Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Keynote Address
  • Published:

Cooperativity between mutations in tyrosine kinases and in hematopoietic transcription factors in AML

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Carroll M, Ohno-Jones S, Tamura S, Buchdunger E, Zimmermann J, Lydon NB, Gilliland DG, Druker BJ . CGP 57148, a tyrosine kinase inhibitor, inhibits the growth of cells expressing BCR-ABL, TEL-ABL, and TEL-PDGFR fusion proteins Blood 1997 90: 4947–4952

    CAS  PubMed  Google Scholar 

  2. Daley GQ, McLaughlin J, Witte ON, Baltimore D . The CML-specific P210 bcr/abl protein, unlike v-abl, does not transform NIH/3T3 fibroblasts Science 1987 237: 532–535

    Article  CAS  PubMed  Google Scholar 

  3. Daley G, Baltimore D . Transformation of an interleukin 3-dependent hematopoietic cell line by the chronic myelogenous leukemia-specific P210bcr/abl protein Proc Natl Acad Sci USA 1988 85: 9312–9316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Elefanty A, Hariharan I, Cory S . bcr-abl, the hallmark of chronic myeloid leukaemia in man, induces multiple haemopoietic neoplasm in mice EMBO J 1990 9: 1069–1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. McWhirter JR, Galasso DL, Wang JY . A coiled-coil oligomerization domain of Bcr is essential for the transforming function of Bcr-Abl oncoproteins Molec Cell Biol 1993 13: 7587–7595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Theising J, Ohno-Jones S, Kolibaba K, Druker B . Efficacy of STI571, an Abl tyrosine kinase inhibitor, in conjunction with other antileukemic agents against Bcr-Abl-positive cells Blood 2000 96: 3195–3199

    Google Scholar 

  7. Okuda K, Golub TR, Gilliland DG, Griffin JD . p210BCR/ABL, p190BCR/ABL amd TEL/ABL activate similar signal transduction pathways in hematopoeitic cell lines Oncogene 1996 13: 1147–1152

    CAS  PubMed  Google Scholar 

  8. Schwaller J, Frantsve J, Tomasson M, Aster J, Williams I, Van Rompey L, Marynen P, Van Etten R, Ilaria R, Gilliland DG . Transformation of hematopoietic cell lines to growth-factor independence and induction of a fatal myeloid and lymphoproliferative disease in mice by retrovirally transduced TEL/JAK2 fusion gene EMBO J 1998 17: 5321–5333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schwaller J, Parganas E, Wang D, Cain D, Aster JC, Williams IR, Lee C-K, Gerthner R, Kitamura T, Frantsve J, Anastasiadou E, Loh ML, Levy DE, Ihle JN, Gilliland DG . Stat5a/b is essential for the myelo- and lymphoproliferative disease indcued by TEL/JAK2 Molec Cell 2000 6: 693–704

    Article  CAS  PubMed  Google Scholar 

  10. Carroll M, Tomasson MH, Barker GF, Golub TR, Gilliland DG . The TEL/platelet-derived growth factor β receptor (PDGFβR) fusion in chronic myelomonocytic leukemia is a transforming protein that self-associates and activates PDGFβR kinase-dependent signaling pathways Proc Natl Acad Sci USA 1996 93: 14845–14850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wilbanks AM, Mahajan S, Frank DA, Druker BJ, Gilliland DG, Carroll M . TEL/PDGFbetaR fusion protein activates STAT1 and STAT5: a common mechanism for transformation by tyrosine kinase fusion proteins Exp Hematol 2000 28: 584–593

    Article  CAS  PubMed  Google Scholar 

  12. Tomasson MH, Williams IR, Hasserjian R, Udomsakdi C, McGrath SM, Schwaller J, Druker B, Gilliland DG . TEL/PDGFβR induces hematologic malignancy in mice that responds to the tyrosine kinase inhibitor CGP57148 Blood 1999 93: 1707–1714

    CAS  PubMed  Google Scholar 

  13. Tomasson MH, Sternberg DW, Williams IR, Carroll M, Dain D, Aster JC, Ilaria RL, Van Etten RA, Gilliland DG . Fatal myeloproliferation, induced in mice by TEL/PDGFβR expression, depends on PDGFβR tyrosines 579/581 J Clin Invest 2000 105: 423–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Golub T, McLean T, Stegmaier K, Ritz J, Sallan S, Neuberg D, Gilliland DG . TEL-AML1: the most common gene rearrangement in childhood acute lymphoblastic leukemia Blood 1995 86 (Suppl. 1): 597a

    Google Scholar 

  15. Miyoshi H, Kozu T, Shimizu K et al. The t(8;21) translocation in acute myeloid leukemia results in production of an AML1-MTG8 fusion transcript EMBO J 1993 12: 2715–2721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nucifora G, Begy CR, Erickson P, Drabkin HA, Rowley JD . The 3;21 translocation in myelodysplasia results in a fusion transcript between the AML1 gene and the gene for EAO, a highly conserved protein associated with the Epstein-Barr virus small RNA EBER 1 Proc Natl Acad Sci USA 1993 90: 7784–7788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Romana SP, Mauchauffe M, Leconiat M, Chumakov I, Le Paslier D, Berger R, Bernard OA . The t(12;21) of acute lymphoblastic leukemia results in a tel-AML1 gene fusion Blood 1995 85: 3662–3670

    CAS  PubMed  Google Scholar 

  18. Erickson P, Gao J, Chang KS, Look T, Whisenant E, Raimondi S, Lasher J, Rowley J, Drabkin H . Identification of breakpoints in t(8;21) acute myelogenous leukemia and isolation of a fusion transcript, AML1/ETO, with similarity to Drosophila segmentation gene, runt Blood 1992 80: 1825–1831

    CAS  PubMed  Google Scholar 

  19. Kozu T, Miyoshi H, Shimizu K, Maseki N, Kaneko Y, Asou H, Kamada N, Ohnki M . Junctions of the AML1/MTG8(ETO) fusion are constant in t(8;21) acute myeloid leukemia detected by reverse transcription polymerase chain reaction Blood 1993 82: 1270–1276

    CAS  PubMed  Google Scholar 

  20. Mitani K, Ogawa S, Tanaka T et al. Generation of the AML1-EVI-1 fusion gene in the t(3;21) (q26-q22) causes blastic crisis in chronic myelocytic leukemia EMBO J 1994 13: 504–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Miyoshi H, Shimizu K, Kozu T, Maseki N, Kaneko Y, Ohki M . t(8;21) breakpoints on chromosome 21 in acute myeloid leukaemia are clustered within a limited region of a single gene, AML1 Proc Natl Acad Sci USA 1991 88: 10431–10434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu P, Tarle SA, Hajra A, Claxton DF, Marlton P, Freedman M, Siciliano MJ, Collins FS . Fusion between transcription factor CBFB/PEBP2B and a myosin heavy chain in acute myeloid leukemia Science 1993 261: 1041–1044

    Article  CAS  PubMed  Google Scholar 

  23. Longo L, Pandolfi PP, Biondi A, Rambaldi A, Mencarelli A, Lo Coco F, Diverio D, Pegoraro L, Avanzi G, Tabilio A et al. Rearrangments and aberrant expression of the retinoic acid receptor alpha gene in acute promyelocytic leukemias J Exp Med 1990 172: 1571–1575

    Article  CAS  PubMed  Google Scholar 

  24. Lemons RS, Eilender D, Waldmann RA, Rebentisch M, Frej AK, Ledbetter DH, Willman C, McConnell T, O'Connell P . Cloning and characterization of the t(15;17) translocation breakpoint region in acute promyelocytic leukemia Genes Chromos Cancer 1990 2: 79–87

    Article  CAS  PubMed  Google Scholar 

  25. de The H, Lavau C, Marcio A, Chomienne C, Degos L, Dejean A . The PML-RAR-alpha fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR Cell 1991 66: 675–684

    Article  CAS  PubMed  Google Scholar 

  26. Kakizuka A, Miller WHJ, Umesono K, Warrell RPJ, Frankel SR, Murty VV, Dmitrovsky E, Evans RM . Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RAR alpha with a novel putative transcription factor, PML Cell 1991 66: 663–674

    Article  CAS  PubMed  Google Scholar 

  27. Borrow J, Shearman AM, Stanton VP JR, Becher R, Collins T, Williams AJ, Dube I, Katz F, Kwong YL, Morris C, Ohyashiki K, Toyama K, Rowley J, Housman DE . The t(7;11)(p15;p15) translocation in acute myeloid leukaemia fuses the genes for nucleoporin NUP98 and class I homeoprotein HOXA9 Nat Genet 1996 12: 159–167

    Article  CAS  PubMed  Google Scholar 

  28. Nakamura T, Largaespada DA, Lee MP, Johnson LA, Ohyashiki K, Toyama K, Chen SJ, Willman CL, Chen IM, Feinberg AP, Jenkins NA, Copeland NG, Shaughnessy J Jr . Fusion of the nucleoporin gene NUP98 to HOXA9 by the chromosome translocation t(7;11)(p15;p15) in human myeloid leukaemia Nat Genet 1996 12: 154–158

    Article  CAS  PubMed  Google Scholar 

  29. Raza-Egilmez SZ, Jani-Sait SN, Grossi M, Higgnis MJ, Shows TB, Aplan PD . NUP98-HOXD13 gene fusion in therapy-related acute myelogenous leukemia Cancer Res 1998 58: 4269–4273

    CAS  PubMed  Google Scholar 

  30. Djabali M, Selleri L, Parry P et al. A trithorax-like gene is interrupted by chromosome 11q23 translocations in acute leukaemias Nat Genet 1992 2: 113–118

    Article  CAS  PubMed  Google Scholar 

  31. Rowley J . Rearrangements involving chromosome band 11q23 in acute leukaemia Semin Cancer Biol 1993 4: 377–385

    CAS  PubMed  Google Scholar 

  32. Tkachuk DC, Kohler S, Cleary ML . Involvement of a homolog of Drosophila trithorax by 11q23 chromosomal translocations in acute leukemias Cell 1992 71: 691–700

    Article  CAS  PubMed  Google Scholar 

  33. Thirman MJ, Gill HJ, Burnett RC, Mbangkollo D, McCabe NR, Kobayashi H, Ziemin-van der Poel S, Kaneko Y, Morgan R, Sandberg AA, Chaganti RSK, Larson RA, Le Beau MM, Diaz MO, Rowley JD . Rearrangement of the MLL gene in acute lymphoblastic and acute myeloid leukemias with 11q23 chromosomal translocations New Engl J Med 1993 329: 909–914

    Article  CAS  PubMed  Google Scholar 

  34. Taki T, Sako M, Tsuchida M, Hayashi Y . The t(11;16)(q23;p13.3) translocation in myelodysplastic syndrome fuses the MLL gene to the CBP gene Blood 1997 89: 3945–3949

    CAS  PubMed  Google Scholar 

  35. Corral J, Lavenir I, Impey H, Warren AJ, Forster A, Larson TA, Bell S, McKenzie AN, King G, Rabbitts TH . An Mll-AF9 fusion gene made by homologous recombination causes acute leukemia in chimeric mice: a method to create fusion oncogenes Cell 1996 14: 853–861

    Article  Google Scholar 

  36. Downing JR, Look AT . MLL fusion genes in the 11q23 acute leukemias Cancer Treat Res 1996 84: 73–92

    Article  CAS  PubMed  Google Scholar 

  37. Rowley JD, Reshmi S, Sobulo O, Musvee T, Anastasi J, Raimondi S, Schneider NR, Barredo JC, Cantu ES, Schlegelberger B, Behm F, Doggett NA, Borrow J, Zeleznik-Le N . All patients with the t(11;16)(q23;p13.3) that involves MLL and CBP have treatment-related hematologic disorders Blood 1997 90: 535–539

    CAS  PubMed  Google Scholar 

  38. Giles RH, Dauwerse JG, Higgins C, Petrij F, Wessels JW, Beverstock GC, Dohner H, Jotterand-Bellomo M, Falkenburg JH, Slater RM, van Ommen GJ, Hagemeijer A, van der Reijden BA, Breuning MH . Detection of CBP rearrangements in acute myelogenous leukemia with t(8;16) Leukemia 1997 11: 2087–2096

    Article  CAS  PubMed  Google Scholar 

  39. Carapeti M, Aguiar RCT, Goldman JM, Cross NCP . A novel fusion between MOZ and the nuclear receptor coactivator TIF2 in acute myeloid leukemia Blood 1998 91: 3127–3133

    CAS  PubMed  Google Scholar 

  40. Liang J, Prouty L, Williams BJ, Dayton MA, Blanchard KL . Acute mixed lineage leukemia with an inv(8)(p11q13) resulting in fusion of the genes for MOZ and TIF2 Blood 1998 92: 2118–2122

    CAS  PubMed  Google Scholar 

  41. Castilla LH, Wijmenga C, Wang Q, Stacy T, Speck NA, Eckhaus M, Marin-Padilla M, Collins FS, Wynshaw-Boris A, Liu PP . Failure of embryonic hematopoiesis and lethal hemorrhages in mouse embryos heterozygous for a knocked-in leukemia gene CBFB-MYH11 Cell 1996 87: 687–696

    Article  CAS  PubMed  Google Scholar 

  42. Wang Q, Stacy T, Binder M, Marin-Padilla M, Sharpe AH, Speck NA . Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis Proc Natl Acad Sci USA 1996 93: 3444–3449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang Q, Stacy T, Miller JD, Lewis AF, Gu TL, Huang X, Bushweller JH, Bories JC, Alt FW, Ryan G, Liu PP, Wynshaw-Boris A, Binder M, Marin-Padilla M, Sharpe AH, Speck NA . The CBFbeta subunit is essential for CBFalpha2 (AML1) function in vivo Cell 1996 87: 697–708

    Article  CAS  PubMed  Google Scholar 

  44. Okuda T, van Deursen J, Hiebert SW, Grosveld G, Downing JR . AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis Cell 1996 84: 321–330

    Article  CAS  PubMed  Google Scholar 

  45. Lutterbach B, Westendorf JJ, Linggi B, Patten A, Moniwa M, Davie JR, Huynh KD, Bardwell VJ, Lavinsky RM, Rosenfeld MG, Glass C, Seto E, Hiebert SW . ETO, a target of t(8;21) in acute leukemia, interacts with the N-CoR and mSin3 corepressors Mol Cell Biol 1998 18: 7176–7184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hiebert SW, Sun W, Davis JN, Golub TR, Shurtleff S, Buijs A, Downing JR, Grosveld G, Roussel M, Gilliland DG, Lenny N, Meyers S . The t(12;21) converts AML-1B from an activator to a repressor of transcription Mol Cell Biol 1996 16: 1349–1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Meyers S, Lenny N, Hiebert SW . The t(8;21) fusion protein interferes with AML-1B-dependent transcriptional activation Molec Cell Biol 1995 15: 1974–1982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gelmetti V, Zhang J, Fanelli M, Minucci S, Pelicci PG, Lazar MA . Aberrant recruitment of the nuclear receptor corepressor-histone deacetylase complex by the acute myeloid leukemia partner ETO Mol Cell Biol 1998 18: 7185–7191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Song W-J, Sullivan MG, Legare RD, Hutchings S, Tan X, Kufrin D, Ratajczak J, Ma K, Resende IC, Haworth C, Hock R, Loh M, Felix C, Roy D, Busque L, Kurnit D, Willman C, Gewirtz AM, Speck NA, Bushweller JH, Li FP, Gardiner K, Poncz M, Maris JM, Gilliland DG . Haploinsufficiency of CBFA2 (AML1) causes familial thrombocytopenia with propensity to develop acute myelogenous leukemia (FPD/AML) Nat Genet 1999 23: 166–175

    Article  CAS  PubMed  Google Scholar 

  50. Imai Y, Kurokawa M, Izutsu K, Hangaishi A, Takeuchi K, Maki K, Ogawa S, Chiba S, Mitani K, Hirai H . Mutations of the AML1 gene in myelodysplastic syndrome and their functional implications in leukemogenesis Blood 2000 96: 3154–3160

    CAS  PubMed  Google Scholar 

  51. Osato M, Asou N, Abdalla E, Hoshino K, Yamasaki H, Okubo T, Suzushima H, Takasuki K, Kanno T, Shigesada K, Ito Y . Biallelic and heterozygous point mutations in the runt domain of the AML1/PEBP2alphaB gene associated with myeloblastic leukemias Blood 1999 93: 1817–1824

    CAS  PubMed  Google Scholar 

  52. Pabst T, Mueller BU, Zhang P, Radomska HS, Narravula S, Schnittger S, Behre G, Hiddemann W, Tenen DG . Dominant-negative mutations of CEBPA, encoding CCAAT/enhancer binding protein-alpha (C/EBPalpha), in acute myeloid leukemia Nat Genet 2001 27: 263–270

    Article  CAS  PubMed  Google Scholar 

  53. Castilla LH, Garrett L, Adya N, Orlic D, Dutra A, Anderson S, Owens J, Eckhaus M, Bodine D, Liu PP . The fusion gene Cbfβ blocks myeloid differentiation and predisposes mice to acute myelomonocytic leukemia Nat Genet 1999 23: 144–146

    Article  CAS  PubMed  Google Scholar 

  54. Ford AMBC, Price CM, Bruin MC, Van Wering ER, Greaves M . Fetal origins of the TEL-AML1 fusion gene in identical twins with leukemia Proc Natl Acad Sci USA 1998 95: 4584–4588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wiemels JLCG, Daniotti M, Eden OB, Addison GM, Masera G, Saha V, Biondi A, Greaves MF . Prenatal origin of acute lymphoblastic leukaemia in children Lancet 1999 354: 1499–1503

    Article  CAS  PubMed  Google Scholar 

  56. Wiemels JLFA, Van Wering ER, Postma A, Greaves M . Protracted and variable latency of acute lymphoblastic leukemia after TEL-AML1 gene fusion in utero Blood 1999 94: 1057–1062

    CAS  PubMed  Google Scholar 

  57. Yamamoto K, Nakamura Y, Saito K, Furusawa S . Expression of the NUP98/HOXA9 fusion transcript in the blast crisis of Philadelphia chromosome positive CML with t(7;11)(p15;p15) Br J Haematol 2000 109: 423–426

    Article  CAS  PubMed  Google Scholar 

  58. Golub TR, Barker GF, Lovett M, Gilliland DG . Fusion of PDGF receptor beta to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation Cell 1994 77: 307–316

    Article  CAS  PubMed  Google Scholar 

  59. Cuenco GM, Nucifora G, Ren R . Human AML1/MDS1/EVI1 fusion protein induces an acute myelogenous leukemia (AML) in mice: a model for human AML Proc Natl Acad Sci USA 2000 97: 1760–1765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nakao M, Yokota S, Iwai T, Kaneko H, Horiike S, Kashima K, Sonoda Y, Fujimoto T, Misawa S . Internal tandem duplication of the flt3 gene found in acute myeloid leukemia Leukemia 1996 10: 1911–1918

    CAS  PubMed  Google Scholar 

  61. Yokota S, Kiyoi H, Nakao M, Iwai T, Misawa S, Okuda T, Sonoda Y, Abe T, Kahsima K, Matsuo Y, Naoe T . Internal tandem duplication of the FLT3 gene is preferentially seen in acute myeloid leukemia and myelodysplastic syndrome among various hematological malignancies. A study on a large series of patients and cell lines Leukemia 1997 11: 1605–1609

    Article  CAS  PubMed  Google Scholar 

  62. Horiike S, Yokota S, Nakao M, Iwai T, Sasai Y, Kaneko H, Taniwaki M, Kashima K, Fujii H, Abe T, Misawa S . Tandem duplications of the FLT3 receptor gene are associated with leukemic transformation of myelodysplasia Leukemia 1997 11: 1442–1446

    Article  CAS  PubMed  Google Scholar 

  63. Kiyoi H, Naoe T, Yokota S, Nakao M, Minami S, Kuriyama K, Takeshita A, Saito K, Hasegawa S, Shimodaira S, Tamura J, Shimazaki C, Matsue K, Kobayashi H, Arima N, Suzuki R, Morishita H, Saito H, Ueda R, Ohno R . Internal tandem duplication of FLT3 associated with leukocytosis in acute promyelocytic leukemia. Leukemia Study Group of the Ministry of Health and Welfare (Kohseisho) Leukemia 1997 11: 1447–1452

    Article  CAS  PubMed  Google Scholar 

  64. Iwai T, Yokota S, Nakao M, Kaneko H, Nakai H, Kashima K, Misawa S . Internal tandem duplication in the juxtatransmembrane domain of the flt3 is not involved in blastic crisis of chronic myeloid leukemia Leukemia 1997 11: 1992–1993

    CAS  PubMed  Google Scholar 

  65. Meshinchi S, Woods WG, Stirewalt DL, Sweetser DA, Buckley JD, Tjoa TK, Bernstein ID, Radich JP . Prevalence and prognostic significance of Flt3 internal tandem duplication in pediatric acute myeloid leukemia Blood 2001 97: 89–94

    Article  CAS  PubMed  Google Scholar 

  66. Stirewalt DL, Kopecky KJ, Meshinchi S, Appelbaum FR, Slovak ML, Willman CL, Radich JP . FLT3, RAS, and TP53 mutations in elderly patients with acute myeloid leukemia Blood 2001 97: 3589–3595

    Article  CAS  PubMed  Google Scholar 

  67. Kottaridis PD, Gale RE, Frew ME, Harrison G, Langabeer SE, Belton AA, Walker H, Wheatley K, Bowen DT, Burnett AK, Goldstone AH, Linch DC . The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials Blood 2001 98: 1752–1759

    Article  CAS  PubMed  Google Scholar 

  68. Mizuki M, Fenski R, Halfter H, Matsumura I, Schmidt R, Muller C, Gruning W, Kratz-Albers K, Serve S, Steur C, Buchner T, Kienast J, Kanakura Y, Berdel WE, Serve H . Flt3 mutations from patients with acute myeloid leukemia induce transformation of 32D cells mediated by the Ras and STAT5 pathways Blood 2000 96: 3907–3914

    CAS  PubMed  Google Scholar 

  69. Tse KF, Mukherjee G, Small D . Constitutive activation of FLT3 stimulates multiple intracellular signal transducers and results in transformation Leukemia 2000 14: 1766–1776

    Article  CAS  PubMed  Google Scholar 

  70. Kelly LM, Liu Q, Kutok JL, Williams IR, Boulton CL, Gilliland DG . FLT3 internal tandem duplication mutations associated with human acute myeloid leukemias induce myeloproliferative disease in a murine bone marrow transplant model Blood 2002 99: 310–318

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is part of a series of keynote addresses to be published in Leukemia. They were presented at the Acute Leukemia Forum, San Francisco, 20 April 2001. Supported by an unrestricted educational grant from Immunex.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deguchi, K., Gilliland, D. Cooperativity between mutations in tyrosine kinases and in hematopoietic transcription factors in AML. Leukemia 16, 740–744 (2002). https://doi.org/10.1038/sj.leu.2402500

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402500

This article is cited by

Search

Quick links