Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

New mechanisms of AML1 gene alteration in hematological malignancies

Abstract

The human AML1 gene (also named CBFA2 or RUNX1), located in the 21q22 chromosomal band, encodes for one of the two subunits forming a heterodimeric transcription factor, the human core binding factor (CBF). AML1 protein contains a highly evolutionary conserved domain of 128 amino acids called runt domain, responsible for both heterodimerization with the β subunit of CBF and for DNA binding. AML1 is normally expressed in all hematopoietic lineages and acts to regulate the expression of various genes specific to hematopoiesis playing a pivotal role in myeloid differentiation. AML1 is one of the genes most frequently deregulated in leukemia through different mechanisms including translocation, mutation and amplification. Translocations lead to the formation of fusion genes encoding for chimerical proteins such as AML1-ETO which induces leukemogenesis. Recently, new mechanisms of AML1 deregulation by point mutations or amplification have been reported. To our knowledge, 51 patients (among 805 studied) with AML1 point mutations have been described. Forty of them have acute myeloid leukemia (AML) most often M0 AML. In this subtype of AML, the frequency of AML1 mutation is significantly higher; 21.5% of patients mutated (34/158). Mutations have also been found with lower frequency in other FAB subtype AML (6 cases), in myeloproliferative disorders (6 cases), in myelodysplastic syndrome (3 cases) and rarely in acute lymphoblastic leukemia (1 case). AML1 gene amplification has been found essentially in childhood ALL (12 cases) and more rarely in myeloid malignancies (4 cases). Here, we reviewed all these cases of AML1 point mutations and amplification and focused on the mechanisms of AML1 deregulation induced by these alterations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Miyoshi, H, Shimizu, K, Kozu, T, Maseki, N, Kaneko, Y & Ohki, M t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1. Proc Natl Acad Sci USA, (1991). 88, 1031–1034.

    Article  Google Scholar 

  2. Levanon, D, Negreanu, V, Bernstein, Y, Bar–Am, I, Avivi, L & Groner, Y AML1, AML2, and AML3, the human members of the runt domain gene-family: cDNA structure, expression, and chromosomal localization. Genomics, (1994). 23, 425–432.

    Article  CAS  PubMed  Google Scholar 

  3. Speck, NA, Stacy, T, Wang, Q, North, T, Gu, TL, Miller, J, Binder, M & Marin-Padilla, M Core-binding factor: a central player in hematopoiesis and leukemia. Cancer Res, (1999). 59, 1789s–1793s.

    CAS  PubMed  Google Scholar 

  4. Ogawa, E, Maruyama, M, Kagoshima, H, Inuzuka, M, Lu, J, Satake, M, Shigesada, K & Ito, Y PEBP2/PEA2 represents a family of transcription factors homologous to the products of the Drosophila runt gene and the human AML1 gene. Proc Natl Acad Sci USA, (1993). 90, 6859–6863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Downing, JR AML1/CBFbeta transcription complex: its role in normal hematopoiesis and leukemia. Leukemia, (2001). 15, 664–665.

    Article  CAS  PubMed  Google Scholar 

  6. Wang, Q, Stacy, T, Miller, JD, Lewis, AF, Gu, TL, Huang, X, Bushweller, JH, Bories, JC, Alt, FW, Ryan, G, Liu, PP, Wynshaw-Boris, A, Binder, M, Marin-Padilla, M, Sharpe, AH & Speck, NA The CBFbeta subunit is essential for CBFalpha2 (AML1) function in vivo. Cell, (1996). 87, 697–708.

    Article  CAS  PubMed  Google Scholar 

  7. Tanaka, T, Tanaka, K, Ogawa, S, Kurokawa, M, Mitani, K, Nishida, J, Shibata, Y, Yazaki, Y & Hirai, H An acute myeloid leukemia gene, AML1, regulates hemopoietic myeloid cell differentiation and transcriptional activation antagonistically by two alternative spliced forms. EMBO J, (1995). 14, 341–350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lutterbach, B & Hiebert, SW Role of the transcription factor AML-1 in acute leukemia and hematopoietic differentiation. Gene, (2000). 245, 223–235.

    Article  CAS  PubMed  Google Scholar 

  9. Rhoades, KL, Hetherington, CJ, Rowley, JD, Hiebert, SW, Nucifora, G, Tenen, DG & Zhang, DE Synergistic up-regulation of the myeloid-specific promoter for the macrophage colony-stimulating factor receptor by AML1 and the t(8;21) fusion protein may contribute to leukemogenesis. Proc Natl Acad Sci USA, (1996). 93, 11895–11900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Uchida, H, Zhang, J & Nimer, SD AML1A and AML1B can transactivate the human IL-3 promoter. J Immunol, (1997). 158, 2251–2258.

    CAS  PubMed  Google Scholar 

  11. Wang, Q, Stacy, T, Binder, M, Marin-Padilla, M, Sharpe, AH & Speck, NA Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hemapoiesis. Proc Natl Acad Sci USA, (1996). 93, 3444–3449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sasaki, K, Yagi, H, Bronson, RT, Tominaga, K, Matsunashi, T, Deguchi, K, Tani, Y, Kishimoto, T & Komori, T Absence of fetal liver hematopoiesis in mice deficient in transcriptional coactivator core binding factor beta. Proc Natl Acad Sci USA, (1996). 93, 12359–12363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Okuda, T, van Deursen, J, Hiebert, SW, Grosveld, G & Downing, JR AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell, (1996). 84, 321–330.

    Article  CAS  PubMed  Google Scholar 

  14. Nucifora, G & Rowley, JD AML1 and the 8;21 and 3;21 translocations in acute and chronic myeloid leukemia. Blood, (1995). 86, 1–14.

    CAS  PubMed  Google Scholar 

  15. Romana, SP, Poirel, H, Leconiat, M, Flexor, MA, Mauchauffe, M, Jonveaux, P, Macintyre, EA, Berger, R & Bernard, OA High frequency of t(12;21) in childhood B-lineage acute lymphoblastic leukemia. Blood, (1995). 86, 4263–4269.

    CAS  PubMed  Google Scholar 

  16. Okuda, T, Takeda, K, Fujita, Y, Nishimura, M, Yagyu, S, Yoshida, M, Akira, S, Downing, JR & Abe, T Biological characteristics of the leukemia-associated transcriptional factor AML1 disclosed by hematopoietic rescue of AML1-deficient embryonic stem cells by using a knock-in strategy. Mol Cell Biol, (2000). 20, 319–328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Westendorf, JJ, Yamamoto, CM, Lenny, N, Downing, JR, Selsted, ME & Hiebert, SW The t(8;21) fusion product, AML-1-ETO, associates with C/EBP-alpha, inhibits C/EBP-alpha-dependent transcription, and blocks granulocytic differentiation. Mol Cell Biol, (1998). 18, 322–333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tanaka, K, Tanaka, T, Kurokawa, M, Imai, Y, Ogawa, S, Mitani, K, Yazaki, Y & Hirai, H The AML1/ETO(MTG8) and AML1/Evi-1leukemia-associated chimeric oncoproteins accumulate PEBP2beta(CBFbeta) in the nucleus more efficiently than wild-type AML1. Blood, (1998). 91, 1688–1699.

    CAS  PubMed  Google Scholar 

  19. Osato, M, Asou, N, Abdalla, E, Hoshino, K, Yamasaki, H, Okubo, T, Suzushima, H, Takatsuki, K, Kanno, T, Shigesada, K & Ito, Y Biallelic and heterozygous point mutations in the runt domain of the AML1/PEBP2alphaB gene associated with myeloblastic leukemias. Blood, (1999). 93, 1817–1824.

    CAS  PubMed  Google Scholar 

  20. Preudhomme, C, Warot-Loze, D, Roumier, C, Grardel-Duflos, N, Garand, R, Lai, JL, Dastugue, N, Macintyre, E, Denis, C, Bauters, F, Kerckaert, JP, Cosson, A & Fenaux, P High incidence of biallelic point mutations in the Runt domain of the AML1/PEBP2 alpha B gene in Mo acute myeloid leukemia and in myeloid malignancies with acquired trisomy 21. Blood, (2000). 96, 2862–2869.

    CAS  PubMed  Google Scholar 

  21. Imai, Y, Kurokawa, M, Izutsu, K, Hangaishi, A, Takeuchi, K, Maki, K, Ogawa, S, Chiba, S, Mitani, K & Hirai, H Mutations of the AML1 gene in myelodysplastic syndrome and their functional implications in leukemogenesis. Blood, (2000). 96, 3154–3160.

    CAS  PubMed  Google Scholar 

  22. Steer, EJ, Goldman, JM & Cross, NC Mutations of the transcription factor AML1/CBFA2 are uncommon in blastic transformation of chronic myeloid leukaemia. Leukemia, (2001). 15, 476–477.

    Article  CAS  PubMed  Google Scholar 

  23. Langabeer, SE, Gale, RE, Rollinson, SJ, Morgan, GJ & Linch, DC Mutations of the AML1 gene in acute myeloid leukaemia of FAB types M0 and M7. Genes Chromosomes Cancer, (2002). 34, 24–32.

    Article  CAS  PubMed  Google Scholar 

  24. Yeoh, A, Williams, K, Behm, F, Lenny, N, Shih, L, Harada, Y, Gilliland, G & Downing, J Somatic mutations of the AML1 gene are frequent in acute myeloid leukemia with FAB M0 morphology. Blood, (2000). 96, (Abstr. 389)

  25. Song, WJ, Sullivan, MG, Legare, RD, Hutchings, S, Tan, X, Kufrin, D, Ratajczak, J, Resende, IC, Haworth, C, Hock, R, Loh, M, Felix, C, Roy, DC, Busque, L, Kurnit, D, Willman, C, Gewirtz, AM, Speck, NA, Bushweller, JH, Li, FP, Gardiner, K, Poncz, M, Maris, JM & Gilliland, DG Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat Genet, (1999). 23, 166–175.

    Article  CAS  PubMed  Google Scholar 

  26. Niini, T, Kanerva, J, Vettenranta, K, Saarinen-Pihkala, UM & Knuutila, S AML1 gene amplification: a novel finding in childhood acute lymphoblastic leukemia. Haematologica, (2000). 85, 362–366.

    CAS  PubMed  Google Scholar 

  27. Dal Cin, P, Atkins, L, Ford, C, Ariyanayagam, S, Armstrong, SA, George, R, Cleary, A & Morton, CC Amplification of AML1 in childhood acute lymphoblastic leukemias. Genes Chromosomes Cancer, (2001). 30, 407–409.

    Article  CAS  PubMed  Google Scholar 

  28. Streubel, B, Valent, P, Lechner, K & Fonatsch, C Amplification of the AML1(CBFA2) gene on ring chromosomes in a patient with acute myeloid leukemia and a constitutional ring chromosome 21. Cancer Genet Cytogenet, (2001). 124, 42–46.

    Article  CAS  PubMed  Google Scholar 

  29. Kakazu, N, Taniwaki, M, Horiike, S, Nishida, K, Tatekawa, T, Nagai, M, Takahashi, T, Akaogi, T, Inazawa, J, Ohki, M & Abe, T Combined spectral karyotyping and DAPI banding analysis of chromosome abnormalities in myelodysplastic syndrome. Genes Chromosomes Cancer, (1999). 26, 336–345.

    Article  CAS  PubMed  Google Scholar 

  30. Mathew, S, Rao, PH, Dalton, J, Downing, JR & Raimondi, SC Multicolor spectral karyotyping identifies novel translocations in childhood acute lymphoblastic leukemia. Leukemia, (2001). 15, 468–472.

    Article  CAS  PubMed  Google Scholar 

  31. Busson-Le Coniat, M, Khac, FN, Daniel, MT, Bernard, OA & Berger, R Chromosome 21 abnormalities with AML1 amplification in acute lymphoblastic leukemia. Genes Chromosomes Cancer, (2001). 32, 244–249.

    Article  CAS  PubMed  Google Scholar 

  32. Ma, SK, Wan, TS, Cheuk, AT, Fung, LF, Chan, GC, Chan, SY, Ha, SY & Chan, LC Characterization of additional genetic events in childhood acute lymphoblastic leukemia with TEL/AML1 gene fusion: a molecular cytogenetics study. Leukemia, (2001). 15, 1442–1447.

    Article  CAS  PubMed  Google Scholar 

  33. Bennett, JM, Catovsky, D, Daniel, MT, Flandrin, G, Galton, DA, Gralnick, HR & Sultan, C Proposals for the classification of the acute leukaemias. French–American–British (FAB) co-operative group. Br J Haematol, (1976). 33, 451–458.

    Article  CAS  PubMed  Google Scholar 

  34. Penther, D, Preudhomme, C, Talmant, P, Roumier, C, Godon, A, Méchinaud, F, Milpied, N, Bataille, R & Avet-Loiseau, H Amplification of aml1 gene is present in chilhood acute lymphoblastic leukemia but not in adult, and is not associated with aml1 gene mutation. Leukemia, (2002). 16, 1131–1134.

    Article  CAS  PubMed  Google Scholar 

  35. Bravo, J, Li, Z, Speck, NA & Warren, AJ The leukemia-associated AML1 (Runx1) – CBF beta complex functions as a DNA-induced molecular clamp. Nat Struct Biol, (2001). 8, 371–378.

    Article  CAS  PubMed  Google Scholar 

  36. Imai, Y, Kurokawa, M, Tanaka, K, Friedman, AD, Ogawa, S, Mitani, K, Yazaki, Y & Hirai, H TLE, the human homolog of groucho, interacts with AML1 and acts as a repressor of AML1-induced transactivation. Biochem Biophys Res Commun, (1998). 252, 582–589.

    Article  CAS  PubMed  Google Scholar 

  37. Mukouyama, Y, Chiba, N, Hara, T, Okada, H, Ito, Y, Kanamaru, R, Miyajima, A, Satake, M & Watanabe, T The AML1 transcription factor functions to develop and maintain hematogenic precursor cells in the embryonic aorta–gonad–mesonephros region. Dev Biol, (2000). 220, 27–36.

    Article  CAS  PubMed  Google Scholar 

  38. Lutterbach, B, Westendorf, JJ, Linggi, B, Isaac, S, Seto, E & Hiebert, SW A mechanism of repression by acute myeloid leukemia-1, the target of multiple chromosomal translocations in acute leukemia. J Biol Chem, (2000). 275, 651–656.

    Article  CAS  PubMed  Google Scholar 

  39. Bruckert, P, Kappler, R, Scherthan, H, Link, H, Hagmann, F & Zankl, H Double minutes and c-MYC amplification in acute myelogenous leukemia: Are they prognostic factors?. Cancer Genet Cytogenet, (2000). 120, 73–79.

    Article  CAS  PubMed  Google Scholar 

  40. Andersen, MK, Christiansen, DH, Kirchhoff, M & Pedersen-Bjergaard, J Duplication or amplification of chromosome band 11q23, including the unrearranged MLL gene, is a recurrent abnormality in therapy-related MDS and AML, and is closely related to mutation of the TP53 gene and to previous therapy with alkylating agents. Genes Chromosomes Cancer, (2001). 31, 33–41.

    Article  CAS  PubMed  Google Scholar 

  41. Kurokawa, M, Tanaka, T, Tanaka, K, Ogawa, S, Mitani, K, Yazaki, Y & Hirai, H Overexpression of the AML1 proto-oncoprotein in NIH3T3 cells leads to neoplastic transformation depending on the DNA-binding and transactivational potencies. Oncogene, (1996). 12, 883–892.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by the Centre Hospitalier de Lille (PHRC 1997), and the Ligue National contre le Cancer (Comité du Nord et de l’Aisne) and the Fondation de France (Comité leucémie).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roumier, C., Fenaux, P., Lafage, M. et al. New mechanisms of AML1 gene alteration in hematological malignancies. Leukemia 17, 9–16 (2003). https://doi.org/10.1038/sj.leu.2402766

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402766

Keywords

This article is cited by

Search

Quick links