Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Debate Round Table
  • Published:

Debate Round Table on Chimerism

Lineage-specific chimaerism after stem cell transplantation in children following reduced intensity conditioning: potential predictive value of NK cell chimaerism for late graft rejection

Abstract

Chimaerism of FACS-sorted leucocyte subsets (CD14+, CD15+, CD3−/56+, CD3+/4+, CD3+/8+, CD19+) was monitored prospectively between days +14 and +100 in 39 children undergoing allogeneic stem cell transplantation with reduced intensity-conditioning regimens. Cell subsets exceeding 1% of nucleated cells were subject to cell sorting. Chimaerism was analysed by dual-colour FISH and/or by short tandem repeat-polymerase chain reaction. The chimaerism pattern on day +28 was evaluated with regard to its correlation with graft rejection. Of 39 patients, nine patients had donor chimaerism (DC) in all subsets. Mixed/recipient chimaerism (MC/RC) was detectable within T cells in 62%, within NK cells in 39% and within monocytes and granulocytes in 38% of the patients. The correlation of secondary graft rejection with the chimaerism pattern on day +28 revealed the strongest association between RC in NK-cells (P<0.0001), followed by T cells (P=0.001), and granulocytes and monocytes (P=0.034). Notably, patients with RC in T cells rejected their graft only if MC or RC was also present in the NK-cell subset. By contrast, none of the children with DC in NK cells experienced a graft rejection. These observations suggest that, in the presence of recipient T-cell chimaerism, the chimaerism status in NK-cells on day +28 might be able to identify patients at high risk for late graft rejection.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Gluckman E, Bussel A, Benbunan M, Broquet M, Schaison G, Dausset J et al. Treatment of bone marrow aplasia by allogenic bone marrow grafts. Nouv Presse Med 1975; 19: 1177–1182.

    Google Scholar 

  2. Hansen G, Dupont B, Faber V, Jakobson B, Juhl F, Nielsen L et al. Lymphocyte chimerism after bone marrow transplantation. Surface markers and in vitro function of donor and recipient lymphocyte subpopulations. Scand J Immunol 1977; 6: 299–303.

    Article  CAS  Google Scholar 

  3. Starling K, Faletta J, Fernbach D . Immunologic chimerism as evidence of bone marrow graft acceptance in an identical twin with acute lymphocytic leukemia. Exp Hematol 1975; 3: 244–248.

    CAS  PubMed  Google Scholar 

  4. Hancock JP, Goulden NJ, Oakhill A, Steward CG . Quantitative analysis of chimerism after allogeneic bone marrow transplantation using immunomagnetic selection and fluorescent microsatellite PCR. Leukemia 2003; 17: 247–251.

    Article  CAS  Google Scholar 

  5. Lapointe C, Forest L, Lussier P, Busque L, Lagace F, Perrault C et al. Sequential analysis of early hematopoietic reconstitution following allogeneic bone marrow transplantation with fluorescence in situ hybridization (FISH). Bone Marrow Transplant 1996; 17: 1143–1148.

    CAS  PubMed  Google Scholar 

  6. Lion T . Summary: reports on quantitative analysis of chimerism after allogeneic stem cell transplantation by PCR amplification of microsatellite markers and capillary electrophoresis with fluorescence detection. Leukemia 2003; 17: 252–254.

    Article  CAS  Google Scholar 

  7. Scharf S, Smith A, Hansen J, McFarland C, Erlich H . Quantitative determination of bone marrow transplant engraftment using fluorescent polymerase chain reaction primers for human identity markers. Blood 1995; 85: 1954–1963.

    CAS  PubMed  Google Scholar 

  8. Bader P, Beck J, Frey A, Schlegel P, Hebarth H, Handgretinger R et al. Serial and quantitative analysis of mixed hematopoietic chimerism by PCR in patients with acute leukemias allows the prediction of relapse after allogeneic BMT. Bone Marrow Transplant 1998; 21: 487–495.

    Article  CAS  Google Scholar 

  9. Casado L, Steegmann J, Pico M, Requena M, Ramirez M, Madero L et al. Study of chimerism in long-term survivors after bone marrow transplantation for severe acquired aplastic anemia. Bone Marrow Transplant 1996; 18: 405–409.

    CAS  PubMed  Google Scholar 

  10. Frankel W, Chan A, Corringham R, Shepherd S, Rearden A, Wang-Rodriguez J . Detection of chimerism and early engraftment after allogeneic peripheral stem cell or bone marrow transplantation by short tandem repeats. Am J Hematol 1996; 52: 281–287.

    Article  CAS  Google Scholar 

  11. Amrolia P, Vulliamy T, Vassiliou G, Lawson SE, Bryon J, Kaeda J et al. Analysis of chimerism in thalassaemic children undergoing stem cell transplantation. Br J Haematol 2001; 114: 219–225.

    Article  CAS  Google Scholar 

  12. Andreani M, Nesci S, Lucarelli G, Tonucci P, Angelucci E, Persini B et al. Long-term survival of ex-thalassemic patients with persistent mixed chimerism after bone marrow transplantation. Bone Marrow Transplant 2000; 25: 401–404.

    Article  CAS  Google Scholar 

  13. Gomez J, Garcia M, Serrano J, Sanchez J, Falcon M, Castillejo J et al. Chimerism analysis in long term survivors patients after bone marrow transplantation for severe aplastic anemia. Haematologica 1997; 82: 588–591.

    CAS  PubMed  Google Scholar 

  14. Hill RS, Petersen FB, Storb R, Appelbaum FR, Doney K, Dahlberg S et al. Mixed hematologic chimerism after allogeneic marrow transplantation for severe aplastic anemia is associated with a higher risk of graft rejection and a lessened incidence of acute graft-versus-host disease. Blood 1986; 67: 811–816.

    CAS  PubMed  Google Scholar 

  15. Mital M, Curtis A, Spencer V, Barge D, Skinner R . Delayed engraftment and mixed chimerism after HLA-identical sibling donor BMT in Fanconi anaemia. Bone Marrow Transplant 1999; 24: 201–204.

    Article  CAS  Google Scholar 

  16. McSweeney P, Storb R . Mixed chimerism: preclinical studies and clinical applications. Biol Blood Marrow Transplant 2001; 5: 192–203.

    Article  Google Scholar 

  17. Shimoni A, Nagler A . Non-myeloablative stem cell transplantation (NST): chimerism testing as a guidance for immune-therapeutic manipulations. Leukemia 2001; 15: 1967–1975.

    Article  CAS  Google Scholar 

  18. Carella AM, Champlin R, Slavin S, McSweeney PA, Storb R . Mini-allografts: ongoing trials in humans. Biol Blood Marrow Transplant. 2000; 25: 345–350.

    Article  CAS  Google Scholar 

  19. Horwitz ME, Barrett AJ, Brown MR, Carter CS, Childs R, Gallin JI et al. Treatment of chronic granulomatous disease with nonmyeloablative conditioning and a T-cell-depleted hematopoietic allograft. N Engl J Med 2001; 344: 881–888.

    Article  CAS  Google Scholar 

  20. Amrolia P, Gaspar HB, Hassan A, Webb D, Jones A, Sturt N et al. Nonmyeloablative stem cell transplantation for congenital immunodeficiencies. Blood 2000; 96: 1239–1246.

    CAS  PubMed  Google Scholar 

  21. Childs R, Clave E, Contentin N, Jayasekera D, Hensel N, Leitman S et al. Engraftment kinetics after nonmyeloablative allogeneic peripheral blood stem cell transplantation: full donor T-cell chimerism precedes alloimmune responses. Blood 1999; 94: 3234–3241.

    CAS  PubMed  Google Scholar 

  22. Dubovsky J, Daxberger H, Fritsch G, Printz D, Peters C, Matthes S et al. Kinetics of chimerism during the early post-transplant period in pediatric patients with malignant and non-malignant hematologic disorders: implications for timely detection of engraftment, graft failure and rejection. Leukemia 1999; 13: 2060–2069.

    Article  CAS  Google Scholar 

  23. Mackinnon S, Barret L, Heller G, O'Reilly R . Minimal residual disease is more common in patients who have mixed T-cell chimerism after bone marrow transplantation for chronic myelogenous leukemia. Blood 2001; 83: 3409–3416.

    Google Scholar 

  24. Mattsson J, Uzunel M, Remberger M, Ringden O . T cell mixed chimerism is significantly correlated to a decreased risk of acute graft-versus-host disease after allogeneic stem cell transplantation. Transplantation 2001; 71: 433–439.

    Article  CAS  Google Scholar 

  25. Maury S, Jouault H, Kuentz M, Vernant JP, Tulliez M, Cordonnier C et al. Chimerism analysis by lineage-specific fluorescent polymerase chain reaction in secondary graft failure after allogeneic stem cell transplantation. Transplantation 2001; 71: 374–380.

    Article  CAS  Google Scholar 

  26. Niiya H, Kanda Y, Saito T, Ohnishi T, Kanai S, Kawano Y et al. Early full donor myeloid chimerism after reduced-intensity stem cell transplantation using a combination of fludarabine and busulfan. Haematologica 2001; 86: 1071–1074.

    CAS  PubMed  Google Scholar 

  27. Winiarski J, Mattson J, Gustafsson A, Wester D, Borgstrom B, Ringden O et al. Engraftment and chimerism, particularly of T- and B-cells, in children undergoing allogeneic bone marrow transplantation. Pediatr Transplant 1998; 2: 150–156.

    CAS  PubMed  Google Scholar 

  28. Niederwieser D, Maris M, Shizuru JA, Petersdorf E, Hegenbart U, Sandmaier BM et al. Low-dose total body irradiation (TBI) and fludarabine followed by hematopoietic cell transplantation (HCT) from HLA-matched or mismatched unrelated donors and postgrafting immunosuppression with cyclosporine and mycophenolate-mofetil (MMF) can induce durable complete chimerism and sustained remissions in patients with hematological diseases. Blood 2003; 101: 1620–1629.

    Article  CAS  Google Scholar 

  29. Slavin S, Nagler A, Naparstek E, Kapelushnik Y, Aker M, Cividalli G et al. Nonmyeloablative stem cell transplantation and cell therapy as an alternative to conventional bone marrow transplantation with lethal cytoreduction for the treatment of malignant and nonmalignant hematologic diseases. Blood 1998; 91: 756–763.

    CAS  PubMed  Google Scholar 

  30. Fritsch G, Printz D, Stimpfl M, Dworzak M, Witt V, Potschger U et al. Quantification of CD34+ cells: comparison of methods. Transfusion 1997; 37: 775–784.

    Article  CAS  Google Scholar 

  31. Schraml E, Daxberger H, Watzinger F, Lion T . Quantitative analysis of chimerism after allogeneic stem cell transplantation by PCR amplification of microsatellite markers and capillary electrophoresis with fluorescence detection: the Vienna experience. Leukemia 2003; 17: 224–227.

    Article  CAS  Google Scholar 

  32. Antin JH, Childs R, Filipovich AH, Giralt S, Mackinnon S, Spitzer T et al. Establishment of complete and mixed donor chimerism after allogeneic lymphohematopoietic transplantation: recommendations from a workshop at the 2001 Tandem Meetings of the International Bone Marrow Transplant Registry and the American Society of Blood and Marrow Transplantation. Biol Blood Marrow Transplant 2001; 7: 473–485.

    Article  CAS  Google Scholar 

  33. van Leeuwen JE, van Tol MJ, Bodzinga BG, Wijnen JT, van der KM, Joosten AM et al. Detection of mixed chimerism in flow-sorted cell subpopulations by PCR-amplified VNTR markers after allogeneic bone marrow transplantation. Br J Haematol 1991; 79: 218–225.

    Article  CAS  Google Scholar 

  34. Bader P, Holle W, Klingebiel T, Handgretinger R, Benda N, Schlegel P et al. Mixed hematopoietic chimerism after alogeneic marrow transplantation: the impact of quantitative PCR analysis for prediction of relapse and graft rejection in children. Bone Marrow Transplant 2001; 19: 697–702.

    Article  Google Scholar 

  35. Schattenberg A, De Witte T, Salden M, Vet J, Van Dijk B, Smeets D et al. Mixed hematopoietic chimerism after allogeneic transplantation with lymphocyte-depleted bone marrow is not associated with a higher incidence of relapse. Blood 1989; 73: 1367–1372.

    CAS  PubMed  Google Scholar 

  36. Lion T, Daxberger H, Dubovsky J, Filipcik P, Fritsch G, Printz D et al. Analysis of chimerism within specific leukocyte subsets for detection of residual or recurrent leukemia in pediatric patients after allogeneic stem cell transplantation. Leukemia 2001; 15: 307–310.

    Article  CAS  Google Scholar 

  37. Mattsson J, Uzunel M, Tammik L, Aschan J, Ringden O . Leukemia lineage-specific chimerism analysis is a sensitive predictor of relapse in patients with acute myeloid leukemia and myelodysplastic syndrome after allogeneic stem cell transplantation. Leukemia 2001; 15: 1976–1985.

    Article  CAS  Google Scholar 

  38. Thiede C, Bornhauser M, Oelschlagel U, Brendel C, Leo R, Daxberger H et al. Sequential monitoring of chimerism and detection of minimal residual disease after allogeneic blood stem cell transplantation (BSCT) using multiplex PCR amplification short tandem repeat-markers. Leukemia 2001; 15: 293–302.

    Article  CAS  Google Scholar 

  39. Zetterquist H, Mattson J, Uzunel M, Nasman-Bjork I, Svenberg P, Bayat G et al. Mixed chimerism in the b cell lineage is a rapid and sensitive indicator of minimal residual disease in bone marrow transplant recipients with pre-B cell acute lymphoblastic leukemia. Bone Marrow Transplant 2001; 25: 843–851.

    Article  Google Scholar 

  40. Battaglia M, Anreani M, Manna M, Nesci S, Tonucci P, Persini B et al. Coexistence of two functioning T-cell repertoires in healthy ex-Thalassemics bearing a persistent mixed chimerism years after bone marrow transplantation. Blood 1999; 94: 3432–3438.

    CAS  PubMed  Google Scholar 

  41. Haddad E, Le Deist F, Aucouturier P, Cavazzana-Calvo M, Blanche S, De Saint Basile G et al. Long-term chimerism and b-cell function after bone marrow transplantation in patients with severe combined immunodeficiency with B-cells: a single-center study of 22 patients. Blood 1999; 94: 2923–2930.

    CAS  PubMed  Google Scholar 

  42. Passweg JR, Meyer-Monard S, Gregor M, Favre G, Heim D, Ebnoether M et al. High stem cell dose will not compensate for T cell depletion in allogeneic non-myeloablative stem cell transplantation. Bone Marrow Transplant 2002; 30: 267–271.

    Article  CAS  Google Scholar 

  43. Perez-Simon JA, Caballero D, Diez-Campelo M, Lopez-Perez R, Mateos G, Canizo C et al. Chimerism and minimal residual disease monitoring after reduced intensity conditioning (RIC) allogeneic transplantation. Leukemia 2002; 16: 1423–1431.

    Article  CAS  Google Scholar 

  44. McSweeney PA, Niederwieser D, Shizuru JA, Sandmaier BM, Molidrem J, Chauncey TR et al. Hematopoietic cell transplantation in older patients with hematologic malignancies: replacing high-dose cytotoxic therapy with graft-versus-tumor effects. Blood 2001; 97: 3390–3400.

    Article  CAS  Google Scholar 

  45. Roux E, Helg C, Dumont-Girard F, Chapuis B, Jeannet M, Roosnek E . Analysis of T-cell repopulation after allogeneic bone marrow transplantation: significant differences between recipients of T-cell depleted and unmanipulated grafts. Blood 1996; 87: 3984–3992.

    CAS  PubMed  Google Scholar 

  46. Sykes M, Preffer F, McAfee S, Saidman S, Weymouth D, Andrews D et al. Mixed lymphohematopoietic chimerism and graft versus lymphoma effects after nonmyeloablative therapy and HLA-mismatched bone marrow transplantation. Lancet 1999; 16: 1755–1759.

    Article  Google Scholar 

  47. Schaap N, Schattenberg A, Mensink E, Preijers F, Hillegers M, Knops R et al. Long-term follow-up of persisting mixed chimerism after partially T cell-depleted allogeneic stem cell transplantation. Leukemia 2002; 16: 13–21.

    Article  CAS  Google Scholar 

  48. Gyger M, Baron C, Forest L, Lussier P, Lagace F, Bissonnette I et al. Quantitative assessment of hematopoietic chimerism after allogeneic bone marrow transplantation has predictive value for the occurrence of irreversible graft failure and graft-vs-host disease. Exp Hematol 1998; 26: 426–434.

    CAS  PubMed  Google Scholar 

  49. Mackinnon S, Barnett L, Bourhis JH, Black P, Heller G, O'Reilly RJ . Myeloid and lymphoid chimerism after T-cell-depleted bone marrow transplantation: evaluation of conditioning regimens using the polymerase chain reaction to amplify human minisatellite regions of genomic DNA. Blood 1992; 80: 3235–3241.

    CAS  PubMed  Google Scholar 

  50. Valcarcel D, Martino R, Caballero D, Mateos M, Perez-Simon J, Canals C et al. Chimerism analysis following allogeneic peripheral blood stem cell transplantation with reduced intensity conditioning. Bone Marrow Transplant 2003; 31: 387–392.

    Article  CAS  Google Scholar 

  51. Kreiter S, Winkelmann N, Schneider PM, Schuler M, Fischer T, Ullmann AJ et al. Failure of sustained engraftment after non-myeloablative conditioning with low-dose TBI and T cell-reduced allogeneic peripheral stem cell transplantation. Bone Marrow Transplant 2001; 28: 157–161.

    Article  CAS  Google Scholar 

  52. Urbano-Ispizua A, Rozman C, Pimentel P, Solano C, de la RJ, Brunet S et al. The number of donor CD3(+) cells is the most important factor for graft failure after allogeneic transplantation of CD34(+) selected cells from peripheral blood from HLA-identical siblings. Blood 2001; 97: 383–387.

    Article  CAS  Google Scholar 

  53. Görner M, Kordelas L, Thalheimer M, Luft T, Pfeiffer S, Ustaoglu F et al. Stable mixed chimerism after T cell-depleted allogeneic hematopoietic stem cell transplantation using conditioning with low-dose total body irradiation and fludarabine. Bone Marrow Transplant 2002; 29: 621–624.

    Article  Google Scholar 

  54. Marks DI, Lush R, Cavenagh J, Milligan DW, Schey S, Parker A et al. The toxicity and efficacy of donor lymphocyte infusions given after reduced-intensity conditioning allogeneic stem cell transplantation. Blood 2002; 100: 3108–3114.

    Article  CAS  Google Scholar 

  55. Bornhauser M, Thiede C, Platzbecker U, Jenke A, Helwig A, Plettig R et al. Dose-reduced conditioning and allogeneic hematopoietic stem cell transplantation from unrelated donors in 42 patients. Clin Cancer Res 2001; 7: 2254–2262.

    CAS  PubMed  Google Scholar 

  56. Bertrand Y, Landais P, Friedrich W, Gerritson E, Morgan G, Fasth A et al. Influence of severe combined immunodeficiency phenotype on the outcome of HLA non-identical, T-cell depleted bone marrow transplantation: a retrospective European survey from the European group for bone marrow transplantation and the European society for immunodeficiency. J Pediatr 1999; 134: 740–748.

    Article  CAS  Google Scholar 

  57. Kawai T, Wee SL, Bazin H, Latinne D, Phelan J, Boskovic S et al. Association of natural killer cell depletion with induction of mixed chimerism and allograft tolerance in non-human primates. Transplantation 2000; 70: 368–374.

    Article  CAS  Google Scholar 

  58. Lee LA, Sergio JJ, Sykes M . Natural killer cells weakly resist engraftment of allogeneic, long-term, multilineage-repopulating hematopoietic stem cells. Transplantation 1996; 61: 125–132.

    Article  CAS  Google Scholar 

  59. Neipp M, Gammie JS, Exner BG, Li S, Chambers WH, Pham SM et al. A partial conditioning approach to achieve mixed chimerism in the rat: depletion of host natural killer cells significantly reduces the amount of total body irradiation required for engraftment. Transplantation 1999; 68: 369–378.

    Article  CAS  Google Scholar 

  60. Tiberghien P, Longo DL, Wine JW, Alvord WG, Reynolds CW . Anti-asialo GM1 antiserum treatment of lethally irradiated recipients before bone marrow transplantation: evidence that recipient natural killer depletion enhances survival, engraftment, and hematopoietic recovery. Blood 1990; 76: 1419–1430.

    CAS  PubMed  Google Scholar 

  61. Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, Tosti A et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 2002; 295: 2097–2100.

    Article  CAS  Google Scholar 

  62. Bornhauser M, Thiede C, Brendel C, Geissler G, Oelschlagel U, Neubauer A et al. Stable engraftment after megadose blood stem cell transplantation across the HLA barrier: the case for natural killer cells as graft-facilitating cells. Transplantation 1999; 68: 87–88.

    Article  CAS  Google Scholar 

  63. Murphy WJ, Koh CY, Raziuddin A, Bennett M, Longo DL . Immunobiology of natural killer cells and bone marrow transplantation: merging of basic and preclinical studies. Immunol Rev 2001; 181: 279–289.

    Article  CAS  Google Scholar 

  64. Shilling H, McQueen K, Cheng N, Shizuru J, Negrin R, Parham P . Reconstitution of NK cell receptor repertoire following HLA-matched hematopoietic cell transplantation. Blood 2003; 101: 3730–3740.

    Article  CAS  Google Scholar 

  65. Farag S, Fehniger T, Ruggeri L, Velardi A, Caliguri M . Natural killer cell receptors: new biology and insights into the graft-versus-leukemia effect. Blood 2002; 100: 1935–1947.

    Article  CAS  Google Scholar 

  66. Gagne K, Brizard G, Gueglio B, Milpied N, Herry P, Bonneville F et al. Relevance of KIR gene polymorphisms in bone marrow transplantation outcome. Hum Immunol 2002; 63: 271–280.

    Article  CAS  Google Scholar 

  67. D'Orazio J, Burke J, Stein-Streilein J . Staphylococcal Enterotoxin B activates purified NK cells to secrete IFN-y but requires T lymphocytes to augment NK cytotoxicity. J Immunol 1994; 154: 1014–1023.

    Google Scholar 

  68. Groh V, Rhinehart R, Randolph-Habecker J, Topp M, Riddell S, Spies T . Costimulation of CDaβ T cells by NKG2D via engagement by MIC induced on virus-infected cells. Nat Immunol 2001; 2: 255–260.

    Article  CAS  Google Scholar 

  69. Johnson T, Hong S, Van Kaer L, Koezuka Y, Graham B . NK T cells contribute to expansion of CD8+ T cells and amplification of antiviral immune responses to respiratory syncytial virus. J Virol 2002; 76: 4294–4303.

    Article  CAS  Google Scholar 

  70. Das S, Varalakshmi C, Kumari A, Patel M, Khar A . Target cell induced activation of NK cells in vitro: cytokine production and enhancement of cytotoxic function. Cancer Immunol Immunother 2001; 50: 428–436.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matthes-Martin, S., Lion, T., Haas, O. et al. Lineage-specific chimaerism after stem cell transplantation in children following reduced intensity conditioning: potential predictive value of NK cell chimaerism for late graft rejection. Leukemia 17, 1934–1942 (2003). https://doi.org/10.1038/sj.leu.2403087

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403087

Keywords

This article is cited by

Search

Quick links