Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Prenatal origin of hyperdiploid acute lymphoblastic leukemia in identical twins

Abstract

Studies in identical twins and with neonatal blood spots (Guthrie cards) have backtracked the origin of childhood acute leukemia and their associated chromosomal translocations to before birth. High hyperdiploidy is the most common genetic abnormality in childhood acute lymphoblastic leukemia (ALL). Evidence for an in utero initiation of this important genetic event in ALL is available from blood spots but remains limited. Twin children with hyperdiploid ALL have not hitherto been reported. We describe a pair of 2-year-old monozygotic twins with concordant B-cell precursor ALL and hyperdiploid karyotypes. One twin's leukemic cells had two rearranged TCRD alleles and one of these was a clonotypic Vδ2Dδ3 sequence shared with leukemic cells of the other twin. The twins' leukemic cells had several different IGH VHJH rearrangements but shared two common DHJH ‘stem’ sequences. We conclude that ALL in these twins is likely to have originated prenatally in one fetus before spreading to the other via intraplacental anastomoses. It is likely that one or more additional postnatal genetic events was required for overt leukemogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Ford AM, Ridge SA, Cabrera ME, Mahmoud H, Steel CM, Chan LC et al. In utero rearrangements in the trithorax-related oncogene in infant leukaemias. Nature 1993; 363: 358–360.

    Article  CAS  PubMed  Google Scholar 

  2. Gill Super HJ, Rothberg PG, Kobayashi H, Freeman AI, Diaz MO, Rowley JD . Clonal, nonconsitutional rearrangements of the MLL gene in infant twins with acute lymphoblastic leukemia: in utero chromosome rearrangement of 11q23. Blood 1994; 83: 641–644.

    CAS  PubMed  Google Scholar 

  3. Ford AM, Pombo-de-Oliveira MS, McCarthy KP, MacLean JM, Carrico KC, Vincent RF et al. Monoclonal origin of concordant T-cell malignancy in identical twins. Blood 1997; 89: 281–285.

    CAS  PubMed  Google Scholar 

  4. Ford AM, Bennett CA, Price CM, Bruin MCA, Van Wering ER, Greaves M . Fetal origins of the TEL-AML1 fusion gene in identical twins with leukemia. Proc Natl Acad Sci USA 1998; 95: 4584–4588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wiemels JL, Ford AM, Van Wering ER, Postma A, Greaves M . Protracted and variable latency of acute lymphoblastic leukemia after TEL-AML1 gene fusion in utero. Blood 1999; 94: 1057–1062.

    CAS  PubMed  Google Scholar 

  6. Wiemels JL, Cazzaniga G, Daniotti M, Eden OB, Addison GM, Masera G et al. Prenatal origin of acute lymphoblastic leukaemia in children. Lancet 1999; 354: 1499–1503.

    Article  CAS  PubMed  Google Scholar 

  7. Megonigal MD, Rappaport EF, Jones DH, Williams TM, Lovett BD, Kelly KM et al. t(11;22)(q23;q11.2) in acute myeloid leukemia of infant twins fuses MLL with hCDCrel, a cell division cycle gene in the genomic region of deletion in DiGeorge and velocardiofacial syndromes. Proc Natl Acad Sci USA 1998; 95: 6413–6418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Maia AT, Ford AM, Jalali GR, Harrison CJ, Taylor GM, Eden OB et al. Molecular tracking of leukemogenesis in a triplet pregnancy. Blood 2001; 98: 478–482.

    Article  CAS  PubMed  Google Scholar 

  9. Wiemels JL, Greaves M . Structure and possible mechanisms of TEL-AML1 gene fusions in childhood acute lymphoblastic leukemia. Cancer Res 1999; 59: 4075–4082.

    CAS  PubMed  Google Scholar 

  10. Wiemels JL, Xiao Z, Buffler PA, Maia AT, Ma X, Dicks BM et al. In utero origin of t(8;21) AML1-ETO translocations in childhood acute myeloid leukemia. Blood 2002; 99: 3801–3805.

    Article  CAS  PubMed  Google Scholar 

  11. Gale KB, Ford AM, Repp R, Borkhardt A, Keller C, Eden OB et al. Backtracking leukemia to birth: identification of clonotypic gene fusion sequences in neonatal blood spots. Proc Natl Acad Sci USA 1997; 94: 13950–13954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yagi T, Hibi S, Tabata Y, Kuriyama K, Teramura T, Hashida T et al. Detection of clonotypic IGH and TCR rearrangements in the neonatal blood spots of infants and children with B-cell precursor acute lymphoblastic leukemia. Blood 2000; 96: 264–268.

    CAS  PubMed  Google Scholar 

  13. Fasching K, Panzer S, Haas OA, Marschalek R, Gadner H, Panzer-Grümayer ER . Presence of clone-specific antigen receptor gene rearrangements at birth indicates an in utero origin of diverse types of early childhood acute lymphoblastic leukemia. Blood 2000; 95: 2722–2724.

    CAS  PubMed  Google Scholar 

  14. Taub JW, Konrad MA, Ge Y, Naber JM, Scott JS, Matherly LH et al. High frequency of leukemic clones in newborn screening blood samples of children with B-precursor acute lymphoblastic leukemia. Blood 2002; 99: 2992–2996.

    Article  CAS  PubMed  Google Scholar 

  15. Panzer-Grümayer ER, Fasching K, Panzer S, Hettinger K, Schmitt K, Stöckler-Ipsiroglu S et al. Nondisjunction of chromosomes leading to hyperdiploid childhood B-cell precursor acute lymphoblastic leukemia is an early event during leukemogenesis. Blood 2002; 100: 347–349.

    Article  PubMed  Google Scholar 

  16. Harrison CJ, Martineau M, Secker-Walker LM . The Leukaemia Research Fund/United Kingdom Cancer Cytogenetics Group Karyotype Database in acute lymphoblastic leukaemia: a valuable resource for patient management. Br J Haematol 2001; 113: 3–10.

    Article  CAS  PubMed  Google Scholar 

  17. Ford AM, Molgaard HV, Greaves MF, Gould HJ . Immunoglobulin gene organisation and expression in haemopoietic stem cell leukaemia. EMBO J 1983; 2: 997–1001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schneider M, Panzer S, Stolz F, Fischer S, Gadner H, Panzer-Grümayer ER . Crosslineage TCR delta rearrangements occur shortly after the DJ joinings of the IgH genes in childhood precursor B ALL and display age-specific characteristics. Br J Haematol 1997; 99: 115–121.

    Article  CAS  PubMed  Google Scholar 

  19. Pongers-Willemse MJ, Seriu T, Stolz F, d'Aniello E, Gameiro P, Pisa P et al. Primers and protocols for standardized detection of minimal residual disease in acute lymphoblastic leukemia using immunoglobulin and T cell receptor gene rearrangements and TAL1 deletions as PCR targets: report of the BIOMED-1 CONCERTED ACTION: investigation of minimal residual disease in acute leukemia. Leukemia 1999; 13: 110–118.

    Article  CAS  PubMed  Google Scholar 

  20. Szczepanski T, Willemse MJ, Van Wering ER, van Weerden JF, Kamps WA, van Dongen JJ . Precursor-B-ALL with D(H)–J(H) gene rearrangements have an immature immunogenotype with a high frequency of oligoclonality and hyperdiploidy of chromosome 14. Leukemia 2001; 15: 1415–1423.

    Article  CAS  PubMed  Google Scholar 

  21. van der Velden VH, Willemse MJ, van der Schoot CE, Hahlen K, van Wering ER, van Dongen JJ . Immunoglobulin kappa deleting element rearrangements in precursor-B acute lymphoblastic leukemia are stable targets for detection of minimal residual disease by real-time quantitative PCR. Leukemia 2002; 16: 928–936.

    Article  CAS  PubMed  Google Scholar 

  22. Langerak AW, Szczepanski T, van der Burg M, Wolvers-Tettero IL, van Dongen JJ . Heteroduplex PCR analysis of rearranged T cell receptor genes for clonality assessment in suspect T cell proliferations. Leukemia 1997; 11: 2192–2199.

    Article  CAS  PubMed  Google Scholar 

  23. Szczepanski T, Willemse MJ, Brinkhof B, Van Wering ER, van der Burg M, van Dongen JJ . Comparative analysis of Ig and TCR gene rearrangements at diagnosis and at relapse of childhood precursor-B-ALL provides improved strategies for selection of stable PCR targets for monitoring of minimal residual disease. Blood 2002; 99: 2315–2323.

    Article  CAS  PubMed  Google Scholar 

  24. Szczepanski T, Willemse MJ, Kamps WA, van Wering ER, Langerak AW, van Dongen JJ . Molecular discrimination between relapsed and secondary acute lymphoblastic leukemia: proposal for an easy strategy. Med Pediatr Oncol 2001; 36: 352–358.

    Article  CAS  PubMed  Google Scholar 

  25. Ghali DW, Panzer S, Fischer S, Argyriou-Tirita A, Haas OA, Kovar H et al. Heterogeneity of the T-cell receptor delta gene indicating subclone formation in acute precursor B-cell leukemias. Blood 1995; 85: 2795–2801.

    CAS  PubMed  Google Scholar 

  26. Greaves M, Maia AT, Wiemels JL, Ford AM . Leukemia in twins: lessons in natural history. Blood (in press).

  27. Moorman AV, Clark R, Farrell DM, Hawkins JM, Martineau M, Secker-Walker LM . Probes for hidden hyperdiploidy in acute lymphoblastic leukaemia. Genes Chromosomes Cancer 1996; 16: 40–45.

    Article  CAS  PubMed  Google Scholar 

  28. Ritterbach J, Hiddemann W, Beck JD, Schrappe M, Janka-Schaub G, Ludwig W-D et al. Detection of hyperdiploid karyotypes (>50 chromosomes) in childhood acute lymphoblastic leukemia (ALL) using fluorescence in situ hybridization (FISH). Leukemia 1998; 12: 427–433.

    Article  CAS  PubMed  Google Scholar 

  29. Greaves M . Molecular genetics, natural history and the demise of childhood leukaemia. Eur J Cancer 1999; 35: 173–185.

    Article  CAS  PubMed  Google Scholar 

  30. Andreasson P, Schwaller J, Anastasiadou E, Aster J, Gilliland DG . The expression of ETV6/CBF2 (TEL/AML1) is not sufficient for the transformation of hematopoietic cell lines in vitro or the induction of hematologic disease in vivo. Cancer Genet Cytogenet 2001; 130: 93–104.

    Article  CAS  PubMed  Google Scholar 

  31. Bernardin F, Yang Y, Cleaves R, Zahurak M, Cheng L, Civin CI et al. TEL-AML1, expressed from t(12;21) in human acute lymphocytic leukemia, induces acute leukemia in mice. Cancer Res 2002; 62: 3904–3908.

    CAS  PubMed  Google Scholar 

  32. Mori H, Colman SM, Xiao Z, Ford AM, Healy LE, Donaldson C et al. Chromosome translocations and covert leukemic clones are generated during normal fetal development. Proc Natl Acad Sci USA 2002; 99: 8242–8247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Speck NA, Gilliland DG . Core-binding factors in haematopoiesis and leukaemia. Nat Rev Cancer 2002; 2: 502–513.

    Article  CAS  PubMed  Google Scholar 

  34. Perrillat F, Clavel J, Auclerc MF, Baruchel A, Leverger G, Nelken B et al. Day-care, early common infections and childhood acute leukaemia: a multicentre French case–control study. Br J Cancer 2002; 86: 1064–1069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ma X, Buffler PA, Selvin S, Matthay KK, Wiencke JK, Wiemels JL et al. Daycare attendance and risk of childhood acute lymphoblastic leukaemia. Br J Cancer 2002; 86: 1419–1424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Leukaemia Research Fund programme grants (CJH and MG), the Foundation for Science and Technology, Portugal (PRAXIS XXI/BD/19575/99) (ATM) and the Dutch Cancer Society/Koningin Wilhelmina Fonds (Grant SNWLK 2000-2268) (VHJV and JJMO).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maia, A., van der Velden, V., Harrison, C. et al. Prenatal origin of hyperdiploid acute lymphoblastic leukemia in identical twins. Leukemia 17, 2202–2206 (2003). https://doi.org/10.1038/sj.leu.2403101

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403101

Keywords

This article is cited by

Search

Quick links