Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Apoptosis

Interleukin-1β maintains an apoptosis-resistant phenotype in the blast cells of acute myeloid leukaemia via multiple pathways

Abstract

Blast cell survival in suspension culture is associated with chemoresistance in acute myeloid leukaemia (AML). Autonomous production of IL-1β by AML blasts is linked with a proliferative response, although its role in survival and hence apoptosis-resistance has not been examined in this disease. Cells that secreted more than 19.7 pg/ml IL-1β were significantly more resistant to spontaneous apoptosis in 48-h culture than those that produced less than 19.7 pg/ml IL-1β (P=0.008). Exogenous rhIL-1β significantly enhanced 48-h survival in 25/29 blast cell samples (P=0.0001). IL-1 receptor ligation is known to activate at least three survival pathways: those mediated by PI-3 kinase, IL-1 receptor-associated kinase (IRAK) and ceramidase. In apoptosis-sensitive AML blasts with a strong survival response to rhIL-1β, inhibitors of all three pathways down-modulated an IL-1β-mediated increase in blast survival, but only the inhibition of all three pathways totally eliminated viable blasts. In apoptosis-resistant and apoptosis-sensitive primary AML samples, the three inhibitors all increased apoptosis in vitro after 48 h. Exogenous rhIL-1β induced the hyperphosphorylation of Bcl-2. It also increased the activation of NF-κB in 5/15 blast samples. IL-1β-mediated survival pathways may be a factor in apoptosis-resistance in primary AML blasts, and may therefore contribute to chemoresistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Smith BD, Bambach BJ, Vala MS, Barber JP, Enger C, Brodsky RA et al. Inhibited apoptosis and drug resistance in acute myeloid leukaemia. Br J Haematol 1998; 102: 1042–1049.

    Article  CAS  PubMed  Google Scholar 

  2. Wuchter C, Karawajew L, Ruppert V, Buchner T, Schoch C, Haferlach T et al. Clinical significance of CD95, Bcl-2 and Bax expression and CD95 function in adult de novo acute myeloid leukemia in context of P-glycoprotein function, maturation stage, and cytogenetics. Leukemia 1999; 13: 1943–1953.

    Article  CAS  PubMed  Google Scholar 

  3. Pallis M, Turzanski J, Higashi Y, Russell N . P-glycoprotein in acute myeloid leukaemia: therapeutic implications of its association with both a multidrug-resistant and an apoptosis-resistant phenotype. Leuk Lymphoma 2002; 43: 1221–1228.

    Article  CAS  PubMed  Google Scholar 

  4. Hoang T, Haman A, Goncalves O, Letendre F, Mathieu M, Wong GG et al. Interleukin 1 enhances growth factor-dependent proliferation of the clonogenic cells in acute myeloblastic leukemia and of normal human primitive hemopoietic precursors. J Exp Med 1988; 168: 463–474.

    Article  CAS  PubMed  Google Scholar 

  5. Griffin JD, Rambaldi A, Vellenga E, Young DC, Ostapovicz D, Cannistra SA . Secretion of interleukin-1 by acute myeloblastic leukemia cells in vitro induces endothelial cells to secrete colony stimulating factors. Blood 1987; 70: 1218–1221.

    CAS  PubMed  Google Scholar 

  6. Cozzolino F, Rubartelli A, Aldinucci D, Sitia R, Torcia M, Shaw A et al. Interleukin 1 as an autocrine growth factor for acute myeloid leukemia cells. Proc Natl Acad Sci USA 1989; 86: 2369–2373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ezaki K, Tsuzuki M, Katsuta I, Maruyama F, Kojima H, Okamoto M et al. Interleukin-1 beta (IL-1 beta) and acute leukemia: in vitro proliferative response to IL-1 beta, IL-1 beta content of leukemic cells and treatment outcome. Leuk Res 1995; 19: 35–41.

    Article  CAS  PubMed  Google Scholar 

  8. Bradbury D, Rogers S, Kozlowski R, Bowen G, Reilly IA, Russell NH . Interleukin-1 is one factor which regulates autocrine production of GM-CSF by the blast cells of acute myeloblastic leukaemia. Br J Haematol 1990; 76: 488–493.

    Article  CAS  PubMed  Google Scholar 

  9. Bradbury D, Rogers S, Reilly IA, Kozlowski R, Russell NH . Role of autocrine and paracrine production of granulocyte–macrophage colony-stimulating factor and interleukin-1 beta in the autonomous growth of acute myeloblastic leukaemia cells – studies using purified CD34-positive cells. Leukemia 1992; 6: 562–566.

    CAS  PubMed  Google Scholar 

  10. Estrov Z, Kurzrock R, Estey E, Wetzler M, Ferrajoli A, Harris D et al. Inhibition of acute myelogenous leukemia blast proliferation by interleukin-1 (IL-1) receptor antagonist and soluble IL-1 receptors. Blood 1992; 79: 1938–1945.

    CAS  PubMed  Google Scholar 

  11. Auron PE . The interleukin 1 receptor: ligand interactions and signal transduction. Cytokine Growth Factor Rev 1998; 9: 221–237.

    Article  CAS  PubMed  Google Scholar 

  12. Franzen R, Pautz A, Brautigam L, Geisslinger G, Pfeilschifter J, Huwiler A . Interleukin-1beta induces chronic activation and de novo synthesis of neutral ceramidase in renal mesangial cells. J Biol Chem 2001; 276: 35382–35389.

    Article  CAS  PubMed  Google Scholar 

  13. Stosic-Grujicic S, Basara N, Dinarello CA . Modulatory in vitro effects of interleukin-1 receptor antagonist (IL-1Ra) or antisense oligonucleotide to interleukin-1 beta converting enzyme (ICE) on acute myeloid leukaemia (AML) cell growth. Clin Lab Haematol 1999; 21: 173–185.

    Article  CAS  PubMed  Google Scholar 

  14. Datta SR, Brunet A, Greenberg ME . Cellular survival: a play in three Akts. Genes Dev 1999; 13: 2905–2927.

    Article  CAS  PubMed  Google Scholar 

  15. Vivanco I, Sawyers CL . The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat Rev Cancer 2002; 2: 489–501.

    Article  CAS  PubMed  Google Scholar 

  16. Madge LA, Pober JS . A phosphatidylinositol 3-kinase/Akt pathway, activated by tumor necrosis factor or interleukin-1, inhibits apoptosis but does not activate NFkappaB in human endothelial cells. J Biol Chem 2000; 275: 15458–15465.

    Article  CAS  PubMed  Google Scholar 

  17. McCubrey JA, May WS, Duronio V, Mufson A . Serine/threonine phosphorylation in cytokine signal transduction. Leukemia 2000; 14: 9–21.

    Article  CAS  PubMed  Google Scholar 

  18. Tsuruta F, Masuyama N, Gotoh Y . The phosphatidylinositol 3-kinase (PI3K)-Akt pathway suppresses Bax translocation to mitochondria. J Biol Chem 2002; 277: 14040–14047.

    Article  CAS  PubMed  Google Scholar 

  19. Birkenkamp KU, Esselink MT, Kruijer W, Vellenga E . An inhibitor of PI3-K differentially affects proliferation and IL-6 protein secretion in normal and leukemic myeloid cells depending on the stage of differentiation. Exp Hematol 2000; 28: 1239–1249.

    Article  CAS  PubMed  Google Scholar 

  20. Xu Q, Simpson SE, Scialla TJ, Bagg A, Carroll M . Survival of acute myeloid leukemia cells requires PI3 kinase activation. Blood 2003; 102: 972–980.

    Article  CAS  PubMed  Google Scholar 

  21. May WS, Tyler PG, Ito T, Armstrong DK, Qatsha KA, Davidson NE . Interleukin-3 and bryostatin-1 mediate hyperphosphorylation of BCL2 alpha in association with suppression of apoptosis. J Biol Chem 1994; 269: 26865–26870.

    CAS  PubMed  Google Scholar 

  22. Ruvolo PP . Intracellular signal transduction pathways activated by ceramide and its metabolites. Pharmacol Res 2003; 47: 383–392.

    Article  CAS  PubMed  Google Scholar 

  23. Ruvolo PP, Deng X, Ito T, Carr BK, May WS . Ceramide induces Bcl2 dephosphorylation via a mechanism involving mitochondrial PP2A. J Biol Chem 1999; 274: 20296–20300.

    Article  CAS  PubMed  Google Scholar 

  24. Itoh M, Kitano T, Watanabe M, Kondo T, Yabu T, Taguchi Y et al. Possible role of ceramide as an indicator of chemoresistance: decrease of the ceramide content via activation of glucosylceramide synthase and sphingomyelin synthase in chemoresistant leukemia. Clin Cancer Res 2003; 9: 415–423.

    CAS  PubMed  Google Scholar 

  25. Okazaki T, Kondo T, Kitano T, Tashima M . Diversity and complexity of ceramide signalling in apoptosis. Cell Signal 1998; 10: 685–692.

    Article  CAS  PubMed  Google Scholar 

  26. Le Stunff H, Peterson C, Thornton R, Milstien S, Mandala SM, Spiegel S . Characterization of murine sphingosine-1-phosphate phosphohydrolase. J Biol Chem 2002; 277: 8920–8927.

    Article  CAS  PubMed  Google Scholar 

  27. Spiegel S, Milstien S . Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat Rev Mol Cell Biol 2003; 4: 397–407.

    Article  CAS  PubMed  Google Scholar 

  28. Cuvillier O, Levade T . Sphingosine 1-phosphate antagonizes apoptosis of human leukemia cells by inhibiting release of cytochrome c and Smac/DIABLO from mitochondria. Blood 2001; 98: 2828–2836.

    Article  CAS  PubMed  Google Scholar 

  29. Johnson KR, Becker KP, Facchinetti MM, Hannun YA, Obeid LM . PKC-dependent activation of sphingosine kinase 1 and translocation to the plasma membrane. Extracellular release of sphingosine-1-phosphate induced by phorbol 12-myristate 13-acetate (PMA). J Biol Chem 2002; 277: 35257–35262.

    Article  CAS  PubMed  Google Scholar 

  30. Pallis M . Sphingosine kinase inhibitors in the apoptosis of leukaemia cells. Leuk Res 2002; 26: 415–416.

    Article  PubMed  Google Scholar 

  31. Jendiroba DB, Klostergaard J, Keyhani A, Pagliaro L, Freireich EJ . Effective cytotoxicity against human leukemias and chemotherapy-resistant leukemia cell lines by N-N-dimethylsphingosine. Leuk Res 2002; 26: 301–310.

    Article  CAS  PubMed  Google Scholar 

  32. Li X, Stark GR . NFkappaB-dependent signaling pathways. Exp Hematol 2002; 30: 285–296.

    Article  CAS  PubMed  Google Scholar 

  33. Estrov Z, Manna SK, Harris D, Van Q, Estey EH, Kantarjian HM et al. Phenylarsine oxide blocks interleukin-1beta-induced activation of the nuclear transcription factor NF-kappaB, inhibits proliferation, and induces apoptosis of acute myelogenous leukemia cells. Blood 1999; 94: 2844–2853.

    CAS  PubMed  Google Scholar 

  34. Estrov Z, Shishodia S, Faderl S, Harris D, Van Q, Kantarjian HM et al. Resveratrol blocks interleukin-1beta-induced activation of the nuclear transcription factor NF-kappaB, inhibits proliferation, causes S-phase arrest, and induces apoptosis of acute myeloid leukemia cells. Blood 2003; 102: 987–995.

    Article  CAS  PubMed  Google Scholar 

  35. Bol G, Kreuzer OJ, Brigelius-Flohe R . Translocation of the interleukin-1 receptor-associated kinase-1 (IRAK-1) into the nucleus. FEBS Lett 2000; 477: 73–78.

    Article  CAS  PubMed  Google Scholar 

  36. Cooke EL, Uings IJ, Xia CL, Woo P, Ray KP . Functional analysis of the interleukin-1-receptor-associated kinase (IRAK-1) in interleukin-1 beta-stimulated nuclear factor kappa B (NF-kappa B) pathway activation: IRAK-1 associates with the NF-kappa B essential modulator (NEMO) upon receptor stimulation. Biochem J 2001; 359: 403–410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Guzman ML, Neering SJ, Upchurch D, Grimes B, Howard DS, Rizzieri DA et al. Nuclear factor-kappaB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood 2001; 98: 2301–2307.

    Article  CAS  PubMed  Google Scholar 

  38. Dinarello CA, Thompson RC . Blocking IL-1: interleukin 1 receptor antagonist in vivo and in vitro. Immunol Today 1991; 12: 404–410.

    Article  CAS  PubMed  Google Scholar 

  39. Dinarello CA . Biologic basis for interleukin-1 in disease. Blood 1996; 87: 2095–2147.

    CAS  PubMed  Google Scholar 

  40. Pallis M, Syan J, Russell NH . Flow cytometric chemosensitivity analysis of blasts from patients with acute myeloblastic leukemia and myelodysplastic syndromes: the use of 7AAD with antibodies to CD45 or CD34. Cytometry 1999; 37: 308–313.

    Article  CAS  PubMed  Google Scholar 

  41. Pallis M, Russell N . P-glycoprotein plays a drug-efflux-independent role in augmenting cell survival in acute myeloblastic leukemia and is associated with modulation of a sphingomyelin-ceramide apoptotic pathway. Blood 2000; 95: 2897–2904.

    CAS  PubMed  Google Scholar 

  42. Pallis M, Turzanski J, Grundy M, Seedhouse C, Russell N . Resistance to spontaneous apoptosis in acute myeloid leukaemia blasts is associated with p-glycoprotein expression and function, but not with the presence of FLT3 internal tandem duplications. Br J Haematol 2003; 120: 1009–1016.

    Article  CAS  PubMed  Google Scholar 

  43. Tazzari PL, Cappellini A, Bortul R, Ricci F, Billi AM, Tabellini G et al. Flow cytometric detection of total and serine 473 phosphorylated Akt. J Cell Biochem 2002; 86: 704–715.

    Article  CAS  PubMed  Google Scholar 

  44. Renard P, Ernest I, Houbion A, Art M, Le Calvez H, Raes M, Remacle J . Development of a sensitive multi-well colorimetric assay for active NFkappaB. Nucleic Acids Res 2001; 29: E21.20.

    Article  Google Scholar 

  45. Lang RA, Burgess AW . Autocrine growth factors and tumourigenic transformation. Immunol Today 1990; 11: 244–249.

    Article  CAS  PubMed  Google Scholar 

  46. Franklin RA, McCubrey JA . Kinases: positive and negative regulators of apoptosis. Leukemia 2000; 14: 2019–2034.

    Article  CAS  PubMed  Google Scholar 

  47. Schultz RM, Merriman RL, Andis SL, Bonjouklian R, Grindey GB, Rutherford PG et al. In vitro and in vivo antitumor activity of the phosphatidylinositol-3-kinase inhibitor, wortmannin. Anticancer Res 1995; 15: 1135–1139.

    CAS  PubMed  Google Scholar 

  48. Li L, Cousart S, Hu J, McCall CE . Characterization of interleukin-1 receptor-associated kinase in normal and endotoxin-tolerant cells. J Biol Chem 2000; 275: 23340–23345.

    Article  CAS  PubMed  Google Scholar 

  49. Khan WA, Dobrowsky R, el Touny S, Hannun YA . Protein kinase C and platelet inhibition by D-erythro-sphingosine: comparison with N,N-dimethylsphingosine and commercial preparation. Biochem Biophys Res Commun 1990; 172: 683–691.

    Article  CAS  PubMed  Google Scholar 

  50. Edsall LC, Van Brocklyn JR, Cuvillier O, Kleuser B, Spiegel S . N,N-dimethylsphingosine is a potent competitive inhibitor of sphingosine kinase but not of protein kinase C: modulation of cellular levels of sphingosine 1-phosphate and ceramide. Biochemistry 1998; 37: 12892–12898.

    Article  CAS  PubMed  Google Scholar 

  51. Zhao S, Konopleva M, Cabreira-Hansen M, Xie Z, Hu W, Milella M et al. Inhibition of phosphatidylinositol 3-kinase dephosphorylates BAD and promotes apoptosis in myeloid leukemias. Leukemia 2004; 18: 267–275.

    Article  CAS  PubMed  Google Scholar 

  52. Ito T, Deng X, Carr B, May WS . Bcl-2 phosphorylation required for anti-apoptosis function. J Biol Chem 1997; 272: 11671–11673.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Pallis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turzanski, J., Grundy, M., Russell, N. et al. Interleukin-1β maintains an apoptosis-resistant phenotype in the blast cells of acute myeloid leukaemia via multiple pathways. Leukemia 18, 1662–1670 (2004). https://doi.org/10.1038/sj.leu.2403457

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403457

Keywords

This article is cited by

Search

Quick links