. Multiple myeloma and the translocation t(11;14)(q13;q32): a report on 13 cases. Br J Haematol 1998; 101: 296–301.

    Article  CAS  Google Scholar 

  43. Soverini S, Cavo M, Cellini C, Terragna C, Zamagni E, Ruggeri D et al. Cyclin D1 overexpression is a favorable prognostic variable for newly diagnosed multiple myeloma patients treated with high-dose chemotherapy and single or double autologous transplantation. Blood 2003; 102: 1588–1594.

    Article  CAS  Google Scholar 

  44. Specht K, Haralambieva E, Bink K, Kremer M, Mandl-Weber S, Koch I et al. Different mechanisms of cyclin D1 overexpression in multiple myeloma revealed by fluorescence in situ hybridization and quantitative analysis of mRNA levels. Blood 2004; 104: 1120–1126.

    Article  CAS  Google Scholar 

  45. Hideshima T, Bergsagel PL, Kuehl WM, Anderson KC . Advances in biology of multiple myeloma: clinical applications. Blood 2004; 104: 607–618.

    Article  CAS  Google Scholar 

  46. Fonseca R, Barlogie B, Bataille R, Bastard C, Bergsagel PL, Chesi M et al. Genetics and cytogenetics of multiple myeloma. Cancer Res 2004; 64: 1546–1558.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study has been supported by a grant from the Ligue contre le Cancer, and by a Programme Hospitalier de Recherche Clinique.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Avet-Loiseau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magrangeas, F., Lodé, L., Wuilleme, S. et al. Genetic heterogeneity in multiple myeloma. Leukemia 19, 191–194 (2005). https://doi.org/10.1038/sj.leu.2403555

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403555

Keywords

This article is cited by

Search

Quick links