Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Leading Article
  • Published:

Standardization and quality control studies of ‘real-time’ quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia – A Europe Against Cancer Program

Abstract

Detection of minimal residual disease (MRD) has proven to provide independent prognostic information for treatment stratification in several types of leukemias such as childhood acute lymphoblastic leukemia (ALL), chronic myeloid leukemia (CML) and acute promyelocytc leukemia. This report focuses on the accurate quantitative measurement of fusion gene (FG) transcripts as can be applied in 35–45% of ALL and acute myeloid leukemia, and in more than 90% of CML. A total of 26 European university laboratories from 10 countries have collaborated to establish a standardized protocol for TaqMan-based real-time quantitative PCR (RQ-PCR) analysis of the main leukemia-associated FGs within the Europe Against Cancer (EAC) program. Four phases were scheduled: (1) training, (2) optimization, (3) sensitivity testing and (4) patient sample testing. During our program, three quality control rounds on a large series of coded RNA samples were performed including a balanced randomized assay, which enabled final validation of the EAC primer and probe sets. The expression level of the nine major FG transcripts in a large series of stored diagnostic leukemia samples (n=278) was evaluated. After normalization, no statistically significant difference in expression level was observed between bone marrow and peripheral blood on paired samples at diagnosis. However, RQ-PCR revealed marked differences in FG expression between transcripts in leukemic samples at diagnosis that could account for differential assay sensitivity. The development of standardized protocols for RQ-PCR analysis of FG transcripts provides a milestone for molecular determination of MRD levels. This is likely to prove invaluable to the management of patients entered into multicenter therapeutic trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30
Figure 31
Figure 32
Figure 33

References

  1. Lowenberg B, Downing JR, Burnett A . Acute myeloid leukemia. N Engl J Med 1999; 341: 1051–1062.

    Article  CAS  PubMed  Google Scholar 

  2. Verma A, Stock W . Management of adult acute lymphoblastic leukemia: moving toward a risk-adapted approach. Curr Opin Oncol 2001; 13: 14–20.

    Article  CAS  PubMed  Google Scholar 

  3. Appelbaum FR . Perspectives on the future of chronic myeloid leukemia treatment. Semin Hematol 2001; 38: 35–42.

    Article  CAS  PubMed  Google Scholar 

  4. Grimwade D, Walker H, Oliver F, Wheatley K, Harrison C, Harrison G et al. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children's Leukaemia Working Parties. Blood 1998; 92: 2322–2333.

    CAS  PubMed  Google Scholar 

  5. Groupe FdCH. Cytogenetic abnormalities in adult acute lymphoblastic leukemia: correlations with hematologic finding and outcome. A collaborative study of the Groupe Français de Cytogénétique Hématologique. Blood 1996; 87: 3135–3142.

  6. Nakao M, Yokota S, Iwai T, Kaneko H, Horiike S, Kashima K et al. Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia 1996; 10: 1911–1918.

    CAS  PubMed  Google Scholar 

  7. Kottaridis PD, Gale RE, Frew ME, Harrison G, Langabeer SE, Belton AA et al. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood 2001; 98: 1752–1759.

    Article  CAS  PubMed  Google Scholar 

  8. Abshire TC, Buchanan GR, Jackson JF, Shuster JJ, Brock B, Head D et al. Morphologic, immunologic and cytogenetic studies in children with acute lymphoblastic leukemia at diagnosis and relapse: a Pediatric Oncology Group study. Leukemia 1992; 6: 357–362.

    CAS  PubMed  Google Scholar 

  9. Hoelzer D, Thiel E, Loffler H, Buchner T, Ganser A, Heil G et al. Prognostic factors in a multicenter study for treatment of acute lymphoblastic leukemia in adults. Blood 1988; 71: 123–131.

    CAS  PubMed  Google Scholar 

  10. Liu Yin JA, Wheatley K, Rees JK, Burnett AK . Comparison of ‘sequential’ versus ‘standard’ chemotherapy as re-induction treatment, with or without cyclosporine, in refractory/relapsed acute myeloid leukaemia (AML): results of the UK Medical Research Council AML-R trial. Br J Haematol 2001; 113: 713–726.

    Article  CAS  PubMed  Google Scholar 

  11. Estey EH . New drugs for therapy of AML. Leukemia 2002; 16: 306–309.

    Article  CAS  PubMed  Google Scholar 

  12. Wheatley K, Burnett AK, Goldstone AH, Gray RG, Hann IM, Harrison CJ et al. A simple, robust, validated and highly predictive index for the determination of risk-directed therapy in acute myeloid leukaemia derived from the MRC AML 10 trial. United Kingdom Medical Research Council's Adult and Childhood Leukaemia Working Parties. Br J Haematol 1999; 107: 69–79.

    Article  CAS  PubMed  Google Scholar 

  13. Kantarjian H, Smith T, OBrien S, Beran M, Pierce S, Talpaz M . Prolonged survival in chronic myelogenous leukemia following cytogenetic response to a interferon therapy. Ann Intern Med 1995; 122: 254–261.

    Article  CAS  PubMed  Google Scholar 

  14. Italian Cooperative Study Group on Chronic Myeloid Leukemia and Italian Group for Bone Marrow Transplantation. Monitoring treatment and survival in chronic myeloid leukemia. J Clin Oncol 1999; 17: 1858–1868.

  15. Campana D, Pui C-H . Detection of minimal residual disease in acute leukemia: methodologic advances and clinical significance. Blood 1995; 85: 1416–1434.

    CAS  PubMed  Google Scholar 

  16. Szczepanski T, Orfao A, van der Velden VH, San Miguel JF, van Dongen JJ . Minimal residual disease in leukaemia patients. Lancet Oncol 2001; 2: 409–417.

    Article  CAS  PubMed  Google Scholar 

  17. Cave H, van der Werff ten Bosch J, Suciu S, Guidal C, Waterkeyn C, Otten J et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia. European Organization for Research and Treatment of Cancer – Childhood Leukemia Cooperative Group [see comments]. N Engl J Med 1998; 339: 591–598.

    Article  CAS  PubMed  Google Scholar 

  18. van Dongen JJ, Seriu T, Panzer-Grumayer ER, Biondi A, Pongers-Willemse MJ, Corral L et al. Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood. Lancet 1998; 352: 1731–1738.

    Article  CAS  PubMed  Google Scholar 

  19. Coustan-Smith E, Behm FG, Sanchez J, Boyett JM, Hancock ML, Raimondi SC et al. Immunological detection of minimal residual disease in children with acute lymphoblastic leukaemia. Lancet 1998; 351: 550–554.

    Article  CAS  PubMed  Google Scholar 

  20. Radich JP, Gehly G, Gooley T, Bryant E, Clift RA, Collins S et al. PCR detection of the BCR-ABL fusion transcript after allogeneic bone marrow transplantation for chronic myeloid leukemia: results and implications in 346 patients. Blood 1995; 85: 2632–2638.

    CAS  PubMed  Google Scholar 

  21. Diverio D, Rossi V, Avvisati G, De Santis S, Pistilli A, Pane F et al. Early detection of relapse by prospective reverse transcriptase-polymerase chain reaction analysis of the PML/RARalpha fusion gene in patients with acute promyelocytic leukemia enrolled in the GIMEMA-AIEOP multicenter ‘AIDA’ trial. GIMEMA-AIEOP Multicenter ‘AIDA’ Trial. Blood 1998; 92: 784–789.

    CAS  PubMed  Google Scholar 

  22. Lo Coco F, Diverio D, Avvisati G, Petti MC, Meloni G, Pogliani EM et al. Therapy of molecular relapse in acute promyelocytic leukemia. Blood 1999; 94: 2225–2229.

    CAS  PubMed  Google Scholar 

  23. San Miguel J, Van Dongen J, Bartram C, Parreira A, Wormann B, Biondi A et al. In: I. press (ed). Investigation of Minimal Residual Disease (MRD) in Acute Leukemia (AL): International Standardization and Evaluation Cancer research supported under BIOMED1. Amsterdam: Baig SS, 1998, pp 300–306.

    Google Scholar 

  24. van Dongen JJ, Macintyre EA, Gabert JA, Delabesse E, Rossi V, Saglio G et al. Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Report of the BIOMED-1 Concerted Action: investigation of minimal residual disease in acute leukemia. Leukemia 1999; 13: 1901–1928.

    Article  CAS  PubMed  Google Scholar 

  25. Jurlander J, Caligiuri MA, Ruutu T, Baer MR, Strout MP, Oberkircher AR et al. Persistence of the AML1/ETO fusion transcript in patients treated with allogeneic bone marrow transplantation for t(8;21) leukemia. Blood 1996; 88: 2183–2191.

    CAS  PubMed  Google Scholar 

  26. Miyamoto T, Nagafuji K, Akashi K, Harada M, Kyo T, Akashi T et al. Persistence of multipotent progenitors expressing AML1/ETO transcripts in long-term remission patients with t(8;21) acute myelogenous leukemia. Blood 1996; 87: 4789–4796.

    CAS  PubMed  Google Scholar 

  27. Tobal K, Saunders MJ, Grey MR, Yin JA . Persistence of RAR alpha-PML fusion mRNA detected by reverse transcriptase polymerase chain reaction in patients in long-term remission of acute promyelocytic leukaemia. Br J Haematol 1995; 90: 615–618.

    Article  CAS  PubMed  Google Scholar 

  28. Biernaux C, Loos M, Sels A, Huez G, Stryckmans P . Detection of major bcr-abl gene expression at a very low level in blood cells of some healthy individuals. Blood 1995; 86: 3118–3122.

    CAS  PubMed  Google Scholar 

  29. Bose S, Deininger M, Gora-Tybor J, Goldman JM, Melo JV . The presence of typical and atypical BCR-ABL fusion genes in leukocytes of normal individuals: biologic significance and implications for the assessment of minimal residual disease. Blood 1998; 92: 3362–3367.

    CAS  PubMed  Google Scholar 

  30. Zimmermann K, Mannhalter JW . Technical aspects of quantitative competitive PCR. Biotechniques 1996; 21: 268–272, 274–269.

    Article  CAS  PubMed  Google Scholar 

  31. Lion T, Henn T, Gaiger A, Kalhs P, Gadner H . Early detection of relapse after bone marrow transplantation in patients with chronic myelogenous leukaemia. Lancet 1993; 341: 275–276.

    Article  CAS  PubMed  Google Scholar 

  32. Hochhaus A, Reiter A, Saussele S, Reichert A, Emig M, Kaeda J et al. Molecular heterogeneity in complete cytogenetic responders after interferon-alpha therapy for chronic myelogenous leukemia: low levels of minimal residual disease are associated with continuing remission. German CML Study Group and the UK MRC CML Study Group. Blood 2000; 95: 62–66.

    CAS  PubMed  Google Scholar 

  33. Laczika K, Novak M, Hilgarth B, Mitterbauer M, Mitterbauer G, Scheidel-Petrovic A et al. Competitive CBFbeta/MYH11 reverse-transcriptase polymerase chain reaction for quantitative assessment of minimal residual disease during postremission therapy in acute myeloid leukemia with inversion(16): a pilot study. J Clin Oncol 1998; 16: 1519–1525.

    Article  CAS  PubMed  Google Scholar 

  34. Tobal K, Liu Yin JA . Molecular monitoring of minimal residual disease in acute myeloblastic leukemia with t(8;21) by RT-PCR. Leuk Lymphoma 1998; 31: 115–120.

    Article  CAS  PubMed  Google Scholar 

  35. Gabert J . Detection of recurrent translocations using real time PCR; assessment of the technique for diagnosis and detection of minimal residual disease. Haematologica 1999; 84: 107–109.

    PubMed  Google Scholar 

  36. van der Velden V, Hochhaus A, Cazzanigia G, Szczepanski T, Gabert J, van Dongen J . Detection of minimal residual disease in hematopoietic malignancies by real-time quantitative PCR: principles, approaches, and laboratory aspects. Leukemia 2003; 17: 1013–1034.

    Article  CAS  PubMed  Google Scholar 

  37. Mensink E, van de Locht A, Schattenberg A, Linders E, Schaap N, Geurts van Kessel A et al. Quantitation of minimal residual disease in Philadelphia chromosome positive chronic myeloid leukaemia patients using real-time quantitative RT-PCR. Br J Haematol 1998; 102: 768–774.

    Article  CAS  PubMed  Google Scholar 

  38. Preudhomme C, Revillion F, Merlat A, Hornez L, Roumier C, Duflos-Grardel N et al. Detection of BCR-ABL transcripts in chronic myeloid leukemia (CML) using a ‘real time’ quantitative RT-PCR assay. Leukemia 1999; 13: 957–964.

    Article  CAS  PubMed  Google Scholar 

  39. Radich JP, Gooley T, Bryant E, Chauncey T, Clift R, Beppu L et al. The significance of bcr-abl molecular detection in chronic myeloid leukemia patients ‘late,’ 18 months or more after transplantation. Blood 2001; 98: 1701–1707.

    Article  CAS  PubMed  Google Scholar 

  40. Yokota H, Tsuno NH, Tanaka Y, Fukui T, Kitamura K, Hirai H et al. Quantification of minimal residual disease in patients with e1a2 BCR-ABL-positive acute lymphoblastic leukemia using a real-time RT-PCR assay. Leukemia 2002; 16: 1167–1175.

    Article  CAS  PubMed  Google Scholar 

  41. Cassinat B, Zassadowski F, Balitrand N, Barbey C, Rain JD, Fenaux P et al. Quantitation of minimal residual disease in acute promyelocytic leukemia patients with t(15;17) translocation using real-time RT-PCR. Leukemia 2000; 14: 324–328.

    Article  CAS  PubMed  Google Scholar 

  42. Marcucci G, Livak KJ, Bi W, Strout MP, Bloomfield CD, Caligiuri MA . Detection of minimal residual disease in patients with AML1/ETO-associated acute myeloid leukemia using a novel quantitative reverse transcription polymerase chain reaction assay. Leukemia 1998; 12: 1482–1489.

    Article  CAS  PubMed  Google Scholar 

  43. Krauter J, Wattjes MP, Nagel S, Heidenreich O, Krug U, Kafert S et al. Real-time RT-PCR for the detection and quantification of AML1/MTG8 fusion transcripts in t(8;21)-positive AML patients. Br J Haematol 1999; 107: 80–85.

    Article  CAS  PubMed  Google Scholar 

  44. Sugimoto T, Das H, Imoto S, Murayama T, Gomyo H, Chakraborty S et al. Quantitation of minimal residual disease in t(8;21)-positive acute myelogenous leukemia patients using real-time quantitative RT-PCR. Am J Hematol 2000; 64: 101–106.

    Article  CAS  PubMed  Google Scholar 

  45. Marcucci G, Caligiuri MA, Dohner H, Archer KJ, Schlenk RF, Dohner K et al. Quantification of CBFbeta/MYH11 fusion transcript by real time RT-PCR in patients with INV(16) acute myeloid leukemia. Leukemia 2001; 15: 1072–1080.

    Article  CAS  PubMed  Google Scholar 

  46. Buonamici S, Ottaviani E, Testoni N, Montefusco V, Visani G, Bonifazi F et al. Real-time quantitation of minimal residual disease in inv(16)-positive acute myeloid leukemia may indicate risk for clinical relapse and may identify patients in a curable state. Blood 2002; 99: 443–449.

    Article  CAS  PubMed  Google Scholar 

  47. Drunat S, Olivi M, Brunie G, Grandchamp B, Vilmer E, Bieche I et al. Quantification of TEL-AML1 transcript for minimal residual disease assessment in childhood acute lymphoblastic leukaemia. Br J Haematol 2001; 114: 281–289.

    Article  CAS  PubMed  Google Scholar 

  48. Seeger K, Kreuzer KA, Lass U, Taube T, Buchwald D, Eckert C et al. Molecular quantification of response to therapy and remission status in TEL-AML1-positive childhood ALL by real-time reverse transcription polymerase chain reaction. Cancer Res 2001; 61: 2517–2522.

    CAS  PubMed  Google Scholar 

  49. Pallisgaard N, Clausen N, Schroder H, Hokland P . Rapid and sensitive minimal residual disease detection in acute leukemia by quantitative real-time RT-PCR exemplified by t(12;21) TEL-AML1 fusion transcript. Genes Chromosomes Cancer 1999; 26: 355–365.

    Article  CAS  PubMed  Google Scholar 

  50. Beillard E, Pallisgaard N, Bi W, van der Velden VHJ, Dee R, van der Schoot CE et al. Evaluation of candidate control genes for diagnosis and residual disease detection in leukemic patients using ‘real-time’ quantitative reverse-transcriptase polymerase chain reaction (RQ-PCR) – A Europe Against Cancer Program. Leukemia 2003, (in press).

  51. Livak K, Flood S, Marmaro J, Giusti W, Deetz K . Oligonucleotides with fluorescent dyes at apposite ends provides a quenched probe system useful for detecting PCR product and nucleic acid hybridization. PCR Meth Appl 1995; 4: 357–362.

    Article  CAS  Google Scholar 

  52. van der Velden VHJ, Szczepanski T, van Dongen JJM . Polymerase chain reaction, real-time quantitative. In: Brenner S, Miller JH (eds). Encyclopedia of Genetics. London: Academic Press, 2001, pp 1503–1506.

    Chapter  Google Scholar 

  53. Saussele S, Weisser A, Muller MC, Emig M, La Rosee P, Paschka P et al. Frequent polymorphism in BCR exon b2 identified in BCR-ABL positive and negative individuals using fluorescent hybridization probes. Leukemia 2000; 14: 2006–2010.

    Article  CAS  PubMed  Google Scholar 

  54. Mellentin JD, Nourse J, Hunger SP, Smith SD, Cleary ML . Molecular analysis of the t(1;19) breakpoint cluster region in pre-B cell acute lymphoblastic leukemias. Genes Chromosomes Cancer 1990; 2: 239–247.

    Article  CAS  PubMed  Google Scholar 

  55. Nourse J, Mellentin JD, Galili N, Wilkinson J, Stanbridge E, Smith SD et al. Chromosomal translocation t(1;19) results in synthesis of a homeobox fusion mRNA that codes for a potential chimeric transcription factor. Cell 1990; 60: 535–545.

    Article  CAS  PubMed  Google Scholar 

  56. Kamps MP, Murre C, Sun XH, Baltimore D . A new homeobox gene contributes the DNA binding domain of the t(1;19) translocation protein in pre-B ALL. Cell 1990; 60: 547–555.

    Article  CAS  PubMed  Google Scholar 

  57. Crist WM, Carroll AJ, Shuster JJ, Behm FG, Whitehead M, Vietti TJ et al. Poor prognosis of children with pre-B acute lymphoblastic leukemia is associated with the t(1;19)(q23;p13): a Pediatric Oncology Group study. Blood 1990; 76: 117–122.

    CAS  PubMed  Google Scholar 

  58. Hunger SP, Sun T, Boswell AF, Carroll AJ, McGavran L . Hyperdiploidy and E2A-PBX1 fusion in an adult with t(1;19)+ acute lymphoblastic leukemia: case report and review of the literature. Genes Chromosomes Cancer 1997; 20: 392–398.

    Article  CAS  PubMed  Google Scholar 

  59. Borowitz MJ, Hunger SP, Carroll AJ, Shuster JJ, Pullen DJ, Steuber CP et al. Predictability of the t(1;19)(q23;p13) from surface antigen phenotype: implications for screening cases of childhood acute lymphoblastic leukemia for molecular analysis: a Pediatric Oncology Group study. Blood 1993; 82: 1086–1091.

    CAS  PubMed  Google Scholar 

  60. Privitera E, Kamps MP, Hayashi Y, Inaba T, Shapiro LH, Raimondi SC et al. Different molecular consequences of the 1;19 chromosomal translocation in childhood B-cell precursor acute lymphoblastic leukemia. Blood 1992; 79: 1781–1788.

    CAS  PubMed  Google Scholar 

  61. Privitera E, Luciano A, Ronchetti D, Arico M, Santostasi T, Basso G et al. Molecular variants of the 1;19 chromosomal translocation in pediatric acute lymphoblastic leukemia (ALL). Leukemia 1994; 8: 554–559.

    CAS  PubMed  Google Scholar 

  62. Hunger SP, Galili N, Carroll AJ, Crist WM, Link MP, Cleary ML . The t(1;19)(q23;p13) results in consistent fusion of E2A and PBX1 coding sequences in acute lymphoblastic leukemias. Blood 1991; 77: 687–693.

    CAS  PubMed  Google Scholar 

  63. Izraeli S, Kovar H, Gadner H, Lion T . Unexpected heterogeneity in E2A/PBX1 fusion messenger RNA detected by the polymerase chain reaction in pediatric patients with acute lymphoblastic leukemia. Blood 1992; 80: 1413–1417.

    CAS  PubMed  Google Scholar 

  64. Van Dijk MA, Voorhoeve PM, Murre C . Pbx1 is converted into a transcriptional activator upon acquiring the N-terminal region of E2A in pre-B-cell acute lymphoblastoid leukemia. Proc Natl Acad Sci USA 1993; 90: 6061–6065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Monica K, LeBrun DP, Dedera DA, Brown R, Cleary ML . Transformation properties of the E2a-Pbx1 chimeric oncoprotein: fusion with E2a is essential, but the Pbx1 homeodomain is dispensable. Mol Cell Biol 1994; 14: 8304–8314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Dedera DA, Waller EK, LeBrun DP, Sen-Majumdar A, Stevens ME, Barsh GS et al. Chimeric homeobox gene E2A-PBX1 induces proliferation, apoptosis, and malignant lymphomas in transgenic mice. Cell 1993; 74: 833–843.

    Article  CAS  PubMed  Google Scholar 

  67. Kamps MP, Baltimore D . E2A-Pbx1, the t(1;19) translocation protein of human pre-B-cell acute lymphocytic leukemia, causes acute myeloid leukemia in mice. Mol Cell Biol 1993; 13: 351–357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lanza C, Gottardi E, Gaidano C, Vivenza C, Parziale A, Perfetto F et al. Persistence of E2A/PBX1 transcripts in t(1;19) childhood acute lymphoblastic leukemia: correlation with chamotherapy intensity and clinical outcome. Leukemia Res 1996; 20: 441–443.

    Article  CAS  Google Scholar 

  69. Izraeli S, Janssen JW, Haas OA, Harbott J, Brok SF, Walther JU et al. Detection and clinical relevance of genetic abnormalities in pediatric acute lymphoblastic leukemia: a comparison between cytogenetic and polymerase chain reaction analyses. Leukemia 1993; 7: 671–678.

    CAS  PubMed  Google Scholar 

  70. Hunger SP, Fall MZ, Camitta BM, Carroll AJ, Link MP, Lauer SJ et al. E2A-PBX1 chimeric transcript status at end of consolidation is not predictive of treatment outcome in childhood acute lymphoblastic leukemias with a t(1;19)(q23;p13): a Pediatric Oncology Group study. Blood 1998; 91: 1021–1028.

    CAS  PubMed  Google Scholar 

  71. Privitera E, Rivolta A, Ronchetti D, Mosna G, Giudici G, Biondi A . Reverse transcriptase/polymerase chain reaction follow up and minimal residual disease detection in t(1;19)-positive acute lymphoblastic leukaemia. Br J Haematol 1996; 92: 653–658.

    Article  CAS  PubMed  Google Scholar 

  72. Devaraj PE, Foroni L, Janossy G, Hoffbrand AV, Secker-Walker LM . Expression of the E2A-PBX1 fusion transcripts in t(1;19)(q23;p13) and der(19)t(1;19) at diagnosis and in remission of acute lymphoblastic leukemia with different B lineage immunophenotypes. Leukemia 1995; 9: 821–825.

    CAS  PubMed  Google Scholar 

  73. Rowley JD . Molecular genetics in acute leukemia. Leukemia 2000; 14: 513–517.

    Article  CAS  PubMed  Google Scholar 

  74. Yu BD, Hess JL, Horning SE, Brown GAJ, Korsmeyer SJ . Altered Hox expression and segmental identity in MLL-mutant mice. Nature 1995; 378: 505–508.

    Article  CAS  PubMed  Google Scholar 

  75. Isnard P, Core N, Naquet P, Djabali M . Altered lymphoid development in mice deficient for the mAF4 proto-oncogene. Blood 2000; 96: 705–710.

    CAS  PubMed  Google Scholar 

  76. Kersey JH, Wang D, Oberto M . Resistance of t(4;11) (MLL-AF4 fusion gene) leukemias to stress-induced cell death: possible mechanism for extensive extramedullary accumulation of cells and poor prognosis. Leukemia 1998; 12: 1561–1564.

    Article  CAS  PubMed  Google Scholar 

  77. Uckun FM, Herman-Hatten K, Crotty ML, Sensel MG, Sather HN, Tuel-Ahlgren L et al. Clinical significance of MLL-AF4 fusion transcript expression in the absence of a cytogenetically detectable t(4;11)(q21;q23) chromosomal translocation. Blood 1998; 92: 810–821.

    CAS  PubMed  Google Scholar 

  78. Trka J, Zuna J, Hrusak O, Michalova K, Muzikova K, Kalinova M et al. No evidence for MLL/AF4 expression in normal cord blood samples. Blood 1999; 93: 1106–1107, discussion 1108–1110.

    CAS  PubMed  Google Scholar 

  79. Kim-Rouille MH, MacGregor A, Wiedemann LM, Greaves MF, Navarrete C . MLL-AF4 gene fusions in normal newborns. Blood 1999; 93: 1107–1108.

    CAS  PubMed  Google Scholar 

  80. Cimino G, Elia L, Rapanotti MC, Sprovieri T, Mancini M, Cuneo A et al. A prospective study of residual-disease monitoring of the ALL1/AF4 transcript in patients with t(4;11) acute lymphoblastic leukemia. Blood 2000; 95: 96–101.

    CAS  PubMed  Google Scholar 

  81. Romana SP, Poirel H, Leconiat M, Flexor MA, Mauchauffe M, Jonveaux P et al. High frequency of t(12;21) in childhood B-lineage acute lymphoblastic leukemia. Blood 1995; 86: 4263–4269.

    CAS  PubMed  Google Scholar 

  82. Raynaud S, Mauvieux L, Cayuela J, Bastard C, Bilhou-Nabera C, Debuire B et al. TEL/AML1 fusion gene is a rare event in adult acute lymphoblastic leukemia. Leukemia 1996; 10: 1529–1530.

    CAS  PubMed  Google Scholar 

  83. Borkhardt A, Cazzaniga G, Viehmann S, Valsecchi MG, Ludwig WD, Burci L et al. Incidence and clinical relevance of TEL/AML1 fusion genes in children with acute lymphoblastic leukemia enrolled in the German and Italian multicenter therapy trials. Associazione Italiana Ematologia Oncologia Pediatrica and the Berlin–Frankfurt–Munster Study Group. Blood 1997; 90: 571–577.

    CAS  PubMed  Google Scholar 

  84. Heibert SW, Lutterbach B, Durst K, Wang L, Linggi B, Wu S et al. Mechanisms of transcriptional repression by the t(8;21)-, t(12;21)-, and inv(16)-encoded fusion proteins. Cancer Chemother Pharmacol 2001; 48 (Suppl 1): S31–S34.

    Article  PubMed  Google Scholar 

  85. Satake N, Kobayashi H, Tsunematsu Y, Kawasaki H, Horikoshi Y, Koizumi S et al. Minimal residual disease with TEL-AML1 fusion transcript in childhood acute lymphoblastic leukaemia with t(12;21). Br J Haematol 1997; 97: 607–611.

    Article  CAS  PubMed  Google Scholar 

  86. Harbott J, Viehmann S, Borkhardt A, Henze G, Lampert F . Incidence of TEL/AML1 fusion gene analyzed consecutively in children with acute lymphoblastic leukemia in relapse. Blood 1997; 90: 4933–4937.

    CAS  PubMed  Google Scholar 

  87. Seeger K, Adams HP, Buchwald D, Beyermann B, Kremens B, Niemeyer C et al. TEL-AML1 fusion transcript in relapsed childhood acute lymphoblastic leukaemia. The Berlin–Frankfurt–Munster Study Group. Blood 1998; 91: 1716–1722.

    CAS  PubMed  Google Scholar 

  88. Loh ML, Silverman LB, Young ML, Neuberg D, Golub TR, Sallan SE et al. Incidence of TEL/AML1 fusion in children with relapsed acute lymphoblastic leukemia. Blood 1998; 92: 4792–4797.

    CAS  PubMed  Google Scholar 

  89. Maloney K, McGavran L, Murphy J, Odom L, Stork L, Wei Q et al. TEL-AML1 fusion identifies a subset of children with standard risk acute lymphoblastic leukemia who have an excellent prognosis when treated with therapy that includes a single delayed intensification. Leukemia 1999; 13: 1708–1712.

    Article  CAS  PubMed  Google Scholar 

  90. Zuna J, Hrusak O, Kalinova M, Muzikova K, Stary J, Trka J . TEL/AML1 positivity in childhood ALL: average or better prognosis? Czech Paediatric Haematology Working Group. Leukemia 1999; 13: 22–24.

    Article  CAS  PubMed  Google Scholar 

  91. Cayuela JM, Baruchel A, Orange C, Madani A, Auclerc MF, Daniel MT et al. TEL-AML1 fusion RNA as a new target to detect minimal residual disease in pediatric B-cell precursor acute lymphoblastic leukemia. Blood 1996; 88: 302–308.

    CAS  PubMed  Google Scholar 

  92. Ballerini P, Landman Parker J, Laurendeau I, Olivi M, Vidaud M, Adam M et al. Quantitative analysis of TEL/AML1 fusion transcripts by real-time RT-PCR assay in childhood acute lymphoblastic leukemia. Leukemia 2000; 14: 1526–1528.

    Article  CAS  PubMed  Google Scholar 

  93. Rosenfeld C, Goutner A, Choquet C, Venuat AM, Kayibanda B, Pico JL et al. Phenotypic characterisation of a unique non-T, non-B acute lymphoblastic leukaemia cell line. Nature 1977; 267: 841–843.

    Article  CAS  PubMed  Google Scholar 

  94. Groffen J, Stephenson JR, Heisterkamp N, de Klein A, Bartram CR, Grosveld G . Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell 1984; 36: 93–99.

    Article  CAS  PubMed  Google Scholar 

  95. Hoelzer D . Treatment of acute lymphoblastic leukemia. Semin Hematol 1994; 31: 1–15.

    CAS  PubMed  Google Scholar 

  96. Cuneo A, Ferrant A, Michaux JL, Demuynck H, Boogaerts M, Louwagie A et al. Philadelphia chromosome-positive acute myeloid leukemia: cytoimmunologic and cytogenetic features. Haematologica 1996; 81: 423–427.

    CAS  PubMed  Google Scholar 

  97. Gleissner B, Gokbuget N, Bartram CR, Janssen B, Rieder H, Janssen JW et al. Leading prognostic relevance of the BCR-ABL translocation in adult acute B-lineage lymphoblastic leukemia: a prospective study of the German Multicenter Trial Group and confirmed polymerase chain reaction analysis. Blood 2002; 99: 1536–1543.

    Article  CAS  PubMed  Google Scholar 

  98. Faderl S, Talpaz M, Estrov Z, O’Brien S, Kurzrock R, Kantarjian HM . The biology of chronic myeloid leukemia. N Engl J Med 1999; 341: 164–172.

    Article  CAS  PubMed  Google Scholar 

  99. Melo JV . The diversity of BCR-ABL fusion proteins and their relationship to leukemia phenotype. Blood 1996; 88: 2375–2384.

    CAS  PubMed  Google Scholar 

  100. Saglio G, Guerrasio A, Rosso C, Zaccaria A, Tassinari A, Serra A et al. New type of Bcr/Abl junction in Philadelphia chromosome-positive chronic myelogenous leukemia. Blood 1990; 76: 1819–1824.

    CAS  PubMed  Google Scholar 

  101. Pane F, Frigeri F, Sindona M, Luciano L, Ferrara F, Cimino R et al. Neutrophilic-chronic myeloid leukemia: a distinct disease with a specific molecular marker (BCR/ABL with C3/A2 junction). Blood 1996; 88: 2410–2414.

    CAS  PubMed  Google Scholar 

  102. Secker-Walker LM, Craig JM, Hawkins JM, Hoffbrand AV . Philadelphia positive acute lymphoblastic leukemia in adults: age distribution, BCR breakpoint and prognostic significance. Leukemia 1991; 5: 196–199.

    CAS  PubMed  Google Scholar 

  103. Melo JV, Myint H, Galton DAG, Goldman JM . P190BCR/ABL chronic myeloid leukemia: the missing link with chronic myelomonocytic leukemia? Leukemia 1994; 8: 208–211.

    CAS  PubMed  Google Scholar 

  104. Sirard C, Laneuville P, Dick JE . Expression of bcr-abl abrogates factor-dependent growth of human hematopoietic M07E cells by an autocrine mechanism. Blood 1994; 83: 1575–1585.

    CAS  PubMed  Google Scholar 

  105. Radich JP, Kopecky KJ, Boldt DH, Head D, Slovak ML, Babu R et al. Detection of BCR-ABL fusion genes in adult acute lymphoblastic leukemia by the polymerase chain reaction. Leukemia 1994; 8: 1688–1695.

    CAS  PubMed  Google Scholar 

  106. Brisco MJ, Sykes PJ, Hughes E, Dolman G, Neoh SH, Peng LM et al. Monitoring minimal residual disease in peripheral blood in B-lineage acute lymphoblastic leukaemia. Br J Haematol 1997; 99: 314–319.

    Article  CAS  PubMed  Google Scholar 

  107. Annino L, Ferrari A, Lamanda M, Mandelli F, Lo Coco F, Pane F . PCR-detectable transcripts in long-term remission of P190(BCR/ABL)-positive acute lymphoblastic leukemia. Blood 2000; 95: 4018–4019.

    CAS  PubMed  Google Scholar 

  108. Radich J, Gehly G, Lee A, Avery R, Bryant E, Edmands S et al. Detection of bcr-abl transcripts in Philadelphia chromosome-positive acute lymphoblastic leukemia after marrow transplantation. Blood 1997; 89: 2602–2609.

    CAS  PubMed  Google Scholar 

  109. Nowell PC, Hungerford DA . A minute chromosome in human chronic granulocytic leukemia. Science 1960; 132: 1497.

    Google Scholar 

  110. de Klein A, van Kessel AG, Grosveld G, Bartram CR, Hagemeijer A, Bootsma D et al. A cellular oncogene is translocated to the Philadelphia chromosome in chronic myelocytic leukaemia. Nature 1982; 300: 765–767.

    Article  CAS  PubMed  Google Scholar 

  111. Lugo TG, Pendergast AM, Muller AJ, Witte ON . Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science 1990; 247: 1079–1082.

    Article  CAS  PubMed  Google Scholar 

  112. Hughes TP, O’Shea P, Morgan G, Martiat P, Goldman JM . Persistence of BCR/ABL transcripts after BMT for CML detected by PCR reflects a high risk of relapse. Bone Marrow Transplant 1991; 7 (Suppl 2): 23.

    PubMed  Google Scholar 

  113. Radich JP, Gehly G, Gooley T, Bryant E, Clift RA, Collins S et al. Polymerase chain reaction detection of the BCR-ABL fusion transcript after allogeneic marrow transplantation for chronic myeloid leukemia: results and implications in 346 patients. Blood 1995; 85: 2632–2638.

    CAS  PubMed  Google Scholar 

  114. Gabert J, Thuret I, Carcassonne Y, Maraninchi D, Mannoni P . Residual bcr/abl transcripts in chronic myeloid leukaemia. Lancet 1990; 335: 417–418.

    Article  CAS  PubMed  Google Scholar 

  115. Pignon JM, Henni T, Amselem S, Vidaud M, Duquesnoy P, Vernant JP et al. Frequent detection of minimal residual disease by use of the polymerase chain reaction in long-term survivors after bone marrow transplantation for chronic myeloid leukemia. Leukemia 1990; 4: 83–86.

    CAS  PubMed  Google Scholar 

  116. Miyamura K, Tahara T, Tanimoto M, Morishita Y, Kawashima K, Morishima Y et al. Long persistent bcr-abl positive transcript detected by polymerase chain reaction after marrow transplant for chronic myelogenous leukemia without clinical relapse: a study of 64 patients. Blood 1993; 81: 1089–1093.

    CAS  PubMed  Google Scholar 

  117. van Rhee F, Lin F, Cross NC, Reid CD, Lakhani AK, Szydlo RM et al. Detection of residual leukaemia more than 10 years after allogeneic bone marrow transplantation for chronic myelogenous leukaemia. Bone Marrow Transplant 1994; 14: 609–612.

    CAS  PubMed  Google Scholar 

  118. Thompson JD, Brodsky I, Yunis JJ . Molecular quantification of residual disease in chronic myelogenous leukemia after bone marrow transplantation. Blood 1992; 79: 1629–1635.

    CAS  PubMed  Google Scholar 

  119. Lion T, Izraeli S, Henn T, Gaiger A, Mor W, Gadner H . Monitoring of residual disease in chronic myelogenous leukemia by quantitative polymerase chain reaction. Leukemia 1992; 6: 495–499.

    CAS  PubMed  Google Scholar 

  120. Cross NC, Feng L, Chase A, Bungey J, Hughes TP, Goldman JM . Competitive polymerase chain reaction to estimate the number of BCR-ABL transcripts in chronic myeloid leukemia patients after bone marrow transplantation. Blood 1993; 82: 1929–1936.

    CAS  PubMed  Google Scholar 

  121. Cross NC . Minimal residual disease in chronic myeloid leukaemia. Hematol Cell Ther 1998; 40: 224–228.

    CAS  PubMed  Google Scholar 

  122. Hochhaus A, Lin F, Reiter A, Skladny H, Mason PJ, van Rhee F et al. Quantification of residual disease in chronic myelogenous leukemia patients on interferon-alpha therapy by competitive polymerase chain reaction. Blood 1996; 87: 1549–1555.

    CAS  PubMed  Google Scholar 

  123. Merx K, Muller MC, Kreil S, Lahaye T, Paschka P, Schoch C et al. Early reduction of BCR-ABL mRNA transcript levels predicts cytogenetic response in chronic phase CML patients treated with imatinib after failure of interferon alpha. Leukemia 2002; 16: 1579–1583.

    Article  CAS  PubMed  Google Scholar 

  124. Stentoft J, Pallisgaard N, Kjeldsen E, Holm MS, Nielsen JL, Hokland P . Kinetics of BCR-ABL fusion transcript levels in chronic myeloid leukemia patients treated with STI571 measured by quantitative real-time polymerase chain reaction. Eur J Haematol 2001; 67: 302–308.

    Article  CAS  PubMed  Google Scholar 

  125. Emig M, Saussele S, Wittor H, Weisser A, Reiter A, Willer A et al. Accurate and rapid analysis of residual disease in patients with CML using specific fluorescent hybridization probes for real time quantitative RT-PCR. Leukemia 1999; 13: 1825–1832.

    Article  CAS  PubMed  Google Scholar 

  126. Saffroy R, Lemoine A, Brezillon P, Frenoy N, Delmas B, Goldschmidt E et al. Real-time quantitation of bcr-abl transcripts in haematological malignancies. Eur J Haematol 2000; 65: 258–266.

    Article  CAS  PubMed  Google Scholar 

  127. Barbany G, Hagberg A, Olsson-Stromberg U, Simonsson B, Syvanen AC, Landegren U . Manifold-assisted reverse transcription-PCR with real-time detection for measurement of the BCR-ABL fusion transcript in chronic myeloid leukemia patients. Clin Chem 2000; 46: 913–920.

    CAS  PubMed  Google Scholar 

  128. Schoch C, Schnittger S, Bursch S, Gerstner D, Hochhaus A, Berger U et al. Comparison of chromosome banding analysis, interphase- and hypermetaphase-FISH, qualitative and quantitative PCR for diagnosis and for follow-up in chronic myeloid leukemia: a study on 350 cases. Leukemia 2002; 16: 53–59.

    Article  CAS  PubMed  Google Scholar 

  129. Aplan PD, Lombardi DP, Reaman GH, Sather HN, Hammond GD, Kirsch IR . Involvement of the putative hematopoietic transcription factor SCL in T-cell acute lymphoblastic leukemia. Blood 1992; 79: 1327–1333.

    CAS  PubMed  Google Scholar 

  130. Bash RO, Crist WM, Shuster JJ, Link MP, Amylon M, Pullen J et al. Clinical features and outcome of T-cell acute lymphoblastic leukemia in childhood with respect to alterations at the TAL1 locus: a Pediatric Oncology Group study. Blood 1993; 81: 2110–2117.

    CAS  PubMed  Google Scholar 

  131. Bernard O, Lecointe N, Jonveaux P, Souyri M, Mauchauffe M, Berger R et al. Two site-specific deletions and t(1;14) translocation restricted to human T-cell acute leukemias disrupt the 5′ part of the tal-1 gene. Oncogene 1991; 6: 1477–1488.

    CAS  PubMed  Google Scholar 

  132. Breit TM, Mol EJ, Wolvers-Tettero IL, Ludwig WD, van Wering ER, van Dongen JJ . Site-specific deletions involving the tal-1 and sil genes are restricted to cells of the T cell receptor alpha/beta lineage: T cell receptor delta gene deletion mechanism affects multiple genes. J Exp Med 1993; 177: 965–977.

    Article  CAS  PubMed  Google Scholar 

  133. Brown L, Cheng JT, Chen Q, Siciliano MJ, Crist W, Buchanan G et al. Site-specific recombination of the tal-1 gene is a common occurrence in human T cell leukemia. EMBO J 1990; 9: 3343–3351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Delabesse E, Bernard M, Landman-Parker J, Davi F, Leboeuf D, Varet B et al. Simultaneous SIL-TAL1 RT-PCR detection of all tal(d) deletions and identification of novel tal(d) variants. Br J Haematol 1997; 99: 901–907.

    Article  CAS  PubMed  Google Scholar 

  135. Delabesse E, Bernard M, Meyer V, Smit L, Pulford K, Cayuela JM et al. TAL1 expression does not occur in the majority of T-ALL blasts. Br J Haematol 1998; 102: 449–457.

    Article  CAS  PubMed  Google Scholar 

  136. Begley CG, Green AR . The SCL gene: from case report to critical hematopoietic regulator. Blood 1999; 93: 2760–2770.

    CAS  PubMed  Google Scholar 

  137. Begley CG, Aplan PD, Denning SM, Haynes BF, Waldmann TA, Kirsch IR . The gene SCL is expressed during early hematopoiesis and encodes a differentiation-related DNA-binding motif. Proc Natl Acad Sci USA 1989; 86: 10128–10132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Aplan PD, Nakahara K, Orkin SH, Kirsch IR . The SCL gene product: a positive regulator of erythroid differentiation. EMBO J 1992; 11: 4073–4081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Aplan PD, Lombardi DP, Kirsch IR . Structural characterization of SIL, a gene frequently disrupted in T-cell acute lymphoblastic leukemia. Mol Cell Biol 1991; 11: 5462–5469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Chen Q, Cheng JT, Tasi LH, Schneider N, Buchanan G, Carroll A et al. The tal gene undergoes chromosome translocation in T cell leukemia and potentially encodes a helix–loop–helix protein. EMBO J 1990; 9: 415–424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Huang W, Kuang SQ, Huang QH, Dong S, Zhang T, Gu LJ et al. RT/PCR detection of SIL-TAL-1 fusion mRNA in Chinese T-cell acute lymphoblastic leukemia (T-ALL). Cancer Genet Cytogenet 1995; 81: 76–82.

    Article  CAS  PubMed  Google Scholar 

  142. Macintyre EA, Smit L, Ritz J, Kirsch IR, Strominger JL . Disruption of the SCL locus in T-lymphoid malignancies correlates with commitment to the T-cell receptor alpha beta lineage. Blood 1992; 80: 1511–1520.

    CAS  PubMed  Google Scholar 

  143. Breit TM, Beishuizen A, Ludwig WD, Mol EJ, Adriaansen HJ, van Wering ER et al. tal-1 deletions in T-cell acute lymphoblastic leukemia as PCR target for detection of minimal residual disease. Leukemia 1993; 7: 2004–2011.

    CAS  PubMed  Google Scholar 

  144. Pongers-Willemse MJ, Seriu T, Stolz F, d’Aniello E, Gameiro P, Pisa P et al. Primers and protocols for standardized detection of minimal residual disease in acute lymphoblastic leukemia using immunoglobulin and T cell receptor gene rearrangements and TAL1 deletions as PCR targets: report of the BIOMED-1 CONCERTED ACTION: investigation of minimal residual disease in acute leukemia. Leukemia 1999; 13: 110–118.

    Article  CAS  PubMed  Google Scholar 

  145. Chen X, Pan Q, Stow P, Behm FG, Goorha R, Pui CH et al. Quantification of minimal residual disease in T-lineage acute lymphoblastic leukemia with the TAL-1 deletion using a standardized real-time PCR assay. Leukemia 2001; 15: 166–170.

    Article  CAS  PubMed  Google Scholar 

  146. Rowley JD, Golomb HM, Dougherty C . 15/17 translocation, a consistent chromosomal change in acute promyelocytic leukaemia. Lancet 1977; 1: 549–550.

    Article  CAS  PubMed  Google Scholar 

  147. Biondi A, Rambaldi A . Acute promyelocytic leukemia. In: Henderson ES, Lister TA, Greaves MS (eds), Leukemia, 7th edn, Chap. 23. Philadelphia: WB Saunders, 2002, pp 529–543.

    Google Scholar 

  148. Longo L, Pandolfi PP, Biondi A, Rambaldi A, Mencarelli A, Lo Coco F et al. Rearrangements and aberrant expression of the retinoic acid receptor alpha gene in acute promyelocytic leukemias. J Exp Med 1990; 172: 1571–1575.

    Article  CAS  PubMed  Google Scholar 

  149. Borrow J, Goddard AD, Sheer D, Solomon E . Molecular analysis of acute promyelocytic leukemia breakpoint cluster region on chromosome 17. Science 1990; 249: 1577–1580.

    Article  CAS  PubMed  Google Scholar 

  150. de The H, Chomienne C, Lanotte M, Degos L, Dejean A . The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor alpha gene to a novel transcribed locus. Nature 1990; 347: 558–561.

    Article  CAS  PubMed  Google Scholar 

  151. Lemons RS, Eilender D, Waldmann RA, Rebentisch M, Frej AK, Ledbetter DH et al. Cloning and characterization of the t(15;17) translocation breakpoint region in acute promyelocytic leukemia. Genes Chromosomes Cancer 1990; 2: 79–87.

    Article  CAS  PubMed  Google Scholar 

  152. Petkovich M, Brand NJ, Krust A, Chambon P . A human retinoic acid receptor which belongs to the family of nuclear receptors. Nature 1987; 330: 444–450.

    Article  CAS  PubMed  Google Scholar 

  153. Giguere V, Ong ES, Segui P, Evans RM . Identification of a receptor for the morphogen retinoic acid. Nature 1987; 330: 624–629.

    Article  CAS  PubMed  Google Scholar 

  154. Zelent A, Guidez F, Melnick A, Waxman S, Licht JD . Translocations of the RARalpha gene in acute promyelocytic leukemia. Oncogene 2001; 20: 7186–7203.

    Article  CAS  PubMed  Google Scholar 

  155. Grimwade D . The pathogenesis of acute promyelocytic leukaemia: evaluation of the role of molecular diagnosis and monitoring in the management of the disease. Br J Haematol 1999; 106: 591–613.

    Article  CAS  PubMed  Google Scholar 

  156. Reiter A, Sauβele S, Grimwade D, Wiesmels JL, Segal M, Lafage-Pochitaloff M et al. Genomic anatomy of the reciprocal translocation t(15;17) in acute promyelocytic leukemia. Gene Chromosome Cancer 2003; 36: 175–188.

    Article  CAS  Google Scholar 

  157. Lo Coco F, Diverio D, Pandolfi PP, Biondi A, Rossi V, Avvisati G et al. Molecular evaluation of residual disease as a predictor of relapse in acute promyelocytic leukaemia. Lancet 1992; 340: 1437–1438.

    Article  CAS  PubMed  Google Scholar 

  158. Burnett AK, Grimwade D, Solomon E, Wheatley K, Goldstone AH . Presenting white blood cell count and kinetics of molecular remission predict prognosis in acute promyelocytic leukemia treated with all-trans retinoic acid: result of the Randomized MRC Trial. Blood 1999; 93: 4131–4143.

    CAS  PubMed  Google Scholar 

  159. Slack JL, Bi W, Livak KJ, Beaubier N, Yu M, Clark M et al. Pre-clinical validation of a novel, highly sensitive assay to detect PML-RARalpha mRNA using real-time reverse-transcription polymerase chain reaction. J Mol Diagn 2001; 3: 141–149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Visani G, Buonamici S, Malagola M, Isidori A, Piccaluga PP, Martinelli G et al. Pulsed ATRA as single therapy restores long-term remission in PML-RARalpha-positive acute promyelocytic leukemia patients: real time quantification of minimal residual disease. A pilot study. Leukemia 2001; 15: 1696–1700.

    Article  CAS  PubMed  Google Scholar 

  161. Kwong YL, Au WY, Chim CS, Pang A, Suen C, Liang R . Arsenic trioxide- and idarubicin-induced remissions in relapsed acute promyelocytic leukaemia: clinicopathological and molecular features of a pilot study. Am J Hematol 2001; 66: 274–279.

    Article  CAS  PubMed  Google Scholar 

  162. Gallagher RE, Li YP, Rao S, Paietta E, Andersen J, Etkind P et al. Characterization of acute promyelocytic leukemia cases with PML-RAR alpha break/fusion sites in PML exon 6: identification of a subgroup with decreased in vitro responsiveness to all-trans retinoic acid. Blood 1995; 86: 1540–1547.

    CAS  PubMed  Google Scholar 

  163. Grimwade D, Howe K, Langabeer S, Davies L, Oliver F, Walker H et al. Establishing the presence of the t(15;17) in suspected acute promyelocytic leukaemia: cytogenetic, molecular and PML immunofluorescence assessment of patients entered into the M.R.C. ATRA trial. M.R.C. Adult Leukaemia Working Party. Br J Haematol 1996; 94: 557–573.

    CAS  PubMed  Google Scholar 

  164. Slack JL, Willman CL, Andersen JW, Li YP, Viswanatha DS, Bloomfield CD et al. Molecular analysis and clinical outcome of adult APL patients with the type V PML-RARalpha isoform: results from intergroup protocol 0129. Blood 2000; 95: 398–403.

    CAS  PubMed  Google Scholar 

  165. Lanotte M, Martin-Thouvenin V, Najman S, Balerini P, Valensi F, Berger R . NB4, a maturation inducible cell line with t(15;17) marker isolated from a human acute promyelocytic leukemia (M3). Blood 1991; 77: 1080–1086.

    CAS  PubMed  Google Scholar 

  166. Rowe D, Cotterill SJ, Ross FM, Bunyan DJ, Vickers SJ, Bryon J et al. Cytogenetically cryptic AML1-ETO and CBF beta-MYH11 gene rearrangements: incidence in 412 cases of acute myeloid leukaemia. Br J Haematol 2000; 111: 1051–1056.

    Article  CAS  PubMed  Google Scholar 

  167. Liu P, Hajra A, Wijmenga C, Collins F . Molecular pathogenesis of the chromosome16 inversion in the M4Eo subtype of acute myeloid leukemia. Blood 1995; 85: 2289–2302.

    CAS  PubMed  Google Scholar 

  168. Claxton DF, Liu P, Hsu HB, Marlton P, Hester J, Collins F et al. Detection of fusion transcripts generated by the inversion 16 chromosome in acute myeloid leukemia. Blood 1994; 83: 1750–1756.

    CAS  PubMed  Google Scholar 

  169. Hébert J, Cayuela JM, Daniel MT, Berger R, Sigaux F . Detection of minimal residual disease in acute myelomonocytic leukemia with abnormal marrow eosinophils by nested polymerase chain reaction with allele specific amplification. Blood 1994; 84: 2291–2296.

    PubMed  Google Scholar 

  170. Poirel H, Radford-Weiss I, Rack K, Troussard X, Veil A, Valensi F et al. Detection of the chromosome 16 CBFβ-MHY11 fusion transcript in myelomonocytic leukemias. Blood 1995; 85: 1313–1322.

    CAS  PubMed  Google Scholar 

  171. Costello R, Sainty D, Lecine P, Cusenier A, Mozziconacci MJ, Arnoulet C et al. Detection of CBFbeta/MYH11 fusion transcripts in acute myeloid leukemia: heterogeneity of cytological and molecular characteristics. Leukemia 1997; 11: 644–650.

    Article  CAS  PubMed  Google Scholar 

  172. Burnett AK, Goldstone AH, Stevens RM, Hann IM, Rees JK, Gray RG et al. Randomised comparison of addition of autologous bone-marrow transplantation to intensive chemotherapy for acute myeloid leukaemia in first remission: results of MRC AML 10 trial. UK Medical Research Council Adult and Children's Leukaemia Working Parties. Lancet 1998; 351: 700–708.

    Article  CAS  PubMed  Google Scholar 

  173. Burnett AK, Wheatley K, Goldstone AH, Stevens RF, Hann IM, Rees JHK et al. The value of allogeneic bone marrow transplant in patients with acute myeloid leukaemia at differing risk of relapse: results of the MRC AML10 trial. Br J Heamatol 2002; 118: 385–400.

    Article  Google Scholar 

  174. Marcucci G, Caligiuri MA, Bloomfield CD . Defining the ‘absence’ of the CBFbeta/MYH11 fusion transcript in patients with acute myeloid leukemia and inversion of chromosome 16 to predict long-term complete remission: a call for definitions. Blood 1997; 90: 5022–5024.

    CAS  PubMed  Google Scholar 

  175. Costello R, Sainty D, Blaise D, Gastaut JA, Poirel H, Buzyn-Veil A et al. Prognosis value of residual disease monitoring by polymerase chain reaction in patients with CBF beta/MYH11-positive acute myeloblastic leukemia [letter]. Blood 1997; 89: 2222–2223.

    CAS  PubMed  Google Scholar 

  176. Evans PA, Short MA, Jack AS, Norfolk DR, Child JA, Shiach CR et al. Detection and quantitation of the CBFbeta/MYH11 transcripts associated with the inv(16) in presentation and follow-up samples from patients with AML. Leukemia 1997; 11: 364–369.

    Article  CAS  PubMed  Google Scholar 

  177. Krauter J, Hoellge W, Wattjes MP, Nagel S, Heidenreich O, Bunjes D et al. Detection and quantification of CBFB/MYH11 fusion transcripts in patients with inv(16)-positive acute myeloblastic leukemia by real-time RT-PCR. Genes Chromosomes Cancer 2001; 30: 342–348.

    Article  CAS  PubMed  Google Scholar 

  178. Guerrasio A, Pilatrino C, De Micheli D, Cilloni D, Serra A, Gottardi E et al. Assessment of minimal residual disease (MRD) in CBFbeta/MYH11-positive acute myeloid leukemias by qualitative and quantitative RT-PCR amplification of fusion transcripts. Leukemia 2002; 16: 1176–1181.

    Article  CAS  PubMed  Google Scholar 

  179. Friedman AD . Leukemogenesis by CBF oncoproteins. Leukemia 1999; 13: 1932–1942.

    Article  CAS  PubMed  Google Scholar 

  180. Nucifora G, Larson RA, Rowley JD . Persistence of the t(8;21) translocation in patients with AML-M2 in long-term remission patients. Blood 1993; 82: 712–715.

    CAS  PubMed  Google Scholar 

  181. Kusec R, Laczika K, Knobl P, Friedl J, Greinix H, Kahls P et al. AML1/ETO fusion mRNA can be detected in remission blood samples of all patients with t(8;21) acute myeloid leukemia after chemotherapy or autologous bone marrow transplantation. Leukemia 1994; 8: 735–739.

    CAS  PubMed  Google Scholar 

  182. Miyamoto T, Weissman IL, Akashi K . AML1/ETO-expressing nonleukemic stem cells in acute myelogenous leukemia with 8;21 chromosomal translocation. Proc Natl Acad Sci USA 2000; 97: 7521–7526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Morschhauser F, Cayuela JM, Martini S, Baruchel A, Rousselot P, Socie G et al. Evaluation of minimal residual disease using reverse-transcription polymerase chain reaction in t(8;21) acute myeloid leukemia: a multicenter study of 51 patients. J Clin Oncol 2000; 18: 788–794.

    Article  CAS  PubMed  Google Scholar 

  184. Muto A, Mori S, Matsushita H, Awaya N, Ueno H, Takayama N et al. Serial quantification of minimal residual disease of t(8;21) acute myelogenous leukaemia with RT-competitive PCR assay. Br J Haematol 1996; 95: 85–94.

    Article  CAS  PubMed  Google Scholar 

  185. Tobal K, Yin JA . Monitoring of minimal residual disease by quantitative reverse transcriptase-polymerase chain reaction for AML1-MTG8 transcripts in AML-M2 with t(8; 21). Blood 1996; 88: 3704–3709.

    CAS  PubMed  Google Scholar 

  186. Tobal K, Newton J, Macheta M, Chang J, Morgenstern G, Evans PA et al. Molecular quantitation of minimal residual disease in acute myeloid leukemia with t(8;21) can identify patients in durable remission and predict clinical relapse. Blood 2000; 95: 815–819.

    CAS  PubMed  Google Scholar 

  187. Kondo M, Kudo K, Kimura H, Inaba J, Kato K, Kojima S et al. Real-time quantitative reverse transcription-polymerase chain reaction for the detection of AML1-MTG8 fusion transcripts in t(8;21)-positive acute myelogenous leukemia. Leuk Res 2000; 24: 951–956.

    Article  CAS  PubMed  Google Scholar 

  188. Fujimaki S, Funato T, Harigae H, Imaizumi M, Suzuki H, Kaneko Y et al. A quantitative reverse transcriptase polymerase chain reaction method for the detection of leukaemic cells with t(8;21) in peripheral blood. Eur J Haematol 2000; 64: 252–258.

    Article  CAS  PubMed  Google Scholar 

  189. Asou H, Tashiro S, Hamamoto K, Otsuji A, Kita K, Kamada N . Establishment of a human acute myeloid leukemia cell line (Kasumi-1) with 8;21 chromosome translocation. Blood 1991; 77: 2031–2036.

    CAS  PubMed  Google Scholar 

  190. Hochhaus A, Weisser A, La Rosee P, Emig M, Muller MC, Saussele S et al. Detection and quantification of residual disease in chronic myelogenous leukemia. Leukemia 2000; 14: 998–1005.

    Article  CAS  PubMed  Google Scholar 

  191. Wattjes MP, Krauter J, Nagel S, Heidenreich O, Ganser A, Heil G . Comparison of nested competitive RT-PCR and real-time RT-PCR for the detection and quantification of AML1/MTG8 fusion transcripts in t(8;21) positive acute myelogenous leukemia. Leukemia 2000; 14: 329–335.

    Article  CAS  PubMed  Google Scholar 

  192. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25: 402–408.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been supported by the SANCO European Commission (no. SI2.129294 (99CVF2-016) and Applied Biosystems (Foster City, CA, USA). Additional support was given by national grants: ARC no. 5484, Ligue Contre le Cancer, Dutch Cancer Society/Koningin Wilhelmina Fonds (Grant SNWLK 2000-2268), Leukaemia Research Fund of Great Britain and Special Trustees of Guy's Hospital (DG); Fondos de Investigación de la Seguridad Social (00/1079), Beca del Instituto de Salut Carlos III (99/4230) and Fondos Feder (AC G7); Associazione Italiana per la Ricerca sul Cancro (AIRC), MURST and Fondazione M Tettamanti (GC), CNR PF Biotecnologie (Rome), MIUR (Rome), AIL (Rome), Regione Campania and Swedish Cancer Society.

We like to thank W Mayser for his logistic support during meetings, K Livak for useful discussions and C Marcou for secretarial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Gabert.

Additional information

The EAC network was composed of the following additional laboratories: (please see Table 36 below)

Supplementary Information Supplementary Information accompanies the paper on Leukemia website (http://www.nature.com/leu).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gabert, J., Beillard, E., van der Velden, V. et al. Standardization and quality control studies of ‘real-time’ quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia – A Europe Against Cancer Program. Leukemia 17, 2318–2357 (2003). https://doi.org/10.1038/sj.leu.2403135

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403135

Keywords

This article is cited by

Search

Quick links