Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Detection of minimal residual disease in hematologic malignancies by real-time quantitative PCR: principles, approaches, and laboratory aspects

Abstract

Detection of minimal residual disease (MRD) has prognostic value in many hematologic malignancies, including acute lymphoblastic leukemia, acute myeloid leukemia, chronic myeloid leukemia, non-Hodgkin's lymphoma, and multiple myeloma. Quantitative MRD data can be obtained with real-time quantitative PCR (RQ-PCR) analysis of immunoglobulin and T-cell receptor gene rearrangements, breakpoint fusion regions of chromosome aberrations, fusion-gene transcripts, aberrant genes, or aberrantly expressed genes, their application being dependent on the type of disease. RQ-PCR analysis can be performed with SYBR Green I, hydrolysis (TaqMan) probes, or hybridization (LightCycler) probes, as detection system in several RQ-PCR instruments. Dependent on the type of MRD-PCR target, different types of oligonucleotides can be used for specific detection, such as an allele-specific oligonucleotide (ASO) probe, an ASO forward primer, an ASO reverse primer, or germline probe and primers. To assess the quantity and quality of the RNA/DNA, one or more control genes must be included. Finally, the interpretation of RQ-PCR MRD data needs standardized criteria and reporting of MRD data needs international uniformity. Several European networks have now been established and common guidelines for data analysis and for reporting of MRD data are being developed. These networks also include standardization of technology as well as regular quality control rounds, both being essential for the introduction of RQ-PCR-based MRD detection in multicenter clinical treatment protocols.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Szczepanski T, Orfao A, van der Velden VH, San Miguel JF, van Dongen JJ . Minimal residual disease in leukaemia patients. Lancet Oncol 2001; 2: 409–417.

    Article  CAS  PubMed  Google Scholar 

  2. Schultze JL, Gribben JG . Minimal residual disease in non-Hodgkin's lymphoma. Biomed Pharmacother 1996; 50: 451–458.

    Article  CAS  PubMed  Google Scholar 

  3. Anderson KC . Novel biologically based therapies for myeloma. Cancer J 2001; 7: S19–S23.

    PubMed  Google Scholar 

  4. Sharp JG, Chan WC . Detection and relevance of minimal disease in lymphomas. Cancer Metast Rev 1999; 18: 127–142.

    Article  CAS  Google Scholar 

  5. van Dongen JJ, Seriu T, Panzer-Grumayer ER, Biondi A, Pongers-Willemse MJ, Corral L et al. Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood. Lancet 1998; 352: 1731–1738.

    Article  CAS  PubMed  Google Scholar 

  6. Pui CH, Campana D . New definition of remission in childhood acute lymphoblastic leukemia. Leukemia 2000; 14: 783–785.

    Article  CAS  PubMed  Google Scholar 

  7. Hochhaus A, Weisser A, La Rosee P, Emig M, Muller MC, Saussele S et al. Detection and quantification of residual disease in chronic myelogenous leukemia. Leukemia 2000; 14: 998–1005.

    Article  CAS  PubMed  Google Scholar 

  8. Lo Coco F, Diverio D, Falini B, Biondi A, Nervi C, Pelicci PG . Genetic diagnosis and molecular monitoring in the management of acute promyelocytic leukemia. Blood 1999; 94: 12–22.

    PubMed  Google Scholar 

  9. Schrappe M . Risk-adapted therapy: lessons from childhood acute lymphoblastic leukemia. Hematol J 2002; 3: 127–132.

    Google Scholar 

  10. Stentoft J, Pallisgaard N, Kjeldsen E, Holm MS, Nielsen JL, Hokland P . Kinetics of BCR–ABL fusion transcript levels in chronic myeloid leukemia patients treated with STI571 measured by quantitative real-time polymerase chain reaction. Eur J Haematol 2001; 67: 302–308.

    Article  CAS  PubMed  Google Scholar 

  11. Merx K, Muller MC, Kreil S, Lahaye T, Paschka P, Schoch C et al. Early reduction of BCR-ABL mRNA transcript levels predicts cytogenetic response in chronic phase CML patients treated with imatinib after failure of interferon alpha. Leukemia 2002; 16: 1579–1583.

    Article  CAS  PubMed  Google Scholar 

  12. Maloney DG, Grillo-Lopez AJ, White CA, Bodkin D, Schilder RJ, Neidhart JA et al. IDEC-C2B8 (Rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin's lymphoma. Blood 1997; 90: 2188–2195.

    CAS  PubMed  Google Scholar 

  13. Rambaldi A, Lazzari M, Manzoni C, Carlotti E, Arcaini L, Baccarani M et al. Monitoring of minimal residual disease after CHOP and rituximab in previously untreated patients with follicular lymphoma. Blood 2002; 99: 856–862.

    Article  CAS  PubMed  Google Scholar 

  14. Sievers EL . Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukaemia in first relapse. Exp Opin Biol Ther 2001; 1: 893–901.

    Article  CAS  Google Scholar 

  15. Grimwade D . The significance of minimal residual disease in patients with t(15;17). Best Pract Res Clin Haematol 2002; 15: 137–158.

    Article  CAS  PubMed  Google Scholar 

  16. Willemse MJ, Seriu T, Hettinger K, d’Aniello E, Hop WC, Panzer-Grumayer ER et al. Detection of minimal residual disease identifies differences in treatment response between T-ALL and precursor B-ALL. Blood 2002; 99: 4386–4393.

    Article  CAS  PubMed  Google Scholar 

  17. Sugimoto T, Das H, Imoto S, Murayama T, Gomyo H, Chakraborty S . Quantitation of minimal residual disease in t(8;21)-positive acute myelogenous leukemia patients using real-time quantitative RT-PCR. Am J Hematol 2000; 64: 101–106.

    Article  CAS  PubMed  Google Scholar 

  18. Marcucci G, Livak KJ, Bi W, Strout MP, Bloomfield CD, Caligiuri MA . Detection of minimal residual disease in patients with AML1/ETO-associated acute myeloid leukemia using a novel quantitative reverse transcription polymerase chain reaction assay. Leukemia 1998; 12: 1482–1489.

    Article  CAS  PubMed  Google Scholar 

  19. Buonamici S, Ottaviani E, Testoni N, Montefusco V, Visani G, Bonifazi F et al. Real-time quantitation of minimal residual disease in inv(16)-positive acute myeloid leukemia may indicate risk for clinical relapse and may identify patients in a curable state. Blood 2002; 99: 443–449.

    Article  CAS  PubMed  Google Scholar 

  20. Marcucci G, Caligiuri MA, Dohner H, Archer KJ, Schlenk RF, Dohner K et al. Quantification of CBFbeta/MYH11 fusion transcript by real time RT-PCR in patients with INV(16) acute myeloid leukemia. Leukemia 2001; 15: 1072–1080.

    Article  CAS  PubMed  Google Scholar 

  21. Van Der Reijden BA, Simons A, Luiten E, Van Der Poel SC, Hogenbirk PE, Tonnissen E et al. Minimal residual disease quantification in patients with acute myeloid leukaemia and inv(16)/CBFB-MYH11 gene fusion. Br J Haematol 2002; 118: 411–418.

    Article  CAS  PubMed  Google Scholar 

  22. Slack JL, Bi W, Livak KJ, Beaubier N, Yu M, Clark M et al. Pre-clinical validation of a novel, highly sensitive assay to detect PML-RARalpha mRNA using real-time reverse-transcription polymerase chain reaction. J Mol Diagn 2001; 3: 141–149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cassinat B, Zassadowski F, Balitrand N, Barbey C, Rain JD, Fenaux P et al. Quantitation of minimal residual disease in acute promyelocytic leukemia patients with t(15;17) translocation using real-time RT-PCR. Leukemia 2000; 14: 324–328.

    Article  CAS  PubMed  Google Scholar 

  24. Barragan E, Bolufer P, Moreno I, Martin G, Nomdedeu J, Brunet S et al. Quantitative detection of AML1-ETO rearrangement by real-time RT-PCR using fluorescently labeled probes. Leukemia Lymphoma 2001; 42: 747–756.

    Article  CAS  PubMed  Google Scholar 

  25. Kondo M, Kudo K, Kimura H, Inaba J, Kato K, Kojima S et al. Real-time quantitative reverse transcription-polymerase chain reaction for the detection of AML1-MTG8 fusion transcripts in t(8;21)-positive acute myelogenous leukemia. Leukemia Res 2000; 24: 951–956.

    Article  CAS  Google Scholar 

  26. Wattjes MP, Krauter J, Nagel S, Heidenreich O, Ganser A, Heil G . Comparison of nested competitive RT-PCR and real-time RT-PCR for the detection and quantification of AML1/MTG8 fusion transcripts in t(8;21) positive acute myelogenous leukemia. Leukemia 2000; 14: 329–335.

    Article  CAS  PubMed  Google Scholar 

  27. Emig M, Saussele S, Wittor H, Weisser A, Reiter A, Willer A et al. Accurate and rapid analysis of residual disease in patients with CML using specific fluorescent hybridization probes for real time quantitative RT-PCR. Leukemia 1999; 13: 1825–1832.

    Article  CAS  PubMed  Google Scholar 

  28. Cross NC, Feng L, Chase A, Bungey J, Hughes TP, Goldman JM . Competitive polymerase chain reaction to estimate the number of BCR–ABL transcripts in chronic myeloid leukemia patients after bone marrow transplantation. Blood 1993; 82: 1929–1936.

    CAS  PubMed  Google Scholar 

  29. Hochhaus A, Reiter A, Saussele S, Reichert A, Emig M, Kaeda J et al. Molecular heterogeneity in complete cytogenetic responders after interferon-alpha therapy for chronic myelogenous leukemia: low levels of minimal residual disease are associated with continuing remission. German CML Study Group and the UK MRC CML Study Group. Blood 2000; 95: 62–66.

    CAS  PubMed  Google Scholar 

  30. Lin F, van Rhee F, Goldman JM, Cross NC . Kinetics of increasing BCR-ABL transcript numbers in chronic myeloid leukemia patients who relapse after bone marrow transplantation. Blood 1996; 87: 4473–4478.

    CAS  PubMed  Google Scholar 

  31. San Miguel JF, Almeida J, Mateo G, Blade J, Lopez-Berges C, Caballero D et al. Immunophenotypic evaluation of the plasma cell compartment in multiple myeloma: a tool for comparing the efficacy of different treatment strategies and predicting outcome. Blood 2002; 99: 1853–1856.

    Article  PubMed  Google Scholar 

  32. San Miguel JF, Martinez A, Macedo A, Vidriales MB, Lopez-Berges C, Gonzalez M . Immunophenotyping investigation of minimal residual disease is a useful approach for predicting relapse in acute myeloid leukemia patients. Blood 1997; 90: 2465–2470.

    CAS  PubMed  Google Scholar 

  33. Rawstron AC, Kennedy B, Evans PA, Davies FE, Richards SJ, Haynes AP et al. Quantitation of minimal disease levels in chronic lymphocytic leukemia using a sensitive flow cytometric assay improves the prediction of outcome and can be used to optimize therapy. Blood 2001; 98: 29–35.

    Article  CAS  PubMed  Google Scholar 

  34. Coustan-Smith E, Behm FG, Sanchez J, Boyett JM, Hancock ML, Raimondi SC et al. Immunological detection of minimal residual disease in children with acute lymphoblastic leukaemia. Lancet 1998; 351: 550–554.

    Article  CAS  PubMed  Google Scholar 

  35. Pongers-Willemse MJ, Seriu T, Stolz F, d’Aniello E, Gameiro P, Pisa P et al. Primers and protocols for standardized detection of minimal residual disease in acute lymphoblastic leukemia using immunoglobulin and T cell receptor gene rearrangements and TAL1 deletions as PCR targets: report of the BIOMED-1 CONCERTED ACTION: investigation of minimal residual disease in acute leukemia. Leukemia 1999; 13: 110–118.

    Article  CAS  PubMed  Google Scholar 

  36. Sykes PJ, Neoh SH, Brisco MJ, Hughes E, Condon J, Morley AA . Quantitation of targets for PCR by use of limiting dilution. Biotechniques 1992; 13: 444–449.

    CAS  PubMed  Google Scholar 

  37. Vescio RA, Han EJ, Schiller GJ, Lee JC, Wu CH, Cao J et al. Quantitative comparison of multiple myeloma tumor contamination in bone marrow harvest and leukapheresis autografts. Bone Marrow Transplant 1996; 18: 103–110.

    CAS  PubMed  Google Scholar 

  38. Cave H, Guidal C, Rohrlich P, Delfau MH, Broyart A, Lescoeur B et al. Prospective monitoring and quantitation of residual blasts in childhood acute lymphoblastic leukemia by polymerase chain reaction study of delta and gamma T-cell receptor genes. Blood 1994; 83: 1892–1902.

    CAS  PubMed  Google Scholar 

  39. Tobal K, Yin JA . Monitoring of minimal residual disease by quantitative reverse transcriptase-polymerase chain reaction for AML1-MTG8 transcripts in AML-M2 with t(8; 21). Blood 1996; 88: 3704–3709.

    CAS  PubMed  Google Scholar 

  40. Galimberti S, Brizzi F, Mameli M, Petrini M . An advantageous method to evaluate IgH rearrangement and its role in minimal residual disease detection. Leukemia Res 1999; 23: 921–929.

    Article  CAS  Google Scholar 

  41. Evans PA, Short MA, Owen RG, Jack AS, Forsyth PD, Shiach CR et al. Residual disease detection using fluorescent polymerase chain reaction at 20 weeks of therapy predicts clinical outcome in childhood acute lymphoblastic leukemia. J Clin Oncol 1998; 16: 3616–3627.

    Article  CAS  PubMed  Google Scholar 

  42. Luthra R, McBride JA, Hai S, Cabanillas F, Pugh WC . The application of fluorescence-based PCR and PCR-SSCP to monitor the clonal relationship of cells bearing the t(14;18)(q32;q21) in sequential biopsy specimens from patients with follicle center cell lymphoma. Diagn Mol Pathol 1997; 6: 71–77.

    Article  CAS  PubMed  Google Scholar 

  43. Delabesse E, Burtin ML, Millien C, Madonik A, Arnulf B, Beldjord K et al. Rapid, multifluorescent TCRG Vgamma and Jgamma typing: application to T cell acute lymphoblastic leukemia and to the detection of minor clonal populations. Leukemia 2000; 14: 1143–1152.

    Article  CAS  PubMed  Google Scholar 

  44. Ririe KM, Rasmussen RP, Wittwer CT . Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Anal Biochem 1997; 245: 154–160.

    Article  CAS  PubMed  Google Scholar 

  45. Uehara H, Nardone G, Nazarenko I, Hohman RJ . Detection of telomerase activity utilizing energy transfer primers: comparison with gel- and ELISA-based detection. Biotechniques 1999; 26: 552–558.

    Article  CAS  PubMed  Google Scholar 

  46. Holland PM, Abramson RD, Watson R, Gelfand DH . Detection of specific polymerase chain reaction product by utilizing the 5′–3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci USA 1991; 88: 7276–7280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kreuzer KA, Bohn A, Lupberger J, Solassol J, le Coutre P, Schmidt CA . Simultaneous absolute quantification of target and control templates by real-time fluorescence reverse transcription-PCR using 4-(4′-dimethylaminophenylazo)benzoic acid as a dark quencher dye. Clin Chem 2001; 47: 486–490.

    CAS  PubMed  Google Scholar 

  48. Wittwer CT, Ririe KM, Andrew RV, David DA, Gundry RA, Balis UJ . The LightCycler: a microvolume multisample fluorimeter with rapid temperature control. Biotechniques 1997; 22: 176–181.

    Article  CAS  PubMed  Google Scholar 

  49. Tyagi S, Kramer FR . Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol 1996; 14: 303–308.

    Article  CAS  PubMed  Google Scholar 

  50. Thelwell N, Millington S, Solinas A, Booth J, Brown T . Mode of action and application of Scorpion primers to mutation detection. Nucleic Acids Res 2000; 28: 3752–3761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. de Kok JB, Wiegerinck ET, Giesendorf BA, Swinkels DW, Walburger DK, Afonina IA et al. Rapid genotyping of single nucleotide polymorphisms using novel minor groove binding DNA oligonucleotides (MGB probes): an improved real time PCR method for simultaneous detection of C282Y and H63D mutations in the HFE gene associated with hereditary hemochromatosis. Hum Mutat 2002; 19: 554–559.

    Article  CAS  PubMed  Google Scholar 

  52. Isacsson J, Cao H, Ohlsson L, Nordgren S, Svanvik N, Westman G et al. Rapid and specific detection of PCR products using light-up probes. Mol Cell Probes 2000; 14: 321–328.

    Article  CAS  PubMed  Google Scholar 

  53. Svanvik N, Stahlberg A, Sehlstedt U, Sjoback R, Kubista M . Detection of PCR products in real time using light-up probes. Anal Biochem 2000; 287: 179–182.

    Article  CAS  PubMed  Google Scholar 

  54. Lion T . Chimerism testing after allogeneic stem cell transplantation: importance of timing and optimal technique for testing in different clinical–biological situations. Leukemia 2001; 15: 292.

    Article  PubMed  Google Scholar 

  55. Eckert C, Landt O, Taube T, Seeger K, Beyermann B, Proba J et al. Potential of LightCycler technology for quantification of minimal residual disease in childhood acute lymphoblastic leukemia. Leukemia 2000; 14: 316–323.

    Article  CAS  PubMed  Google Scholar 

  56. Elmaagacli AH, Beelen DW, Opalka B, Seeber S, Schaefer UW . The amount of BCR–ABL fusion transcripts detected by the real-time quantitative polymerase chain reaction method in patients with Philadelphia chromosome positive chronic myeloid leukemia correlates with the disease stage. Ann Hematol 2000; 79: 424–431.

    Article  CAS  PubMed  Google Scholar 

  57. Kreuzer KA, Lass U, Bohn A, Landt O, Schmidt CA . LightCycler technology for the quantitation of bcr/abl fusion transcripts. Cancer Res 1999; 59: 3171–3174.

    CAS  PubMed  Google Scholar 

  58. Davis MM, Bjorkman PJ . T-cell antigen receptor genes and T-cell recognition. Nature 1988; 334: 395–402.

    Article  CAS  PubMed  Google Scholar 

  59. Tonegawa S . Somatic generation of antibody diversity. Nature 1983; 302: 575–581.

    Article  CAS  PubMed  Google Scholar 

  60. van Dongen JJ, Wolvers-Tettero IL . Analysis of immunoglobulin and T cell receptor genes Part I: basic and technical aspects. Clin Chim Acta 1991; 198: 1–91.

    Article  CAS  PubMed  Google Scholar 

  61. Langerak AW, Szczepanski T, van der Burg M, Wolvers-Tettero IL, van Dongen JJ . Heteroduplex PCR analysis of rearranged T cell receptor genes for clonality assessment in suspect T cell proliferations. Leukemia 1997; 11: 2192–2199.

    Article  CAS  PubMed  Google Scholar 

  62. Linke B, Bolz I, Fayyazi A, von Hofen M, Pott C, Bertram J et al. Automated high resolution PCR fragment analysis for identification of clonally rearranged immunoglobulin heavy chain genes. Leukemia 1997; 11: 1055–1062.

    Article  CAS  PubMed  Google Scholar 

  63. Guidal C, Vilmer E, Grandchamp B, Cave H . A competitive PCR-based method using TCRD, TCRG and IGH rearrangements for rapid detection of patients with high levels of minimal residual disease in acute lymphoblastic leukemia. Leukemia 2002; 16: 762–764.

    Article  CAS  PubMed  Google Scholar 

  64. Szczepanski T, Willemse MJ, van Wering ER, van Weerden JF, Kamps WA, van Dongen JJ . Precursor-B-ALL with D(H)-J(H) gene rearrangements have an immature immunogenotype with a high frequency of oligoclonality and hyperdiploidy of chromosome 14. Leukemia 2001; 15: 1415–1423.

    Article  CAS  PubMed  Google Scholar 

  65. Szczepanski T, Langerak AW, Willemse MJ, Wolvers-Tettero IL, van Wering ER, van Dongen JJ . T cell receptor gamma (TCRG) gene rearrangements in T cell acute lymphoblastic leukemia refelct ‘end-stage’ recombinations: implications for minimal residual disease monitoring. Leukemia 2000; 14: 1208–1214.

    Article  CAS  PubMed  Google Scholar 

  66. Davies FE, Rawstron AC, Owen RG, Morgan GJ . Minimal residual disease monitoring in multiple myeloma. Best Pract Res Clin Haematol 2002; 15: 197–222.

    Article  CAS  PubMed  Google Scholar 

  67. Beishuizen A, Hahlen K, Hagemeijer A, Verhoeven MA, Hooijkaas H, Adriaansen HJ et al. Multiple rearranged immunoglobulin genes in childhood acute lymphoblastic leukemia of precursor B-cell origin. Leukemia 1991; 5: 657–667.

    CAS  PubMed  Google Scholar 

  68. Beishuizen A, Hahlen K, van Wering ER, van Dongen JJM . Detection of minimal residual disease in childhood leukemia with the polymerase chain reaction. N Engl J Med 1991; 324: 772–775.

    Article  Google Scholar 

  69. de Haas V, Verhagen OJ, von dem Borne AE, Kroes W, van den Berg H, van der Schoot CE . Quantification of minimal residual disease in children with oligoclonal B-precursor acute lymphoblastic leukemia indicates that the clones that grow out during relapse already have the slowest rate of reduction during induction therapy. Leukemia 2001; 15: 134–140.

    Article  CAS  PubMed  Google Scholar 

  70. Moreira I, Papaioannou M, Mortuza FY, Gameiro P, Palmisano GL, Harrison CJ et al. Heterogeneity of VH-JH gene rearrangement patterns: an insight into the biology of B cell precursor ALL. Leukemia 2001; 15: 1527–1536.

    Article  CAS  PubMed  Google Scholar 

  71. Bird J, Galili N, Link M, Stites D, Sklar J . Continuing rearrangement but absence of somatic hypermutation in immunoglobulin genes of human B cell precursor leukemia. J Exp Med 1988; 168: 229–245.

    Article  CAS  PubMed  Google Scholar 

  72. Kitchingman GR . Immunoglobulin heavy chain gene VH-D junctional diversity at diagnosis in patients with acute lymphoblastic leukemia. Blood 1993; 81: 775–782.

    CAS  PubMed  Google Scholar 

  73. Steward CG, Goulden NJ, Katz F, Baines D, Martin PG, Langlands K et al. A polymerase chain reaction study of the stability of Ig heavy-chain and T-cell receptor delta gene rearrangements between presentation and relapse of childhood B-lineage acute lymphoblastic leukemia. Blood 1994; 83: 1355–1362.

    CAS  PubMed  Google Scholar 

  74. Beishuizen A, Verhoeven MA, van Wering ER, Hahlen K, Hooijkaas H, van Dongen JJ . Analysis of Ig and T-cell receptor genes in 40 childhood acute lymphoblastic leukemias at diagnosis and subsequent relapse: implications for the detection of minimal residual disease by polymerase chain reaction analysis. Blood 1994; 83: 2238–2247.

    CAS  PubMed  Google Scholar 

  75. Szczepanski T, Willemse MJ, Brinkhof B, van Wering ER, van der Burg M, van Dongen JJ . Comparative analysis of Ig and TCR gene rearrangements at diagnosis and at relapse of childhood precursor-B-ALL provides improved strategies for selection of stable PCR targets for monitoring of minimal residual disease. Blood 2002; 99: 2315–2323.

    Article  CAS  PubMed  Google Scholar 

  76. Szczepanski T, Willemse MJ, Kamps WA, van Wering ER, Langerak AW, van Dongen JJ . Molecular discrimination between relapsed and secondary acute lymphoblastic leukemia: proposal for an easy strategy. Med Pediatr Oncol 2001; 36: 352–358.

    Article  CAS  PubMed  Google Scholar 

  77. Szczepanski T, Flohr T, van der Velden VH, Bartram CR, van Dongen JJ . Molecular monitoring of residual disease using antigen receptor genes in childhood acute lymphoblastic leukaemia. Best Pract Res Clin Haematol 2002; 15: 37–57.

    Article  CAS  PubMed  Google Scholar 

  78. Summers KE, Goff LK, Wilson AG, Gupta RK, Lister TA, Fitzgibbon J . Frequency of the Bcl-2/IgH rearrangement in normal individuals: implications for the monitoring of disease in patients with follicular lymphoma. J Clin Oncol 2001; 19: 420–424.

    Article  CAS  PubMed  Google Scholar 

  79. Breit TM, Beishuizen A, Ludwig WD, Mol EJ, Adriaansen HJ, van Wering ER et al. tal-1 deletions in T-cell acute lymphoblastic leukemia as PCR target for detection of minimal residual disease. Leukemia 1993; 7: 2004–2011.

    CAS  PubMed  Google Scholar 

  80. Gribben JG . Monitoring disease in lymphoma and CLL patients using molecular techniques. Best Pract Res Clin Haematol 2002; 15: 179–195.

    Article  CAS  PubMed  Google Scholar 

  81. Yunis JJ, Oken MM, Kaplan ME, Ensrud KM, Howe RR, Theologides A . Distinctive chromosomal abnormalities in histologic subtypes of non-Hodgkin's lymphoma. N Engl J Med 1982; 307: 1231–1236.

    Article  CAS  PubMed  Google Scholar 

  82. Tsujimoto Y, Yunis J, Onorato-Showe L, Erikson J, Nowell PC, Croce CM . Molecular cloning of the chromosomal breakpoint of B-cell lymphomas and leukemias with the t(11;14) chromosome translocation. Science 1984; 224: 1403–1406.

    Article  CAS  PubMed  Google Scholar 

  83. Breit TM, Mol EJ, Wolvers-Tettero IL, Ludwig WD, van Wering ER, van Dongen JJ . Site-specific deletions involving the tal-1 and sil genes are restricted to cells of the T cell receptor alpha/beta lineage: T cell receptor delta gene deletion mechanism affects multiple genes. J Exp Med 1993; 177: 965–977.

    Article  CAS  PubMed  Google Scholar 

  84. Hermans A, Gow J, Selleri L, von Lindern M, Hagemeijer A, Wiedemann LM et al. bcr–abl oncogene activation in Philadelphia chromosome-positive acute lymphoblastic leukemia. Leukemia 1988; 2: 628–633.

    CAS  PubMed  Google Scholar 

  85. Joos S, Haluska FG, Falk MH, Henglein B, Hameister H, Croce CM et al. Mapping chromosomal breakpoints of Burkitt's t(8;14) translocations far upstream of c-myc. Cancer Res 1992; 52: 6547–6552.

    CAS  PubMed  Google Scholar 

  86. Bernards A, Rubin CM, Westbrook CA, Paskind M, Baltimore D . The first intron in the human c-abl gene is at least 200 kilobases long and is a target for translocations in chronic myelogenous leukemia. Mol Cell Biol 1987; 7: 3231–3236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Joos S, Falk MH, Lichter P, Haluska FG, Henglein B, Lenoir GM et al. Variable breakpoints in Burkitt lymphoma cells with chromosomal t(8;14) translocation separate c-myc and the IgH locus up to several hundred kb. Hum Mol Genet 1992; 1: 625–632.

    Article  CAS  PubMed  Google Scholar 

  88. van Dongen JJ, Macintyre EA, Gabert JA, Delabesse E, Rossi V, Saglio G et al. Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Report of the BIOMED-1 Concerted Action: investigation of minimal residual disease in acute leukemia. Leukemia 1999; 13: 1901–1928.

    Article  CAS  PubMed  Google Scholar 

  89. Reichel M, Gillert E, Breitenlohner I, Angermuller S, Fey GH, Marschalek R et al. Rapid isolation of chromosomal breakpoints from patients with t(4;11) acute lymphoblastic leukemia: implications for basic and clinical research. Leukemia 2001; 15: 286–288.

    Article  CAS  PubMed  Google Scholar 

  90. Wiemels JL, Cazzaniga G, Daniotti M, Eden OB, Addison GM, Masera G et al. Prenatal origin of acute lymphoblastic leukaemia in children. Lancet 1999; 354: 1499–1503.

    Article  CAS  PubMed  Google Scholar 

  91. Akasaka T, Muramatsu M, Ohno H, Miura I, Tatsumi E, Fukuhara S et al. Application of long-distance polymerase chain reaction to detection of junctional sequences created by chromosomal translocation in mature B-cell neoplasms. Blood 1996; 88: 985–994.

    CAS  PubMed  Google Scholar 

  92. Wiemels JL, Leonard BC, Wang Y, Segal MR, Hunger SP, Smith MT et al. Site-specific translocation and evidence of postnatal origin of the t(1;19) E2A-PBX1 fusion in childhood acute lymphoblastic leukemia. Proc Natl Acad Sci USA 2002; 99: 15101–15106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gabert J . Detection of recurrent translocations using real time PCR; assessment of the technique for diagnosis and detection of minimal residual disease. Haematologica 1999; 84(Suppl EHA-4): 107–109.

    PubMed  Google Scholar 

  94. Schlieben S, Borkhardt A, Reinisch I, Ritterbach J, Janssen JW, Ratei R et al. Incidence and clinical outcome of children with BCR/ABL-positive acute lymphoblastic leukemia (ALL). A prospective RT-PCR study based on 673 patients enrolled in the German pediatric multicenter therapy trials ALL-BFM-90 and CoALL-05-92. Leukemia 1996; 10: 957–963.

    CAS  PubMed  Google Scholar 

  95. Secker-Walker LM, Prentice HG, Durrant J, Richards S, Hall E, Harrison G . Cytogenetics adds independent prognostic information in adults with acute lymphoblastic leukaemia on MRC trial UKALL XA. MRC Adult Leukaemia Working Party. Br J Haematol 1997; 96: 601–610.

    Article  CAS  PubMed  Google Scholar 

  96. Deininger MW, Goldman JM, Melo JV . The molecular biology of chronic myeloid leukemia. Blood 2000; 96: 3343–3356.

    CAS  PubMed  Google Scholar 

  97. Yee HT, Ponzoni M, Merson A, Goldstein M, Scarpa A, Chilosi M et al. Molecular characterization of the t(2;5) (p23; q35) translocation in anaplastic large cell lymphoma (Ki-1) and Hodgkin's disease. Blood 1996; 87: 1081–1088.

    CAS  PubMed  Google Scholar 

  98. Gilliland DG, Griffin JD . Role of FLT3 in leukemia. Curr Opin Hematol 2002; 9: 274–281.

    Article  PubMed  Google Scholar 

  99. Nakao M, Janssen JW, Erz D, Seriu T, Bartram CR . Tandem duplication of the FLT3 gene in acute lymphoblastic leukemia: a marker for the monitoring of minimal residual disease. Leukemia 2000; 14: 522–524.

    Article  CAS  PubMed  Google Scholar 

  100. Kondo M, Horibe K, Takahashi Y, Matsumoto K, Fukuda M, Inaba J et al. Prognostic value of internal tandem duplication of the FLT3 gene in childhood acute myelogenous leukemia. Med Pediatr Oncol 1999; 33: 525–529.

    Article  CAS  PubMed  Google Scholar 

  101. Arrigoni P, Beretta C, Silvestri D, Rossi V, Rizzari C, Valsecchi MG et al. FLT3 internal tandem duplication in childhood acute myeloid leukemia: association with hyperleucocytosis in APL. Br J Haematol 2003; 120: 89–92.

    Article  CAS  PubMed  Google Scholar 

  102. Schnittger S, Schoch C, Dugas M, Kern W, Staib P, Wuchter C et al. Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood 2002; 100: 59–66.

    Article  CAS  PubMed  Google Scholar 

  103. Meshinchi S, Woods WG, Stirewalt DL, Sweetser DA, Buckley JD, Tjoa TK et al. Prevalence and prognostic significance of Flt3 internal tandem duplication in pediatric acute myeloid leukemia. Blood 2001; 97: 89–94.

    Article  CAS  PubMed  Google Scholar 

  104. Kottaridis PD, Gale RE, Frew ME, Harrison G, Langabeer SE, Belton AA et al. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood 2001; 98: 1752–1759.

    Article  CAS  PubMed  Google Scholar 

  105. Thiede C, Steudel C, Mohr B, Schaich M, Schakel U, Platzbecker U et al. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood 2002; 99: 4326–4335.

    Article  CAS  PubMed  Google Scholar 

  106. Liang DC, Shih LY, Hung IJ, Yang CP, Chen SH, Jaing TH et al. Clinical relevance of internal tandem duplication of the FLT3 gene in childhood acute myeloid leukemia. Cancer 2002; 94: 3292–3298.

    Article  CAS  PubMed  Google Scholar 

  107. Kottaridis PD, Gale RE, Langabeer SE, Frew ME, Bowen DT, Linch DC . Studies of FLT3 mutations in paired presentation and relapse samples from patients with acute myeloid leukemia: implications for the role of FLT3 mutations in leukemogenesis, minimal residual disease detection, and possible therapy with FLT3 inhibitors. Blood 2002; 100: 2393–2398.

    Article  CAS  PubMed  Google Scholar 

  108. Shih LY, Huang CF, Wu JH, Lin TL, Dunn P, Wang PN et al. Internal tandem duplication of FLT3 in relapsed acute myeloid leukemia: a comparative analysis of bone marrow samples from 108 adult patients at diagnosis and relapse. Blood 2002; 100: 2387–2392.

    Article  CAS  PubMed  Google Scholar 

  109. Gessler M, Poustka A, Cavenee W, Neve RL, Orkin SH, Bruns GA . Homozygous deletion in Wilms tumours of a zinc-finger gene identified by chromosome jumping. Nature 1990; 343: 774–778.

    Article  CAS  PubMed  Google Scholar 

  110. Niegemann E, Wehner S, Kornhuber B, Schwabe D, Ebener U . wt1 gene expression in childhood leukemias. Acta Haematol 1999; 102: 72–76.

    Article  CAS  PubMed  Google Scholar 

  111. Bergmann L, Maurer U, Weidmann E . Wilms tumor gene expression in acute myeloid leukemias. Leukemia Lymphoma 1997; 25: 435–443.

    Article  CAS  PubMed  Google Scholar 

  112. Bergmann L, Miething C, Maurer U, Brieger J, Karakas T, Weidmann E et al. High levels of Wilms' tumor gene (wt1) mRNA in acute myeloid leukemias are associated with a worse long-term outcome. Blood 1997; 90: 1217–1225.

    CAS  PubMed  Google Scholar 

  113. Sugiyama H . Wilms tumor gene (WT1) as a new marker for the detection of minimal residual disease in leukemia. Leukemia Lymphoma 1998; 30: 55–61.

    Article  CAS  PubMed  Google Scholar 

  114. Elmaagacli AH, Beelen DW, Trenschel R, Schaefer UW . The detection of wt-1 transcripts is not associated with an increased leukemic relapse rate in patients with acute leukemia after allogeneic bone marrow or peripheral blood stem cell transplantation. Bone Marrow Transplant 2000; 25: 91–96.

    Article  CAS  PubMed  Google Scholar 

  115. Siehl JM, Thiel E, Leben R, Reinwald M, Knauf W, Menssen HD . Quantitative real-time RT-PCR detects elevated Wilms tumor gene (WT1) expression in autologous blood stem cell preparations (PBSCs) from acute myeloid leukemia (AML) patients indicating contamination with leukemic blasts. Bone Marrow Transplant 2002; 29: 379–381.

    Article  CAS  PubMed  Google Scholar 

  116. Trka J, Kalinova M, Hrusak O, Zuna J, Krejci O, Madzo J et al. Real-time quantitative PCR detection of WT1 gene expression in children with AML: prognostic significance, correlation with disease status and residual disease detection by flow cytometry. Leukemia 2002; 16: 1381–1389.

    Article  CAS  PubMed  Google Scholar 

  117. Kreuzer KA, Saborowski A, Lupberger J, Appelt C, Na IK, le Coutre P et al. Fluorescent 5′-exonuclease assay for the absolute quantification of Wilms' tumour gene (WT1) mRNA: implications for monitoring human leukaemias. Br J Haematol 2001; 114: 313–318.

    Article  CAS  PubMed  Google Scholar 

  118. Kim SC, Yoo NC, Hahn JS, Lee S, Chong SY, Min YH et al. Monitoring of WT-1 gene expression in peripheral blood of patients with acute leukemia by semiquantitative RT-PCR; possible marker for detection of minimal residual leukemia. Yonsei Med J 1997; 38: 212–219.

    Article  CAS  PubMed  Google Scholar 

  119. Hosen N, Sonoda Y, Oji Y, Kimura T, Minamiguchi H, Tamaki H et al. Very low frequencies of human normal CD34+ haematopoietic progenitor cells express the Wilms' tumour gene WT1 at levels similar to those in leukaemia cells. Br J Haematol 2002; 116: 409–420.

    Article  CAS  PubMed  Google Scholar 

  120. Maurer U, Weidmann E, Karakas T, Hoelzer D, Bergmann L . Wilms tumor gene (wt1) mRNA is equally expressed in blast cells from acute myeloid leukemia and normal CD34+ progenitors. Blood 1997; 90: 4230–4232.

    CAS  PubMed  Google Scholar 

  121. Baird PN, Simmons PJ . Expression of the Wilms' tumor gene (WT1) in normal hemopoiesis. Exp Hematol 1997; 25: 312–320.

    CAS  PubMed  Google Scholar 

  122. Inoue K, Ogawa H, Sonoda Y, Kimura T, Sakabe H, Oka Y et al. Aberrant overexpression of the Wilms tumor gene (WT1) in human leukemia. Blood 1997; 89: 1405–1412.

    CAS  PubMed  Google Scholar 

  123. Menssen HD, Renkl HJ, Rodeck U, Maurer J, Notter M, Schwartz S et al. Presence of Wilms' tumor gene (wt1) transcripts and the WT1 nuclear protein in the majority of human acute leukemias. Leukemia 1995; 9: 1060–1067.

    CAS  PubMed  Google Scholar 

  124. Bernard OA, Busson-LeConiat M, Ballerini P, Mauchauffe M, Della Valle V, Monni R et al. A new recurrent and specific cryptic translocation, t(5;14)(q35;q32), is associated with expression of the Hox11L2 gene in T acute lymphoblastic leukemia. Leukemia 2001; 15: 1495–1504.

    Article  CAS  PubMed  Google Scholar 

  125. Ballerini P, Blaise A, Busson-Le Coniat M, Su XY, Zucman-Rossi J, Adam M et al. HOX11L2 expression defines a clinical subtype of pediatric T-ALL associated with poor prognosis. Blood 2002; 100: 991–997.

    Article  CAS  PubMed  Google Scholar 

  126. Nakamura S, Yatabe Y, Seto M . Cyclin D1 overexpression in malignant lymphomas. Pathol Int 1997; 47: 421–429.

    Article  CAS  PubMed  Google Scholar 

  127. Steinbach D, Hermann J, Viehmann S, Zintl F, Gruhn B . Clinical implications of PRAME gene expression in childhood acute myeloid leukemia. Cancer Genet Cytogenet 2002; 133: 118–123.

    Article  CAS  PubMed  Google Scholar 

  128. Matsushita M, Ikeda H, Kizaki M, Okamoto S, Ogasawara M, Ikeda Y et al. Quantitative monitoring of the PRAME gene for the detection of minimal residual disease in leukaemia. Br J Haematol 2001; 112: 916–926.

    Article  CAS  PubMed  Google Scholar 

  129. Watari K, Tojo A, Nagamura-Inoue T, Nagamura F, Takeshita A, Fukushima T et al. Identification of a melanoma antigen, PRAME, as a BCR/ABL-inducible gene. FEBS Lett 2000; 466: 367–371.

    Article  CAS  PubMed  Google Scholar 

  130. van Baren N, Chambost H, Ferrant A, Michaux L, Ikeda H, Millard I et al. PRAME, a gene encoding an antigen recognized on a human melanoma by cytolytic T cells, is expressed in acute leukaemia cells. Br J Haematol 1998; 102: 1376–1379.

    Article  CAS  PubMed  Google Scholar 

  131. Foroni L, Hoffbrand AV . Molecular analysis of minimal residual disease in adult acute lymphoblastic leukaemia. Best Pract Res Clin Haematol 2002; 15: 71–90.

    Article  CAS  PubMed  Google Scholar 

  132. van der Velden VH, Wijkhuijs JM, Jacobs DC, van Wering ER, van Dongen JJ . T cell receptor gamma gene rearrangements as targets for detection of minimal residual disease in acute lymphoblastic leukemia by real-time quantitative PCR analysis. Leukemia 2002; 16: 1372–1380.

    Article  CAS  PubMed  Google Scholar 

  133. van Wering ER, van der Linden-Schrever BE, van der Velden VH, Szczepanski T, van Dongen JJ . T-lymphocytes in bone marrow samples of children with acute lymphoblastic leukemia during and after chemotherapy might hamper PCR-based minimal residual disease studies. Leukemia 2001; 15: 1301–1303.

    Article  CAS  PubMed  Google Scholar 

  134. van Lochem EG, Wiegers YM, van den Beemd R, Hahlen K, van Dongen JJ, Hooijkaas H . Regeneration pattern of precursor-B-cells in bone marrow of acute lymphoblastic leukemia patients depends on the type of preceding chemotherapy. Leukemia 2000; 14: 688–695.

    Article  CAS  PubMed  Google Scholar 

  135. van Wering ER, van der Linden-Schrever BE, Szczepanski T, Willemse MJ, Baars EA, van Wijngaarde-Schmitz HM et al. Regenerating normal B-cell precursors during and after treatment of acute lymphoblastic leukaemia: implications for monitoring of minimal residual disease. Br J Haematol 2000; 110: 139–146.

    Article  CAS  PubMed  Google Scholar 

  136. Gleissner B, Rieder H, Thiel E, Fonatsch C, Janssen LA, Heinze B et al. Prospective BCR-ABL analysis by polymerase chain reaction (RT-PCR) in adult acute B-lineage lymphoblastic leukemia: reliability of RT-nested-PCR and comparison to cytogenetic data. Leukemia 2001; 15: 1834–1840.

    Article  CAS  PubMed  Google Scholar 

  137. Nakao M, Janssen JW, Flohr T, Bartram CR . Rapid and reliable quantification of minimal residual disease in acute lymphoblastic leukemia using rearranged immunoglobulin and T-cell receptor loci by LightCycler technology. Cancer Res 2000; 60: 3281–3289.

    CAS  PubMed  Google Scholar 

  138. Bohling SD, Wittwer CT, King TC, Elenitoba-Johnson KS . Fluorescence melting curve analysis for the detection of the bcl-1/JH translocation in mantle cell lymphoma. Lab Invest 1999; 79: 337–345.

    CAS  PubMed  Google Scholar 

  139. Bohling SD, King TC, Wittwer CT, Elenitoba-Johnson KS . Rapid simultaneous amplification and detection of the MBR/JH chromosomal translocation by fluorescence melting curve analysis. Am J Pathol 1999; 154: 97–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Pongers-Willemse MJ, Verhagen OJ, Tibbe GJ, Wijkhuijs AJ, de Haas V, Roovers E et al. Real-time quantitative PCR for the detection of minimal residual disease in acute lymphoblastic leukemia using junctional region specific TaqMan probes. Leukemia 1998; 12: 2006–2014.

    Article  CAS  PubMed  Google Scholar 

  141. Rasmussen T, Poulsen TS, Honore L, Johnsen HE . Quantitation of minimal residual disease in multiple myeloma using an allele-specific real-time PCR assay. Exp Hematol 2000; 28: 1039–1045.

    Article  CAS  PubMed  Google Scholar 

  142. Eder M, Battmer K, Kafert S, Stucki A, Ganser A, Hertenstein B . Monitoring of BCR–ABL expression using real-time RT-PCR in CML after bone marrow or peripheral blood stem cell transplantation. Leukemia 1999; 13: 1383–1389.

    Article  CAS  PubMed  Google Scholar 

  143. Verhagen OJ, Willemse MJ, Breunis WB, Wijkhuijs AJ, Jacobs DC, Joosten SA et al. Application of germline IGH probes in real-time quantitative PCR for the detection of minimal residual disease in acute lymphoblastic leukemia. Leukemia 2000; 14: 1426–1435.

    Article  CAS  PubMed  Google Scholar 

  144. Bruggemann M, Droese J, Bolz I, Luth P, Pott C, von Neuhoff N et al. Improved assessment of minimal residual disease in B cell malignancies using fluorogenic consensus probes for real-time quantitative PCR. Leukemia 2000; 14: 1419–1425.

    Article  CAS  PubMed  Google Scholar 

  145. Gerard CJ, Olsson K, Ramanathan R, Reading C, Hanania EG . Improved quantitation of minimal residual disease in multiple myeloma using real-time polymerase chain reaction and plasmid-DNA complementarity determining region III standards. Cancer Res 1998; 58: 3957–3964.

    CAS  PubMed  Google Scholar 

  146. Stirewalt DL, Willman CL, Radich JP . Quantitative, real-time polymerase chain reactions for FLT3 internal tandem duplications are highly sensitive and specific. Leukemia Res 2001; 25: 1085–1088.

    Article  CAS  Google Scholar 

  147. van der Velden VH, Willemse MJ, van der Schoot CE, Hahlen K, van Wering ER, van Dongen JJ . Immunoglobulin kappa deleting element rearrangements in precursor-B acute lymphoblastic leukemia are stable targets for detection of minimal residual disease by real-time quantitative PCR. Leukemia 2002; 16: 928–936.

    Article  CAS  PubMed  Google Scholar 

  148. Szczepanski T, van der Velden VH, van Dongen JJ . Real-time quantitative (RQ)-PCR for the detection of minimal residual disease in childhood acute lymphoblastic leukemia. Haematologica 2002; 87: 183–191.

    Google Scholar 

  149. Jenner MJ, Summers KE, Norton AJ, Amess JA, Arch RS, Young BD et al. JH probe real-time quantitative polymerase chain reaction assay for Bcl-2/IgH rearrangements. Br J Haematol 2002; 118: 550–558.

    Article  CAS  PubMed  Google Scholar 

  150. Tarusawa M, Yashima A, Endo M, Maesawa C . Quantitative assessment of minimal residual disease in childhood lymphoid malignancies using an allele-specific oligonucleotide real-time quantitative polymerase chain reaction. Int J Hematol 2002; 75: 166–173.

    Article  CAS  PubMed  Google Scholar 

  151. Pfitzner T, Engert A, Wittor H, Schinkothe T, Oberhauser F, Schulz H et al. A real-time PCR assay for the quantification of residual malignant cells in B cell chronic lymphatic leukemia. Leukemia 2000; 14: 754–766.

    Article  CAS  PubMed  Google Scholar 

  152. Pfitzner T, Reiser M, Barth S, Borchmann P, Schulz H, Schinkothe T et al. Quantitative molecular monitoring of residual tumor cells in chronic lymphocytic leukemia. Ann Hematol 2002; 81: 258–266.

    Article  CAS  PubMed  Google Scholar 

  153. Ladetto M, Omede P, Sametti S, Donovan JW, Astolfi M, Drandi D et al. Real-time polymerase chain reaction in multiple myeloma: quantitative analysis of tumor contamination of stem cell harvests. Exp Hematol 2002; 30: 529–536.

    Article  CAS  PubMed  Google Scholar 

  154. Donovan JW, Ladetto M, Zou G, Neuberg D, Poor C, Bowers D et al. Immunoglobulin heavy-chain consensus probes for real-time PCR quantification of residual disease in acute lymphoblastic leukemia. Blood 2000; 95: 2651–2658.

    CAS  PubMed  Google Scholar 

  155. Ladetto M, Donovan JW, Harig S, Trojan A, Poor C, Schlossnan R et al. Real-time polymerase chain reaction of immunoglobulin rearrangements for quantitative evaluation of minimal residual disease in multiple myeloma. Biol Blood Marrow Transplant 2000; 6: 241–253.

    Article  CAS  PubMed  Google Scholar 

  156. Koiso H, Tsukamoto N, Miyawaki S, Shinonome S, Nojima Y, Karasawa M . Quantitative analysis of Cyclin D1 and CD23 expression in mantle cell lymphoma and B-chronic lymphocytic leukemia. Leukemia Res 2002; 26: 809–815.

    Article  CAS  Google Scholar 

  157. Medeiros LJ, Hai S, Thomazy VA, Estalilla OC, Romaguera J, Luthra R . Real-time RT-PCR assay for quantifying cyclin D1 mRNA in B-cell non-Hodgkin's lymphomas. Mod Pathol 2002; 15: 556–564.

    Article  PubMed  Google Scholar 

  158. Bijwaard KE, Aguilera NS, Monczak Y, Trudel M, Taubenberger JK, Lichy JH . Quantitative real-time reverse transcription-PCR assay for cyclin D1 expression: utility in the diagnosis of mantle cell lymphoma. Clin Chem 2001; 47: 195–201.

    CAS  PubMed  Google Scholar 

  159. Peghini PE, Fehr J . Analysis of cyclin D1 expression by quantitative real-time reverse transcription-polymerase chain reaction in the diagnosis of mantle cell lymphoma. Am J Clin Pathol 2002; 117: 237–245.

    Article  CAS  PubMed  Google Scholar 

  160. Suzuki R, Takemura K, Tsutsumi M, Nakamura S, Hamajima N, Seto M . Detection of cyclin D1 overexpression by real-time reverse-transcriptase-mediated quantitative polymerase chain reaction for the diagnosis of mantle cell lymphoma. Am J Pathol 2001; 159: 425–429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Elenitoba-Johnson KS, Bohling SD, Jenson SD, Lin Z, Monnin KA, Lim MS . Fluorescence PCR quantification of cyclin d1 expression. J Mol Diagn 2002; 4: 90–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Gabert J, Beillard E, Bi W, Pallisgaard N, Gottardi E, Cazzaniga G et al. European standardization and quality control program of real the quantitative RT-PCR analysis of fusion gene transcripts for minimal residual disease detection in leukemia patients. Blood 2000; 96: 1343.

    Google Scholar 

  163. Gabert J, Beillard E, van der Velden VHJ, Bi W, Grimwade D, Pallisgaard N et al. Standardization and quality control studies of "real-time" quantitative reverse transcriptase polymerase chain reaction (RQ-PCR) of fusion gene transcripts for minimal residual disease detection in leukemia – A Europe Against Cancer Program. Leukemia 2003 (in press).

  164. Curry J, McHale C, Smith MT . Low efficiency of the Moloney murine leukemia virus reverse transcriptase during reverse transcription of rare t(8;21) fusion gene transcripts. Biotechniques 2002; 32: 768, 770, 772, 754–765.

    Article  Google Scholar 

  165. Barbany G, Hagberg A, Olsson-Stromberg U, Simonsson B, Syvanen AC, Landegren U . Manifold-assisted reverse transcription-PCR with real-time detection for measurement of the BCR-ABL fusion transcript in chronic myeloid leukemia patients. Clin Chem 2000; 46: 913–920.

    CAS  PubMed  Google Scholar 

  166. Elmaagacli AH, Freist A, Hahn M, Opalka B, Seeber S, Schaefer UW et al. Estimating the relapse stage in chronic myeloid leukaemia patients after allogeneic stem cell transplantation by the amount of BCR–ABL fusion transcripts detected using a new real-time polymerase chain reaction method. Br J Haematol 2001; 113: 1072–1075.

    Article  CAS  PubMed  Google Scholar 

  167. Amabile M, Giannini B, Testoni N, Montefusco V, Rosti G, Zardini C et al. Real-time quantification of different types of bcr-abl transcript in chronic myeloid leukemia. Haematologica 2001; 86: 252–259.

    CAS  PubMed  Google Scholar 

  168. Preudhomme C, Revillion F, Merlat A, Hornez L, Roumier C, Duflos-Grardel N et al. Detection of BCR-ABL transcripts in chronic myeloid leukemia (CML) using a ‘real time’ quantitative RT-PCR assay. Leukemia 1999; 13: 957–964.

    Article  CAS  PubMed  Google Scholar 

  169. Yokota H, Tsuno NH, Tanaka Y, Fukui T, Kitamura K, Hirai H et al. Quantification of minimal residual disease in patients with e1a2 BCR–ABL-positive acute lymphoblastic leukemia using a real-time RT-PCR assay. Leukemia 2002; 16: 1167–1175.

    Article  CAS  PubMed  Google Scholar 

  170. Hochhaus A . Minimal residual disease in chronic myeloid leukaemia patients. Best Pract Res Clin Haematol 2002; 15: 159–178.

    Article  CAS  PubMed  Google Scholar 

  171. Seeger K, Kreuzer KA, Lass U, Taube T, Buchwald D, Eckert C et al. Molecular quantification of response to therapy and remission status in TEL-AML1-positive childhood ALL by real-time reverse transcription polymerase chain reaction. Cancer Res 2001; 61: 2517–2522.

    CAS  PubMed  Google Scholar 

  172. Pallisgaard N, Clausen N, Schroder H, Hokland P . Rapid and sensitive minimal residual disease detection in acute leukemia by quantitative real-time RT-PCR exemplified by t(12;21) TEL-AML1 fusion transcript. Genes Chromosomes Cancer 1999; 26: 355–365.

    Article  CAS  PubMed  Google Scholar 

  173. Drunat S, Olivi M, Brunie G, Grandchamp B, Vilmer E, Bieche I et al. Quantification of TEL-AML1 transcript for minimal residual disease assessment in childhood acute lymphoblastic leukaemia. Br J Haematol 2001; 114: 281–289.

    Article  CAS  PubMed  Google Scholar 

  174. Bolufer P, Barragan E, Verdeguer A, Cervera J, Fernandez JM, Moreno I et al. Rapid quantitative detection of TEL-AML1 fusion transcripts in pediatric acute lymphoblastic leukemia by real-time reverse transcription polymerase chain reaction using fluorescently labeled probes. Haematologica 2002; 87: 23–32.

    CAS  PubMed  Google Scholar 

  175. Ballerini P, Landman PJ, Laurendeau I, Olivi M, Vidaud M, Adam M et al. Quantitative analysis of TEL/AML1 fusion transcripts by real-time RT-PCR assay in childhood acute lymphoblastic leukemia. Leukemia 2000; 14: 1526–1528.

    Article  CAS  PubMed  Google Scholar 

  176. Chen X, Pan Q, Stow P, Behm FG, Goorha R, Pui CH et al. Quantification of minimal residual disease in T-lineage acute lymphoblastic leukemia with the TAL-1 deletion using a standardized real-time PCR assay. Leukemia 2001; 15: 166–170.

    Article  CAS  PubMed  Google Scholar 

  177. Estalilla OC, Medeiros LJ, Manning Jr JT, Luthra R . 5′–3′ exonuclease-based real-time PCR assays for detecting the t(14;18)(q32;21): a survey of 162 malignant lymphomas and reactive specimens. Mod Pathol 2000; 13: 661–666.

    Article  CAS  PubMed  Google Scholar 

  178. Hirt C, Dolken G . Quantitative detection of t(14;18)-positive cells in patients with follicular lymphoma before and after autologous bone marrow transplantation. Bone Marrow Transplant 2000; 25: 419–426.

    Article  CAS  PubMed  Google Scholar 

  179. Dolken L, Schuler F, Dolken G . Quantitative detection of t(14;18)-positive cells by real-time quantitative PCR using fluorogenic probes. Biotechniques 1998; 25: 1058–1064.

    Article  CAS  PubMed  Google Scholar 

  180. Ladetto M, Sametti S, Donovan JW, Ferrero D, Astolfi M, Mitterer M et al. A validated real-time quantitative PCR approach shows a correlation between tumor burden and successful ex vivo purging in follicular lymphoma patients. Exp Hematol 2001; 29: 183–193.

    Article  CAS  PubMed  Google Scholar 

  181. Mandigers CM, Meijerink JP, Mensink EJ, Tonnissen EL, Hebeda KM, Bogman MJ et al. Lack of correlation between numbers of circulating t(14;18)-positive cells and response to first-line treatment in follicular lymphoma. Blood 2001; 98: 940–944.

    Article  CAS  PubMed  Google Scholar 

  182. Olsson K, Gerard CJ, Zehnder J, Jones C, Ramanathan R, Reading C et al. Real-time t(11;14) and t(14;18) PCR assays provide sensitive and quantitative assessments of minimal residual disease (MRD). Leukemia 1999; 13: 1833–1842.

    Article  CAS  PubMed  Google Scholar 

  183. Luthra R, Sarris AH, Hai S, Paladugu AV, Romaguera JE, Cabanillas FF et al. Real-time 5′--3′ exonuclease-based PCR assay for detection of the t(11;14)(q13;q32). Am J Clin Pathol 1999; 112: 524–530.

    Article  CAS  PubMed  Google Scholar 

  184. Andersen NS, Donovan JW, Zuckerman A, Pedersen L, Geisler C, Gribben JG . Real-time polymerase chain reaction estimation of bone marrow tumor burden using clonal immunoglobulin heavy chain gene and bcl-1/JH rearrangements in mantle cell lymphoma. Exp Hematol 2002; 30: 703–710.

    Article  CAS  PubMed  Google Scholar 

  185. Wittwer CT, Herrmann MG, Moss AA, Rasmussen RP . Continuous fluorescence monitoring of rapid cycle DNA amplification. Biotechniques 1997; 22: 130–131, 134–138.

    Article  CAS  PubMed  Google Scholar 

  186. Saussele S, Weisser A, Muller MC, Emig M, La Rosee P, Paschka P et al. Frequent polymorphism in BCR exon b2 identified in BCR–ABL positive and negative individuals using fluorescent hybridization probes. Leukemia 2000; 14: 2006–2010.

    Article  CAS  PubMed  Google Scholar 

  187. Cave H, van der Werff ten Bosch J, Suciu S, Guidal C, Waterkeyn C, Otten J et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia. European Organization for Research and Treatment of Cancer – Childhood Leukemia Cooperative Group. N Engl J Med 1998; 339: 591–598.

    Article  CAS  PubMed  Google Scholar 

  188. Limpens J, Stad R, Vos C, de Vlaam C, de Jong D, van Ommen GJ, Gabert J, Beillard E, van der Velden VHJ, Grimwade D, Bi W, Pallisgaard N et al. Lymphoma-associated translocation t(14;18) in blood B cells of normal individuals. Blood 1995; 85: 2528–2536.

    CAS  PubMed  Google Scholar 

  189. Gabert J, Beillard E, van der Velden VHJ, Grimwade D, Bi WP et al. Expression of fusion gene transcripts in diagnostic leukemia samples assessed by a standardized real time quantitative PCR (RQ-PCR): a Europe Against Cancer program. Hematol J 2002; 3: 206–207.

    Article  CAS  Google Scholar 

  190. Bose S, Deininger M, Gora-Tybor J, Goldman JM, Melo JV . The presence of typical and atypical BCR–ABL fusion genes in leukocytes of normal individuals: biologic significance and implications for the assessment of minimal residual disease. Blood 1998; 92: 3362–3367.

    CAS  PubMed  Google Scholar 

  191. Biernaux C, Loos M, Sels A, Huez G, Stryckmans P . Detection of major bcr-abl gene expression at a very low level in blood cells of some healthy individuals. Blood 1995; 86: 3118–3122.

    CAS  PubMed  Google Scholar 

  192. Kim-Rouille MH, MacGregor A, Wiedemann LM, Greaves MF, Navarrete C . MLL–AF4 gene fusions in normal newborns. Blood 1999; 93: 1107–1108.

    CAS  PubMed  Google Scholar 

  193. Quina AS, Gameiro P, Sa da Costa M, Telhada M, Parreira L . PML–RARA fusion transcripts in irradiated and normal hematopoietic cells. Genes Chromosomes Cancer 2000; 29: 266–275.

    Article  CAS  PubMed  Google Scholar 

  194. Jurlander J, Caligiuri MA, Ruutu T, Baer MR, Strout MP, Oberkircher AR et al. Persistence of the AML1/ETO fusion transcript in patients treated with allogeneic bone marrow transplantation for t(8;21) leukemia. Blood 1996; 88: 2183–2191.

    CAS  PubMed  Google Scholar 

  195. Nucifora G, Larson RA, Rowley JD . Persistence of the 8;21 translocation in patients with acute myeloid leukemia type M2 in long-term remission. Blood 1993; 82: 712–715.

    CAS  PubMed  Google Scholar 

  196. Trka J, Zuna J, Hrusak O, Michalova K, Muzikova K, Kalinova M et al. No evidence for MLL/AF4 expression in normal cord blood samples. Blood 1999; 93: 1106–1107; discussion 1108–1110.

    CAS  PubMed  Google Scholar 

  197. Kwong YL, Chan V, Wong KF, Chan TK . Use of the polymerase chain reaction in the detection of AML1/ETO fusion transcript in t(8;21). Cancer 1995; 75: 821–825.

    Article  CAS  PubMed  Google Scholar 

  198. Satake N, Maseki N, Kozu T, Sakashita A, Kobayashi H, Sakurai M et al. Disappearance of AML1-MTG8(ETO) fusion transcript in acute myeloid leukaemia patients with t(8;21) in long-term remission. Br J Haematol 1995; 91: 892–898.

    Article  CAS  PubMed  Google Scholar 

  199. Borst J, Wicherink A, Van Dongen JJ, De Vries E, Comans-Bitter WM, Wassenaar F et al. Non-random expression of T cell receptor gamma and delta variable gene segments in functional T lymphocyte clones from human peripheral blood. Eur J Immunol 1989; 19: 1559–1568.

    Article  CAS  PubMed  Google Scholar 

  200. Casorati G, De Libero G, Lanzavecchia A, Migone N . Molecular analysis of human gamma/delta+ clones from thymus and peripheral blood. J Exp Med 1989; 170: 1521–1535.

    Article  CAS  PubMed  Google Scholar 

  201. Wasserman R, Galili N, Ito Y, Reichard BA, Shane S, Rovera G . Predominance of fetal type DJH joining in young children with B precursor lymphoblastic leukemia as evidence for an in utero transforming event. J Exp Med 1992; 176: 1577–1581.

    Article  CAS  PubMed  Google Scholar 

  202. Sanz I . Multiple mechanisms participate in the generation of diversity of human H chain CDR3 regions. J Immunol 1991; 147: 1720–1729.

    CAS  PubMed  Google Scholar 

  203. Yamada M, Wasserman R, Reichard BA, Shane S, Caton AJ, Rovera G . Preferential utilization of specific immunoglobulin heavy chain diversity and joining segments in adult human peripheral blood B lymphocytes. J Exp Med 1991; 173: 395–407.

    Article  CAS  PubMed  Google Scholar 

  204. Steenbergen EJ, Verhagen OJ, van Leeuwen EF, Behrendt H, Merle PA, Wester MR et al. B precursor acute lymphoblastic leukemia third complementarity-determining regions predominantly represent an unbiased recombination repertoire: leukemic transformation frequently occurs in fetal life. Eur J Immunol 1994; 24: 900–908.

    Article  CAS  PubMed  Google Scholar 

  205. van der Velden VH, Joosten SA, Willemse MJ, van Wering ER, Lankester AW, van Dongen JJ et al. Real-time quantitative PCR for detection of minimal residual disease before allogeneic stem cell transplantation predicts outcome in children with acute lymphoblastic leukemia. Leukemia 2001; 15: 1485–1487.

    Article  CAS  PubMed  Google Scholar 

  206. Mandigers CM, Meijerink JP, Raemaekers JM, Schattenberg AV, Mensink EJ . Graft-versus-lymphoma effect of donor leucocyte infusion shown by real-time quantitative PCR analysis of t(14;18). Lancet 1998; 352: 1522–1523.

    Article  CAS  PubMed  Google Scholar 

  207. Pallisgaard N, Hokland P, Bi W, van der Velden VHJ, van Dongen JJM, Dee R et al. Selection of reference genes for the European standardization and quality control program of real-time quantitative RT-PCR analysis of fusion gene transcrips for minimal residual disease follow-up in leukemia patients. Blood 2001; 98: 4467.

    Google Scholar 

  208. Dupont M, Goldsborough A, Levayer T, Savare J, Rey JM, Rossi JF et al. Multiplex fluorescent RT-PCR to quantify leukemic fusion transcripts. Biotechniques 2002; 33: 158–160, 162, 164.

    Article  CAS  PubMed  Google Scholar 

  209. Lion T . Current recommendations for positive controls in RT-PCR assays. Leukemia 2001; 15: 1033–1037.

    Article  CAS  PubMed  Google Scholar 

  210. Lion T . Appropriate controls for RT-PCR. Leukemia 1996; 10: 1843.

    CAS  PubMed  Google Scholar 

  211. Moppett J, van der Velden VH, Wijkhuijs AJ, Hancock J, van Dongen JJ, Goulden N . Inhibition affecting RQ-PCR-based assessment of minimal residual disease in acute lymphoblastic leukemia: reversal by addition of bovine serum albumin. Leukemia 2003; 17: 268–270.

    Article  CAS  PubMed  Google Scholar 

  212. Guerrasio A, Pilatrino C, De Micheli D, Cilloni D, Serra A, Gottardi E et al. Assessment of minimal residual disease (MRD) in CBFbeta/MYH11-positive acute myeloid leukemias by qualitative and quantitative RT-PCR amplification of fusion transcripts. Leukemia 2002; 16: 1176–1181.

    Article  CAS  PubMed  Google Scholar 

  213. Bolufer P, Sanz GF, Barragan E, Sanz MA, Cervera J, Lerma E et al. Rapid quantitative detection of BCR–ABL transcripts in chronic myeloid leukemia patients by real-time reverse transcriptase polymerase-chain reaction using fluorescently labeled probes. Haematologica 2000; 85: 1248–1254.

    CAS  PubMed  Google Scholar 

  214. Cazzaniga G, Rossi V, Biondi A . Monitoring minimal residual disease using chromosomal translocations in childhood ALL. Best Pract Res Clin Haematol 2002; 15: 21–35.

    Article  CAS  PubMed  Google Scholar 

  215. Goulden N, Steward C . Clinical relevance of MRD in children undergoing allogeneic stem cell transplantation for ALL. Best Pract Res Clin Haematol 2002; 15: 59–70.

    Article  PubMed  Google Scholar 

  216. Campana D, Coustan-Smith E . Advances in the immunological monitoring of childhood acute lymphoblastic leukaemia. Best Pract Res Clin Haematol 2002; 15: 1–19.

    Article  PubMed  Google Scholar 

  217. San-Miguel JF, Vidriales MB, Orfao A . Immunological evaluation of minimal residual disease (MRD) in acute myeloid leukaemia (AML). Best Pract Res Clin Haematol 2002; 15: 105–118.

    Article  PubMed  Google Scholar 

  218. Liu Yin JA . Minimal residual disease in acute myeloid leukaemia. Best Pract Res Clin Haematol 2002; 15: 119–135.

    Article  CAS  PubMed  Google Scholar 

  219. Costello R, Sainty D, Blaise D, Gastaut JA, Gabert J, Poirel H et al. Prognosis value of residual disease monitoring by polymerase chain reaction in patients with CBF beta/MYH11-positive acute myeloblastic leukemia. Blood 1997; 89: 2222–2223.

    CAS  PubMed  Google Scholar 

  220. Laczika K, Mitterbauer G, Mitterbauer M, Knobl P, Schwarzinger I, Greinix HT et al. Prospective monitoring of minimal residual disease in acute myeloid leukemia with inversion(16) by CBFbeta/MYH11 RT-PCR: implications for a monitoring schedule and for treatment decisions. Leukemia Lymphoma 2001; 42: 923–931.

    Article  CAS  PubMed  Google Scholar 

  221. Boeckx N, Willemse MJ, Szczepanski T, van der Velden VH, Langerak AW, Vandekerckhove P et al. Fusion gene transcripts and Ig/TCR gene rearrangements are complementary but infrequent targets for PCR-based detection of minimal residual disease in acute myeloid leukemia. Leukemia 2002; 16: 368–375.

    Article  CAS  PubMed  Google Scholar 

  222. Inoue K, Sugiyama H, Ogawa H, Nakagawa M, Yamagami T, Miwa H et al. WT1 as a new prognostic factor and a new marker for the detection of minimal residual disease in acute leukemia. Blood 1994; 84: 3071–3079.

    CAS  PubMed  Google Scholar 

  223. Miwa H, Beran M, Saunders GF . Expression of the Wilms’ tumor gene (WT1) in human leukemias. Leukemia 1992; 6: 405–409.

    CAS  PubMed  Google Scholar 

  224. Gaiger A, Linnerth B, Mann G, Schmid D, Heinze G, Tisljar K et al. Wilms’ tumour gene (wt1) expression at diagnosis has no prognostic relevance in childhood acute lymphoblastic leukaemia treated by an intensive chemotherapy protocol. Eur J Haematol 1999; 63: 86–93.

    Article  CAS  PubMed  Google Scholar 

  225. Im HJ, Kong G, Lee H . Expression of Wilms tumor gene (WT1) in children with acute leukemia. Pediatr Hematol Oncol 1999; 16: 109–118.

    Article  CAS  PubMed  Google Scholar 

  226. Abu-Duhier FM, Goodeve AC, Wilson GA, Gari MA, Peake IR, Rees DC et al. FLT3 internal tandem duplication mutations in adult acute myeloid leukaemia define a high-risk group. Br J Haematol 2000; 111: 190–195.

    Article  CAS  PubMed  Google Scholar 

  227. Iwai T, Yokota S, Nakao M, Okamoto T, Taniwaki M, Onodera N et al. Internal tandem duplication of the FLT3 gene and clinical evaluation in childhood acute myeloid leukemia. The Children's Cancer and Leukemia Study Group, Japan. Leukemia 1999; 13: 38–43.

    Article  CAS  PubMed  Google Scholar 

  228. Xu F, Taki T, Yang HW, Hanada R, Hongo T, Ohnishi H et al. Tandem duplication of the FLT3 gene is found in acute lymphoblastic leukaemia as well as acute myeloid leukaemia but not in myelodysplastic syndrome or juvenile chronic myelogenous leukaemia in children. Br J Haematol 1999; 105: 155–162.

    Article  CAS  PubMed  Google Scholar 

  229. Yokota S, Kiyoi H, Nakao M, Iwai T, Misawa S, Okuda T et al. Internal tandem duplication of the FLT3 gene is preferentially seen in acute myeloid leukemia and myelodysplastic syndrome among various hematological malignancies. A study on a large series of patients and cell lines. Leukemia 1997; 11: 1605–1609.

    Article  CAS  PubMed  Google Scholar 

  230. Nakao M, Yokota S, Iwai T, Kaneko H, Horiike S, Kashima K et al. Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia 1996; 10: 1911–1918.

    CAS  PubMed  Google Scholar 

  231. van der Velden VH, Schoch C, Langerak AW, Schnittger S, Hoogeveen PG, van Dongen JJ . Low frequency of reverse transcription polymerase chain reaction-detectable chromosome aberrations in relapsed acute myeloid leukaemia: implications for detection of minimal residual disease. Br J Haematol 2001; 113: 1082–1083.

    Article  CAS  PubMed  Google Scholar 

  232. Langerak AW, Wolvers-Tettero IL, van Gastel-Mol EJ, Oud ME, van Dongen JJ . Basic helix–loop–helix proteins E2A and HEB induce immature T-cell receptor rearrangements in nonlymphoid cells. Blood 2001; 98: 2456–2465.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Velden, V., Hochhaus, A., Cazzaniga, G. et al. Detection of minimal residual disease in hematologic malignancies by real-time quantitative PCR: principles, approaches, and laboratory aspects. Leukemia 17, 1013–1034 (2003). https://doi.org/10.1038/sj.leu.2402922

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402922

Keywords

This article is cited by

Search

Quick links