Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Fusion GenesMLL gene and fusion partners AF4 and AF9

MLL fusion partners AF4 and AF9 interact at subnuclear foci

Abstract

The MLL gene is involved in translocations associated with both acute lymphoblastic and acute myelogenous leukemia. These translocations fuse MLL with one of over 30 partner genes. Collectively, the MLL partner genes do not share a common structural motif or biochemical function. We have identified a protein interaction between the two most common MLL fusion partners AF4 and AF9. This interaction is restricted to discrete nuclear foci we have named ‘AF4 bodies’. The AF4 body is non-nucleolar and is not coincident with any known nuclear structures we have examined. The AF4–AF9 interaction is maintained by the MLL–AF4 fusion protein, and expression of the MLL–AF4 fusion can alter the subnuclear localization of AF9. In view of other research indicating that other MLL fusion partners also interact with one another, these results suggest that MLL fusion partners may participate in a web of protein interactions with a common functional goal. The disruption of this web of interactions by fusion with MLL may be important to leukemogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Raimondi SC, Peiper SC, Kitchingman GR, Behm FG, Williams DL, Hancock ML et al. Childhood acute lymphoblastic leukemia with chromosomal breakpoints at 11q23. Blood 1989; 73: 1627–1634.

    CAS  PubMed  Google Scholar 

  2. Raimondi R, Pellizzari G, Rodeghiero F . Single step immunophenotyping of acute leukemias not classifiable by standard morphology and cytochemistry: a practical approach. Haematologica 1993; 78: 66–72.

    CAS  PubMed  Google Scholar 

  3. Pui CH, Kane JR, Crist WM . Biology and treatment of infant leukemias. Leukemia 1995; 9: 762–769.

    CAS  PubMed  Google Scholar 

  4. Behm FG, Raimondi SC, Frestedt JL, Liu Q, Crist WM, Downing JR et al. Rearrangement of the MLL gene confers a poor prognosis in childhood acute lymphoblastic leukemia, regardless of presenting age. Blood 1996; 87: 2870–2877.

    CAS  PubMed  Google Scholar 

  5. Rubnitz JE, Crist WM . Molecular genetics of childhood cancer: implications for pathogenesis, diagnosis, and treatment. Pediatrics 1997; 100: 101–108.

    Article  CAS  PubMed  Google Scholar 

  6. Pui CH, Ribeiro RC, Campana D, Raimondi SC, Hancock ML, Behm FG et al. Prognostic factors in the acute lymphoid and myeloid leukemias of infants. Leukemia 1996; 10: 952–956.

    CAS  PubMed  Google Scholar 

  7. Heerema NA, Sather HN, Ge J, Arthur DC, Hilden JM, Trigg ME et al. Cytogenetic studies of infant acute lymphoblastic leukemia: poor prognosis of infants with t(4;11) – a report of the Children's Cancer Group. Leukemia 1999; 13: 679–686.

    Article  CAS  PubMed  Google Scholar 

  8. Martinez-Climent JA, Lane NJ, Rubin CM, Morgan E, Johnstone HS, Mick R et al. Clinical and prognostic significance of chromosomal abnormalities in childhood acute myeloid leukemia de novo. Leukemia 1995; 9: 95–101.

    CAS  PubMed  Google Scholar 

  9. Mrozek K, Heinonen K, de la Chapelle A, Bloomfield CD . Clinical significance of cytogenetics in acute myeloid leukemia. Semin Oncol 1997; 24: 17–31.

    CAS  PubMed  Google Scholar 

  10. Tkachuk DC, Kohler S, Cleary ML . Involvement of a homolog of Drosophila trithorax by 11q23 chromosomal translocations in acute leukemias. Cell 1992; 71: 691–700.

    Article  CAS  PubMed  Google Scholar 

  11. Hanson RD, Hess JL, Yu BD, Ernst P, van Lohuizen M, Berns A et al. Mammalian trithorax and polycomb-group homologues are antagonistic regulators of homeotic development. Proc Natl Acad Sci USA 1999; 96: 14372–14377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Huret JL, Dessen P, Bernheim A . An atlas of chromosomes in hematological malignancies. Example: 11q23 and MLL partners. Leukemia 2001; 15: 987–989.

    Article  CAS  PubMed  Google Scholar 

  13. Nilson I, Reichel M, Ennas MG, Greim R, Knorr C, Siegler G et al. Exon/intron structure of the human AF-4 gene, a member of the AF-4/LAF-4/FMR-2 gene family coding for a nuclear protein with structural alterations in acute leukaemia. Br J Haematol 1997; 98: 157–169.

    Article  CAS  PubMed  Google Scholar 

  14. Taki T, Kano H, Taniwaki M, Sako M, Yanagisawa M, Hayashi Y . AF5q31, a newly identified AF4-related gene, is fused to MLL in infant acute lymphoblastic leukemia with ins(5;11)(q31;q13q23). Proc Natl Acad Sci USA 1999; 96: 14535–14540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nakamura T, Alder H, Gu Y, Prasad R, Canaani O, Kamada N et al. Genes on chromosomes 4, 9, and 19 involved in 11q23 abnormalities in acute leukemia share sequence homology and/or common motifs. Proc Natl Acad Sci USA 1993; 90: 4631–4635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chaplin T, Bernard O, Beverloo HB, Saha V, Hagemeijer A, Berger R et al. The t(10;11) translocation in acute myeloid leukemia (M5) consistently fuses the leucine zipper motif of AF10 onto the HRX gene. Blood 1995; 86: 2073–2076.

    CAS  PubMed  Google Scholar 

  17. Schnittger S, Wormann B, Hiddemann W, Griesinger F . Partial tandem duplications of the MLL gene are detectable in peripheral blood and bone marrow of nearly all healthy donors. Blood 1998; 92: 1728–1734.

    CAS  PubMed  Google Scholar 

  18. Dobson CL, Warren AJ, Pannell R, Forster A, Rabbitts TH . Tumorigenesis in mice with a fusion of the leukaemia oncogene Mll and the bacterial lacZ gene. EMBO J 2000; 19: 843–851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Johansson B, Moorman AV, Secker-Walker LM . Derivative chromosomes of 11q23-translocations in hematologic malignancies. European 11q23 Workshop participants. Leukemia 1998; 12: 828–833.

    Article  CAS  PubMed  Google Scholar 

  20. Mitelman F, Heim S . Quantitative acute leukemia cytogenetics. Genes Chromosomes Cancer 1992; 5: 57–66.

    Article  CAS  PubMed  Google Scholar 

  21. Dobson CL, Warren AJ, Pannell R, Forster A, Lavenir I, Corral J et al. The mll-AF9 gene fusion in mice controls myeloproliferation and specifies acute myeloid leukaemogenesis. EMBO J 1999; 18: 3564–3574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Miyamoto Y, Imamoto N, Sekimoto T, Tachibana T, Seki T, Tada S et al. Differential modes of nuclear localization signal (NLS) recognition by three distinct classes of NLS receptors. J Biol Chem 1997; 272: 26375–26381.

    Article  CAS  PubMed  Google Scholar 

  23. Pui CH, Frankel LS, Carroll AJ, Raimondi SC, Shuster JJ, Head DR et al. Clinical characteristics and treatment outcome of childhood acute lymphoblastic leukemia with the t(4;11)(q21;q23): a collaborative study of 40 cases (see comments). Blood 1991; 77: 440–447.

    CAS  PubMed  Google Scholar 

  24. Baskaran K, Erfurth F, Taborn G, Copeland NG, Gilbert DJ, Jenkins NA et al. Cloning and developmental expression of the murine homolog of the acute leukemia proto-oncogene AF4. Oncogene 1997; 15: 1967–1978.

    Article  CAS  PubMed  Google Scholar 

  25. Domer PH, Fakharzadeh SS, Chen CS, Jockel J, Johansen L, Silverman GA et al. Acute mixed-lineage leukemia t(4;11)(q21;q23) generates an MLL-AF4 fusion product. Proc Ntl Acad Sci USA 1993; 90: 7884–7888.

    Article  CAS  Google Scholar 

  26. Isnard P, Core N, Naquet P, Djabali M . Altered lymphoid development in mice deficient for the mAF4 proto-oncogene. Blood 2000; 96: 705–710.

    CAS  PubMed  Google Scholar 

  27. von Bergh A, Beverloo HB, Slater A, Groot P, Rombout P, Kluin P et al. Cloning of Unknown MLL fusion transcripts identifies two novel MLL fusion partners. ASH 2000 Abstracts 2000; 96: 2984.

    Google Scholar 

  28. von Bergh AR, Beverloo HB, Rombout P, van Wering ER, van Weel MH, Beverstock GC et al. LAF4, an AF4-related gene, is fused to MLL in infant acute lymphoblastic leukemia. Genes Chromosomes Cancer 2002; 35: 92–96.

    Article  CAS  PubMed  Google Scholar 

  29. Gu Y, Shen Y, Gibbs RA, Nelson DL . Identification of FMR2, a novel gene associated with the FRAXE CCG repeat and CpG island. Nat Genet 1996; 13: 109–113.

    Article  CAS  PubMed  Google Scholar 

  30. Su MA, Wisotzkey RG, Newfeld SJ . A screen for modifiers of decapentaplegic mutant phenotypes identifies lilliputian, the only member of the Fragile-X/Burkitt's Lymphoma family of transcription factors in Drosophila melanogaster. Genetics 2001; 157: 717–725.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Weis K, Rambaud S, Lavau C, Jansen J, Carvalho T, Carmo-Fonseca M et al. Retinoic acid regulates aberrant nuclear localization of PML-RAR alpha in acute promyelocytic leukemia cells. Cell 1994; 76: 345–356.

    Article  CAS  PubMed  Google Scholar 

  32. Prasad R, Yano T, Sorio C, Nakamura T, Rallapalli R, Gu Y et al. Domains with transcriptional regulatory activity within the ALL1 and AF4 proteins involved in acute leukemia. Proc Natl Acad Sci USA 1995; 92: 12160–12164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rubnitz JE, Morrissey J, Savage PA, Cleary ML . ENL, the gene fused with HRX in t(11;19) leukemias, encodes a nuclear protein with transcriptional activation potential in lymphoid and myeloid cells. Blood 1994; 84: 1747–1752.

    CAS  PubMed  Google Scholar 

  34. Garcia-Cuellar MP, Zilles O, Schreiner SA, Birke M, Winkler TH, Slany RK . The ENL moiety of the childhood leukemia-associated MLL-ENL oncoprotein recruits human Polycomb 3. Oncogene 2001; 20: 411–419.

    Article  CAS  PubMed  Google Scholar 

  35. Hemenway CS, de Erkenez AC, Gould GC . The polycomb protein MPc3 interacts with AF9, an MLL fusion partner in t(9;11)(p22;q23) acute leukemias. Oncogene 2001; 20: 3798–3805.

    Article  CAS  PubMed  Google Scholar 

  36. Caslini C, Alarcon AS, Hess JL, Tanaka R, Murti KG, Biondi A . The amino terminus targets the mixed lineage leukemia (MLL) protein to the nucleolus, nuclear matrix and mitotic chromosomal scaffolds. Leukemia 2000; 14: 1898–1908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Boisvert FM, Hendzel MJ, Bazett-Jones DP . Promyelocytic leukemia (PML) nuclear bodies are protein structures that do not accumulate RNA. J Cell Biol 2000; 148: 283–292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Starr CM, Hanover JA . Structure and function of the nuclear pore complex: new perspectives. BioEssays 1990; 12: 323–330.

    Article  CAS  PubMed  Google Scholar 

  39. Li RH, Thomas JO . Identification of a human protein that interacts with nuclear localization signals. J Cell Biol 1989; 109: 2623–2632.

    Article  CAS  PubMed  Google Scholar 

  40. Seki T, Tada S, Katada T, Enomoto T . Cloning of a cDNA encoding a novel importin-alpha homologue, Qip1: discrimination of Qip1 and Rch1 from hSrp1 by their ability to interact with DNA helicase Q1/RecQL. Biochem Biophys Res Commun 1997; 234: 48–53.

    Article  CAS  PubMed  Google Scholar 

  41. Schmidt-Zachmann MS, Nigg EA . Protein localization to the nucleolus: a search for targeting domains in nucleolin. J Cell Sci 1993; 105: 799–806.

    CAS  PubMed  Google Scholar 

  42. Gall JG . Cajal bodies: the first 100 years. Ann Rev Cell Dev Biol 2000; 16: 273–300.

    Article  CAS  Google Scholar 

  43. Shopland LS, Byron M, Stein JL, Lian JB, Stein GS, Lawrence JB . Replication-dependent histone gene expression is related to Cajal body (CB) association but does not require sustained CB contact. Mol Biol Cell 2001; 12: 565–576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Matera AG . Of coiled bodies, gems, and salmon. J Cell Biochem 1998; 70: 181–192.

    Article  CAS  PubMed  Google Scholar 

  45. Mu ZM, Le XF, Vallian S, Glassman AB, Chang KS . Stable overexpression of PML alters regulation of cell cycle progression in HeLa cells. Carcinogenesis 1997; 18: 2063–2069.

    Article  CAS  PubMed  Google Scholar 

  46. Flenghi L, Fagioli M, Tomassoni L, Pileri S, Gambacorta M, Pacini R et al. Characterization of a new monoclonal antibody (PG-M3) directed against the aminoterminal portion of the PML gene product: immunocytochemical evidence for high expression of PML proteins on activated macrophages, endothelial cells, and epithelia. Blood 1995; 85: 1871–1880.

    CAS  PubMed  Google Scholar 

  47. Kakizuka A, Miller Jr WH, Umesono K, Warrell Jr RP, Frankel SR, Murty VV et al. Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RAR alpha with a novel putative transcription factor, PML. Cell 1991; 66: 663–674.

    Article  CAS  PubMed  Google Scholar 

  48. Loor G, Zhang SJ, Zhang P, Toomey NL, Lee MY . Identification of DNA replication and cell cycle proteins that interact with PCNA. Nucleic Acids Res 1997; 25: 5041–5046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kelman Z . PCNA: structure, functions and interactions. Oncogene 1997; 14: 629–640.

    Article  CAS  PubMed  Google Scholar 

  50. Wansink DG, Schul W, van der Kraan I, van Steensel B, van Driel R, de Jong L . Fluorescent labeling of nascent RNA reveals transcription by RNA polymerase II in domains scattered throughout the nucleus. J Cell Biol 1993; 122: 283–293.

    Article  CAS  PubMed  Google Scholar 

  51. Neugebauer KM, Roth MB . Distribution of pre-mRNA splicing factors at sites of RNA polymerase II transcription. Genes Dev 1997; 11: 1148–1159.

    Article  CAS  PubMed  Google Scholar 

  52. Slany RK, Lavau C, Cleary ML . The oncogenic capacity of HRX-ENL requires the transcriptional transactivation activity of ENL and the DNA binding motifs of HRX. Mol Cell Biol 1998; 18: 122–129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Corral J, Lavenir I, Impey H, Warren AJ, Forster A, Larson TA et al. An Mll-AF9 fusion gene made by homologous recombination causes acute leukemia in chimeric mice: a method to create fusion oncogenes. Cell 1996; 85: 853–861.

    Article  CAS  PubMed  Google Scholar 

  54. Li Q, Frestedt JL, Kersey JH . AF4 encodes a ubiquitous protein that in both native and MLL-AF4 fusion types localizes to subnuclear compartments. Blood 1998; 92: 3841–3847.

    CAS  PubMed  Google Scholar 

  55. Iida S, Seto M, Yamamoto K, Komatsu H, Tojo A, Asano S et al. MLLT3 gene on 9p22 involved in t(9;11) leukemia encodes a serine/proline rich protein homologous to MLLT1 on 19p13. Oncogene 1993; 8: 3085–3092.

    CAS  PubMed  Google Scholar 

  56. Pane F, Intrieri M, Izzo B, Quintarelli DV, Migliorati R, Sebastio L et al. A novel MLL/AF4 fusion gene lacking the AF4 transactivating domain in infant acute lymphoblastic leukemia. Blood 2002; 100: 4247–4248.

    Article  CAS  PubMed  Google Scholar 

  57. Garcia-Cuellar MP, Schreiner SA, Birke M, Hamacher M, Fey GH, Slany RK . ENL, the MLL fusion partner in t(11;19), binds to the c-Abl interactor protein 1 (ABI1) that is fused to MLL in t(10;11)+. Oncogene 2000; 19: 1744–1751.

    Article  CAS  PubMed  Google Scholar 

  58. So CW, So CK, Cheung N, Chew SL, Sham MH, Chan LC . The interaction between EEN and Abi-1, two MLL fusion partners, and synaptojanin and dynamin: implications for leukaemogenesis. Leukemia 2000; 14: 594–601.

    Article  CAS  PubMed  Google Scholar 

  59. Simone F, Polak PE, Kaberlein JJ, Luo RT, Levitan DA, Thirman MJ . EAF1, a novel ELL-associated factor that is delocalized by expression of the MLL-ELL fusion protein. Blood 2001; 98: 201–209.

    Article  CAS  PubMed  Google Scholar 

  60. Schnitzler GR, Sif S, Kingston RE . A model for chromatin remodeling by the SWI/SNF family. Cold Spring Harbor Symp Quant Biol 1998; 63: 535–543.

    Article  CAS  PubMed  Google Scholar 

  61. Nie Z, Yan Z, Chen EH, Sechi S, Ling C, Zhou S et al. Novel SWI/SNF chromatin-remodeling complexes contain a mixed-lineage leukemia chromosomal translocation partner. Mol Cell Biol 2003; 23: 2942–2952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Debernardi S, Bassini A, Jones LK, Chaplin T, Linder B, de Bruijn DR et al. The MLL fusion partner AF10 binds GAS41, a protein that interacts with the human SWI/SNF complex. Blood 2002; 99: 275–281.

    Article  PubMed  Google Scholar 

  63. Cairns BR, Henry NL, Kornberg RD . TFG/TAF30/ANC1, a component of the yeast SWI/SNF complex that is similar to the leukemogenic proteins ENL and AF-9. Mol Cell Biol 1996; 16: 3308–3316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Johnston H, Kneer J, Chackalaparampil I, Yaciuk P, Chrivia J . Identification of a novel SNF2/SWI2 protein family member, SRCAP, which interacts with CREB-binding protein. J Biol Chem 1999; 274: 16370–16376.

    Article  CAS  PubMed  Google Scholar 

  65. de Bruijn DR, dos Santos NR, Thijssen J, Balemans M, Debernardi S, Linder B et al. The synovial sarcoma associated protein SYT interacts with the acute leukemia associated protein AF10. Oncogene 2001; 20: 3281–3289.

    Article  CAS  PubMed  Google Scholar 

  66. Kato H, Tjernberg A, Zhang W, Krutchinsky AN, An W, Takeuchi T et al. SYT associates with human SNF/SWI complexes and the C-terminal region of its fusion partner SSX1 targets histones. (erratum appears in J Biol Chem 2002; 277 : 14350.) J Biol Chem 2002; 277: 5498–5505.

    Article  CAS  PubMed  Google Scholar 

  67. Joh T, Yamamoto K, Kagami Y, Kakuda H, Sato T, Yamamoto T et al. Chimeric MLL products with a Ras binding cytoplasmic protein AF6 involved in t(6;11) (q27;q23) leukemia localize in the nucleus. Oncogene 1997; 15: 1681–1687.

    Article  CAS  PubMed  Google Scholar 

  68. Wittwer F, van der Straten A, Keleman K, Dickson BJ, Hafen E . Lilliputian: an AF4/FMR2-related protein that controls cell identity and cell growth. Development – Supplement 2001; 128: 791–800.

    CAS  Google Scholar 

  69. Ernst P, Wang J, Huang M, Goodman RH, Korsmeyer SJ . MLL and CREB bind cooperatively to the nuclear coactivator CREB-binding protein. Mol Cell Biol 2001; 21: 2249–2258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Adler HT, Chinery R, Wu DY, Kussick SJ, Payne JM, Fornace Jr AJ et al. Leukemic HRX fusion proteins inhibit GADD34-induced apoptosis and associate with the GADD34 and hSNF5/INI1 proteins. Mol Cell Biol 1999; 19: 7050–7060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kawagoe H, Humphries RK, Blair A, Sutherland HJ, Hogge DE . Expression of HOX genes, HOX cofactors, and MLL in phenotypically and functionally defined subpopulations of leukemic and normal human hematopoietic cells. Leukemia 1999; 13: 687–698.

    Article  CAS  PubMed  Google Scholar 

  72. Lawrence HJ, Sauvageau G, Humphries RK, Largman C . The role of HOX homeobox genes in normal and leukemic hematopoiesis. Stem Cells 1996; 14: 281–291.

    Article  CAS  PubMed  Google Scholar 

  73. Francis NJ, Saurin AJ, Shao Z, Kingston RE . Reconstitution of a functional core polycomb repressive complex. Mol Cell 2001; 8: 545–556.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Jay Hess for the MLL-AF4 plasmid and for helpful advice during the course of this work and preparation of the manuscript. This work was supported by grants 2P01CA400046-11A1 and K01 CA78318 from the National Cancer Institute and a gift from the Cheli's Kids Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Erfurth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erfurth, F., Hemenway, C., de Erkenez, A. et al. MLL fusion partners AF4 and AF9 interact at subnuclear foci. Leukemia 18, 92–102 (2004). https://doi.org/10.1038/sj.leu.2403200

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403200

Keywords

This article is cited by

Search

Quick links