Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Spotlight
  • Published:

Spotlight on Molecular Targeted Therapy

The Raf/MEK/ERK signal transduction cascade as a target for chemotherapeutic intervention in leukemia

Abstract

The Raf/MEK/ERK (MAPK) signal transduction cascade is a vital mediator of a number of cellular fates including growth, proliferation and survival, among others. The focus of this review centers on the MAPK signal transduction pathway, its mechanisms of activation, downstream mediators of signaling, and the transcription factors that ultimately alter gene expression. Furthermore, negative regulators of this cascade, including phosphatases, are discussed with an emphasis placed upon chemotherapeutic intervention at various points along the pathway. In addition, mounting evidence suggests that the PI3K/Akt pathway may play a role in the effects elicited via MAPK signaling; as such, potential interactions and their possible cellular ramifications are discussed.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  1. Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM, Lydon NB, Kantarjian H, Capdeville R, Ohno-Jones S, Sawyers CL . Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia N Engl J Med 2001 344: 1031–1037

    Article  CAS  PubMed  Google Scholar 

  2. Boulton TG, Yancopoulos GD, Gregory JS, Slaughter C, Moomaw C, Hsu J, Cobb MH . An insulin-stimulated protein kinase similar to yeast kinases involved in cell cycle control Science 1990 249: 64–67

    Article  CAS  PubMed  Google Scholar 

  3. Boulton TG, Nye SH, Robbins DJ, Ip NY, Radziejewska E, Morgenbesser SD, DePinho RA, Ranayotatos N, Cobb MH, Yancopoulos GD . ERKs: a family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF Cell 1991 65: 663–675

    Article  CAS  PubMed  Google Scholar 

  4. Rossomando AJ, Payne DM, Weber MJ, Sturgill TW . Evidence that pp42, a major tyrosine kinase target protein, is a mitogen-activated serine/threonine protein kinase Proc Natl Acad Sci USA 1989 86: 6940–6943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Payne DM, Rossomando AJ, Martino P, Erickson AK, Her JH, Shabanowitz J, Hunt DF, Weber MJ, Sturgill TW . Identification of the regulatory phosphorylation sites in pp42/mitogen-activated protein kinase (MAP kinase) EMBO J 1991 10: 885–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Seger R, Seger D, Lozeman FJ, Ahn NG, Graves LM, Campbell JS, Ericsson L, Harrylock M, Jensen AM, Krebs EG . Human T-cell mitogen-activated protein kinase kinases are related to yeast signal Transduction kinases J Biol Chem 1992 267: 25628–25631

    CAS  PubMed  Google Scholar 

  7. Crews C, Alesandrini A, Erikson R . The primary structure of MEK, a protein kinase that phosphorylates the ERK gene product Science 1992 258: 478–480

    Article  CAS  PubMed  Google Scholar 

  8. Kosako H, Gotoh Y, Matsuda S, Ishikawa M, Nishida E . Xenopus MAP kinase activator is a serine/threonine/tyrosine kinase activated by threonine phosphorylation EMBO J 1992 11: 2903–2908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kyriakis JM, App H, Zhang XF, Banerjee P, Brautigan DL, Rapp UR, Avruch J . Raf-1 activates MAP kinase-kinase Nature 1992 358: 417–421

    Article  CAS  PubMed  Google Scholar 

  10. Dent P, Haser W, Haystead TAJ, Vincent LA, Roberts TM, Sturgill TW . Activation of mitogen-activated protein kinase kinase by v-Raf in NIH 3T3 cells and in vitro Science 1992 257: 1404–1407

    Article  CAS  PubMed  Google Scholar 

  11. Khleif SN, Abrams SI, Hamilton JM, Bergmann-Leitner E, Chen A, Bastian A, Bernstein S, Chung Y, Allegra CH, Schlom J . A phase I vaccine trial with peptides reflecting ras oncogene mutations of solid tumors J Immunother 1999 22: 155–165

    Article  CAS  PubMed  Google Scholar 

  12. McCubrey JA, May WS, Duronio V, Mufson A . Serine/Threonine phosphorylation in cytokine signal transduction Leukemia 2000 14: 9–21

    Article  CAS  PubMed  Google Scholar 

  13. New L, Han J . The p38 MAP kinase pathway and its biological function Trends Cardiovasc Med 1998 8: 220–228

    Article  CAS  PubMed  Google Scholar 

  14. Lee JC, Laydon JT, McDonnell PC, Gallagher TF, Kumary S, Green D, McNulty D, Blummenthal MJ, Heys JR, Landvatter SW, Strickler JE, McLaughlin MM, Siemens IR, Fisher SM, Livi GP, White JR, Adams JL, Young PR . A protein kinase involved in the regulation of inflammatory cytokine biosynthesis Nature 1994 372: 739–746

    Article  CAS  PubMed  Google Scholar 

  15. Jiang Y, Chen C, Li Z, Guo W, Gegner JA, Lin S, Han J . Characterization of the structure and function of a new mitogen-activated protein kinase (p38β) J Biol Chem 1996 271: 17920–17926

    Article  CAS  PubMed  Google Scholar 

  16. Jiang Y, Gram H, Zhao M, New L, Gu J, Feng L, Di Padova F, Ulevitch RG, Han J . Characterization of the structure and function of the fourth member of p38 group mitogen-activated protein kinases, p38 J Biol Chem 1997 272: 30122–30128

    Article  CAS  PubMed  Google Scholar 

  17. Lechner C, Zahalka MA, Giot JF, Moller NP, Ullrich A . ERK6, a mitogen-activated protein kinase involved in C2C12 myoblast differentiation Proc Natl Acad Sci USA 1996 93: 4355–4359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Enslen H, Brancho DM, Davis RJ . Molecular determinants that mediate selective activation of p38 MAP kinase isoforms EMBO J 2000 19: 1301–1311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sanchez I, Hughes RT, Mayer BJ, Yee K, Woodgett JR, Avruch J, Kyriakis J, Zon LI . Role of SAPK/ERK kinase-1 in the stress-activated pathway regulating transcription factor c-Jun Nature 1994 372: 794–798

    Article  CAS  PubMed  Google Scholar 

  20. Derijard B, Rainegeaud J, Barrett T, Wu IH, Han J, Ulevitch RJ, Davis RJ . Independent human MAP-kinase signal transduction pathways defined by MEK and MKK isoforms Science 1995 267: 682–685

    Article  CAS  PubMed  Google Scholar 

  21. Moriguchi T, Toyoshima F, Masuyama N, Hanafusa H, Gotoh Y, Nishida E . A novel SAPK/JNK kinase, MKK7, stimulated by TNFalpha and cellular stresses EMBO J 1997 16: 7045–7053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ichijo H . From receptors to stres-activated MAP kinases Oncogene 1999 18: 6087–6093

    Article  CAS  PubMed  Google Scholar 

  23. Blalock WL, Weinstein-Oppenheimer CR, Chang F, Hoyle PE, Wang XY, Algate PA, Franklin RA, Oberhaus SM, Steelman LS, McCubrey JA . Signal transduction, cell cycle regulatory, and anti-apoptotic pathways regulated by IL-3 in hematopoietic cells: possible sites for intervention with anti-neoplastic drugs Leukemia 1999 14: 1109–1166

    Article  CAS  Google Scholar 

  24. Okuda K, Foster R, Griffin J . Signaling domains of the βc chain of the GM-CSF/IL-3/IL-5 receptor Ann NY Acad Sci 1999 872: 305–312

    Article  CAS  PubMed  Google Scholar 

  25. Hackel PO, Zwick E, Prenzel N, Ullrich A . Epidermal growth factor receptors: critical mediators of multiple receptor pathways Curr Opin Cell Biol 1999 11: 184–189

    Article  CAS  PubMed  Google Scholar 

  26. Emaduddin M, Ekman S, Ronnstrand L, Heldin CH . Functional cooperation between the subunits in heterodimeric platelet-derived growth factor receptor complexes Biochem J 1999 341: 523–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wells A . EGF Receptor Int J Biochem Cell Biol 1999 31: 637–643

    Article  CAS  PubMed  Google Scholar 

  28. Heldin CH, Westermark B . Mechanism of action and in vivo role of platelet-derived growth factor Physiol Rev 1999 79: 1283–1316

    Article  CAS  PubMed  Google Scholar 

  29. Khazaie K, Schirrmacher V, Lichtner RB . EGF receptor in neoplasia and metastasis Cancer Metas Rev 1993 12: 255–274

    Article  CAS  Google Scholar 

  30. Oesterreich S, Zhang P, Guler RL, Sun X, Curran EM, Welshons WV, Osborne CK, Lee AV . Re-expression of estrogen receptor alpha in estrogen receptor alpha-negative MCF-7 cells restores both estrogen and insulin-like growth factor-mediated signaling and growth Cancer Res 2001 15: 5771–5777

    Google Scholar 

  31. Wang JY, Del Valle L, Gordon J, Rubini M, Romano G, Croul S, Peruzzi F, Khalili K, Reiss K . Activation of the IGF-IR system contributes to malignant growth of human and mouse medulloblastomas Oncogene 2001 29: 3857–3868

    Article  CAS  Google Scholar 

  32. Benini S, Manara MC, Baldini N, Cerisano V, Serra M, Mercuri M, Lollini PL, Nanni P, Picci P, Scotlandi K . Inhibition of insulin-like growth factor I receptor increases the antitumor activity of doxorubicin and vincristine against Ewing's sarcoma cells Clin Cancer Res 2001 6: 1790–1797

    Google Scholar 

  33. Hoog A, Kjellman M, Nordqvist AC, Hoog CM, Juhlin C, Falkmer S, Schalling M, Grimelius L . Insulin-like growth factor-II in endocrine pancreatic tumours. Immunohistochemical, biochemical and in situ hybridization findings APMIS 2001 109: 127–140

    Article  CAS  PubMed  Google Scholar 

  34. Merchav S . The haematopoietic effects of growth hormone and insulin-like growth factor-I J Pediatr Endocrinol Metab 1998 11: 677–685

    Article  CAS  PubMed  Google Scholar 

  35. Schmiegelow M, Hertz H, Schmiegelow K, Holm K, Muller J . Insulin-like growth factor-I and insulin-like growth factor binding protein-3 during maintenance chemotherapy of acute lymphoblastic leukemia in children J Pediatr Hematol Oncol 1999 21: 268–273

    Article  CAS  PubMed  Google Scholar 

  36. Arguelles B, Barrios V, Pozo J, Munoz MT, Argente J . Modifications of growth velocity and the insulin-like growth factor system in children with acute lymphoblastic leukemia: a longitudinal study J Clin Endocrinol Metab 2001 85: 4087–4092

    Google Scholar 

  37. Valertinis B, Baserga R . IGF-1 receptor signaling in transformation and differentiation Mol Pathol 2001 54: 133–137

    Article  Google Scholar 

  38. Peruzzi F, Prisco M, Dews M, Salomoni P, Grassilli E, Romano G, Calabretta B, Baserga R . Multiple signaling pathways of the insulin-like growth factor 1 receptor in protection from apoptosis Mol Cell Biol 1999 19: 7203–7215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Navarro M, Baserga R . Limited redundancy of survival signals from the type I insulin-like growth factor receptor Endocrinology 2001 142: 1073–1081

    Article  CAS  PubMed  Google Scholar 

  40. Kellerer M, Obermaier-Kusser B, Ermel B, Wallner U, Haring HU, Petrides PE . An altered IGF-1 receptor is present in human leukemic cells J Biol Chem 1990 265: 9340–9345

    CAS  PubMed  Google Scholar 

  41. Baier TG, Jenne EW, Blum W, Schonberg D, Hartmann KK . Influence of antibodies against IGF-1, insulin, or their receptors on proliferation of human acute lymphoblastic leukemia cell lines Leuk Res 1992 16: 807–814

    Article  CAS  PubMed  Google Scholar 

  42. Sinclair J, McClain D, Taetle R . Effects of insulin and insulin-like growth factor I on growth of human leukemia cells in serum-free and protein-free medium Blood 1988 71: 66–72

    Google Scholar 

  43. McCubrey JA, Steelman LS, Mayo MW, Algate PA, Dellow RA, Kaleko M . Growth-promoting effects of insulin-like growth factor-1 (IGF-1) on hematopoietic cells: overexpression of introduced IGF-1 receptor abrogates interleukin-3 dependency of murine factor-dependent cells by a ligand-dependent mechanism Blood 1991 78: 921–929

    CAS  PubMed  Google Scholar 

  44. Oliveira MR, Ohnuma L, Bendit I, Dorlhiac-Lacer P, Giannella-Neto D . Interferon-alpha therapy increases type I insulin-like growth factor receptors expression on lymphoid cells from patients with chronic myelogenous leukemia Leuk Res 2001 25: 711–717

    Article  CAS  PubMed  Google Scholar 

  45. Dudek H, Datta SR, Franke TF, Birnbaum MJ, Yao R, Cooper GM, Segal RA, Kaplan DR, Greenberg ME . Regulation of neuronal survival by the serine-threonine protein kinase Akt Science 1997 275: 295–299

    Article  Google Scholar 

  46. Kauffmann-Zeh A, Rodriguez-Viciana P, Ulrich E, Gilbert C, Coffer P, Downward J, Evan G . Suppression of c-Myc-induced apoptosis by Ras signalling through PI(3)K and PKB Nature 1997 385: 544–548

    Article  CAS  PubMed  Google Scholar 

  47. McCubrey JA, Steelman LS, Blalock WL, Lee JT, Moye PW, Chang F, Pearce M, Shelton JG, White MK, Franklin RA, Pohnert SC . Synergistic effects of PI3K/Akt on abrogation of cytokine-dependency induced by oncogenic Raf Adv Enz Reg 2001 41: 289–323

    Article  CAS  Google Scholar 

  48. Heldin CH, Westermark B . Mechanism of action and in vivo role of platelet-derived growth factor Physiol Rev 1999 79: 1283–1316

    Article  CAS  PubMed  Google Scholar 

  49. Li X, Ponten A, Aase K, Karlsson L, Abramsson A, Uutela M, Backstrom G, Hellstrom M, Bostrom H, Li H, Soriano P, Betsholtz C, Heldin CH, Alitalo K, Ostman A, Eriksson U . PDGF-C is a new protease-activated ligand for the PDGF alpha-receptor Nat Cell Biol 2000 2: 302–309

    Article  CAS  PubMed  Google Scholar 

  50. LaRochelle WJ, Jeffers M, McDonald WF, Chillakuru RA, Giese NA, Lokker NA, Sullivan C, Boldog FL, Yang M, Vernet C, Burgess CE, Fernandes E, Deegler LL, Rittman B, Shimkets J, Shimkets RA, Rothberg JM, Lichenstein HS . PDGF-D, a new protease-activated growth factor Nat Cell Biol 2001 3: 517–521

    Article  CAS  PubMed  Google Scholar 

  51. Jones SM, Klinghoffer R, Prestwich GD, Toker A, Kazlauskas A . PDGF induces an early and a late wave of PI 3-kinase activity, and only the late wave is required for progression through G1 Curr Biol 1999 9: 512–521

    Article  CAS  PubMed  Google Scholar 

  52. Bos JL . Ras-like GTPases Biochim Biophys Acta 1997 1333: M19–M31

    CAS  PubMed  Google Scholar 

  53. Carroll M, Tomasson MH, Barker GF, Golub TR, Gilliland DG . The TEL/platelet-derived growth factor beta receptor (PDGF beta R) fusion in chronic myelomonocytic leukemia is a transforming protein that self-associates and activates PDGF beta R kinase-dependent signaling pathways Proc Natl Acad Sci USA 1996 93: 14845–14850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Golub TR, Barker GF, Lovett M, Gilliland DG . Fusion of PDGF receptor beta to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation Cell 1994 77: 307–316

    Article  CAS  PubMed  Google Scholar 

  55. Sjoblom T, Boureux A, Ronnstrand L, Heldin CH, Ghysdael J, Ostman A . Characterization of the chronic myelomonocytic leukemia associated TEL-PDGF beta R fusion protein Oncogene 1999 18: 7055–7062

    Article  CAS  PubMed  Google Scholar 

  56. Lacronique V, Boureux A, Valle VD, Poirel H, Quang CT, Mauchauffe M, Berthou C, Lessard M, Berger R, Ghysdael J, Bernard OA . A TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia Science 1997 278: 1309–1312

    Article  CAS  PubMed  Google Scholar 

  57. Kimura A, Nakata Y, Hyodo H, Kuramoto A, Satow Y . Platelet-derived growth factor expression in accelerated and blastic phase of chronic myelogenous leukaemia with myelofibrosis Br J Haematol 1994 86: 303–307

    Article  CAS  PubMed  Google Scholar 

  58. Tsai LH, White L, Raines E, Ross R, Smith RG, Cushley W, Ozanne B . Expression of platelet-derived growth factor and its receptors by two pre-B acute lymphocytic leukemia cell lines Blood 1994 83: 51–55

    CAS  PubMed  Google Scholar 

  59. Ferns GA, Raines EW, Sprugel KH, Motani AS, Reidy MA, Ross R . Inhibition of neointimal smooth muscle accumulation after angioplasty by an antibody to PDGF Science 1991 253: 1129–1132

    Article  CAS  PubMed  Google Scholar 

  60. Rutherford C, Martin W, Salame M, Carrier M, Anggard E, Ferns G . Substantial inhibition of neo-intimal response to balloon injury in the rat carotid artery using a combination of antibodies to platelet-derived growth factor-BB and basic fibroblast growth factor Atherosclerosis 1997 130: 45–51

    Article  CAS  PubMed  Google Scholar 

  61. Vassbotn FS, Langeland N, Hagen I, Holmsen H . A monoclonal antibody against PDGF B-chain inhibits PDGF-induced DNA synthesis in C3H fibroblasts and prevents binding of PDGF to its receptor Biochim Biophys Acta 1990 1054: 246–249

    Article  CAS  PubMed  Google Scholar 

  62. Koyama H, Nishizawa Y, Hosoi M, Fukumoto S, Kogawa K, Shioi A, Morii H . The fumagillin analogue TNP-470 inhibits DNA synthesis of vascular smooth muscle cells stimulated by platelet-derived growth factor and insulin-like growth factor-I. Possible involvement of cyclin-dependent kinase 2 Circ Res 1996 79: 757–764

    Article  CAS  PubMed  Google Scholar 

  63. LaRochelle WJ, Jensen RA, Heidaran MA, May-Siroff M, Wang LM, Aaronson SA, Pierce JH . Inhibition of platelet-derived growth factor autocrine growth stimulation by a monoclonal antibody to the human alpha platelet-derived growth factor receptor Cell Growth Diff 1993 4: 547–553

    CAS  PubMed  Google Scholar 

  64. Lokker NA, O'Hare JP, Barsoumian A, Tomlinson JE, Ramakrishnan V, Fretto LJ, Giese NA . Functional importance of platelet-derived growth factor (PDGF) receptor extracellular immunoglobulin-like domains. Identification of PDGF binding site and neutralizing monoclonal antibodies J Biol Chem 1997 272: 33037–33044

    Article  CAS  PubMed  Google Scholar 

  65. Drolet DW, Jenison RD, Smith DE, Pratt D, Hicke BJ . A high throughput platform for systematic evolution of ligands by exponential enrichment (SELEX) Comb Chem High Throughput Screen 1999 2: 271–278

    CAS  PubMed  Google Scholar 

  66. Duan DS, Pazin MJ, Fretto LJ, Williams LT . A functional soluble extracellular region of the platelet-derived growth factor (PDGF) beta-receptor antagonizes PDGF-stimulated responses J Biol Chem 1991 266: 413–418

    CAS  PubMed  Google Scholar 

  67. Schroeder MC, Hamby JM, Connolly CJ, Grohar PJ, Winters RT, Barvian MR, Moore CW, Boushelle SL, Crean SM, Kraker AJ, Driscoll DL, Vincent PW, Elliott WL, Lu GH, Batley BL, Dahring TK, Major TC, Panek RL, Doherty AM, Showalter HD . Soluble 2-substituted aminopyrido[2,3-d]pyrimidin-7-yl ureas. Structure–activity relationships against selected tyrosine kinases and exploration of in vitro and in vivo anticancer activity J Med Chem 2001 44: 1915–1926

    Article  CAS  PubMed  Google Scholar 

  68. Palmer BD, Kraker AJ, Hartl BG, Panopoulos AD, Panek RL, Batley BL, Lu GH, Trumpp-Kallmeyer S, Hollis Showalter HD, Denny WA . Structure–activity relationships for 5-substituted 1-phenylbenzimidazoles as selective inhibitors of the platelet-derived growth factor receptor J Med Chem 1999 42: 2373–2382

    Article  CAS  PubMed  Google Scholar 

  69. Panek RL, Lu GH, Klutchko SR, Batley BL, Dahring TK, Hamby JM, Hallak H, Doherty AM, Keiser JA . In vitro pharmacological characterization of PD 166285, a new nanomolar potent and broadly active protein tyrosine kinase inhibitor J Pharmacol Exp Ther 1997 283: 1433–1444

    CAS  PubMed  Google Scholar 

  70. Omura T, Miyazawa K, Ostman A, Heldin CH . Identification of a 190-kDa vascular endothelial growth factor 165 cell surface binding protein on a human glioma cell line J Biol Chem 1997 272: 12676–12682

    Article  CAS  PubMed  Google Scholar 

  71. Kovalenko M, Gazit A, Bohmer A, Rorsman C, Ronnstrand L, Heldin CH, Waltenberger J, Bohmer FD, Levitzki A . Selective platelet-derived growth factor receptor kinase blockers reverse sis-transformation Cancer Res 1994 54: 6106–6114

    CAS  PubMed  Google Scholar 

  72. Kovalenko M, Ronnstrand L, Heldin CH, Loubtchenkov M, Gazit A, Levitzki A, Bohmer FD . Phosphorylation site-specific inhibition of platelet-derived growth factor beta-receptor autophosphorylation by the receptor blocking tyrphostin AG1296 Biochemistry 1997 36: 6260–6269

    Article  CAS  PubMed  Google Scholar 

  73. Buchdunger E, Zimmermann J, Mett H, Meyer T, Muller M, Regenass U, Lydon NB . Selective inhibition of the platelet-derived growth factor signal transduction pathway by a protein-tyrosine kinase inhibitor of the 2-phenylaminopyrimidine class Proc Natl Acad Sci USA 1995 92: 2558–2562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Buchdunger E, Zimmermann J, Mett H, Meyer T, Muller M, Druker BJ, Lydon NB . Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative Cancer Res 1996 56: 100–104

    CAS  PubMed  Google Scholar 

  75. Carroll M, Ohno-Jones S, Tamura S, Buchdunger E, Zimmerman J, Lydon NB, Gilliland DG, Druker BJ . CGP57148, a tyrosine kinase inhibitor, inhibits the growth of cells expressing BCR-ABL, TEL-ABL, and TEL-PDGFR fusion proteins Blood 1997 90: 4947–4952

    CAS  PubMed  Google Scholar 

  76. Shawver LK, Schwartz DP, Mann E, Chen H, Tsai J, Chu L, Taylorson L, Longhi M, Meredith S, Germain L, Jacobs JS, Tang C, Ullrich A, Berens ME, Hersh E, McMahon G, Hirth KP, Powell TJ . Inhibition of platelet-derived growth factor-mediated signal transduction and tumor growth by N-[4-(trifluoromethyl)-phenyl]5-methylisoxazole-4-carboxamide Clin Cancer Res 1997 3: 1167–1177

    CAS  PubMed  Google Scholar 

  77. Yagi M, Kato S, Kobayashi Y, Kobayashi N, Iinuma N, Nakamura K, Kubo K, Ohyama SI, Murooka H, Shimizu T, Nishitoba T, Osawa T, Nagano N . Beneficial effects of a novel inhibitor of platelet-derived growth factor receptor autophosphorylation in the rat with mesangial proliferative glomerulonephritis Gen Pharmacol 1998 31: 765–773

    Article  CAS  PubMed  Google Scholar 

  78. Bilder G, Wentz T, Leadley R, Amin D, Byan L, O'Conner B, Needle S, Galczenski H, Bostwick J, Kasiewski C, Myers M, Spada A, Merkel L, Ly C, Persons P, Page K, Perrone M, Dunwiddie C . Restenosis following angioplasty in the swine coronary artery is inhibited by an orally active PDGF-receptor tyrosine kinase inhibitor, RPR101511A Circulation 1999 99: 3292–3299

    Article  CAS  PubMed  Google Scholar 

  79. Mauro MJ, Druker BJ . STI571: targeting BCR-ABL as therapy for CML Oncologist 2001 6: 230–232

    Article  Google Scholar 

  80. Mauro MJ, Druker BJ . STI571: a gene product-targeted therapy for leukemia Curr Oncol Rep 2001 3: 223–227

    Article  CAS  PubMed  Google Scholar 

  81. Wood JM, Bold G, Buchdunger E, Cozens R, Ferrari S, Frei J, Hofmann F, Mestan J, Mett H, O'Reilly T, Persohn E, Rosel J, Schnell C, Stover D, Theuer A, Towbin H, Wenger F, Woods-Cook K, Menrad A, Siemeister G, Schirner M, Thierauch KH, Schneider MR, Drevs J, Martiny-Baron G, Totzke F . PTK787/ZK 222584, a novel and potent inhibitor of vascular endothelial growth factor receptor tyrosine kinases, impairs vascular endothelial growth factor-induced responses and tumor growth after oral administration Cancer Res 2000 60: 2178–2189

    CAS  PubMed  Google Scholar 

  82. Iwamoto H, Nakamuta M, Tada S, Sugimoto R, Enjoji M, Nawata H . Platelet-derived growth factor receptor tyrosine kinase inhibitor AG1295 attenuates rat hepatic stellate cell growth J Lab Clin Med 2001 135: 406–412

    Article  Google Scholar 

  83. Shoelson SE, Sivaraja M, Williams KP, Hu P, Schlessinger J, Weiss MA . Specific phosphopeptide binding regulates a conformational change in the PI 3-kinase SH2 domain associated with enzyme activation EMBO J 1993 12: 795–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wang XY, McCubrey JA . Malignant transformation induced by cytokine genes: a comparison of the abilities of germline and mutated interleukin 3 genes to transform hematopoietic cells by transcriptional and posttranscriptional mechanisms Cell Growth Diff 1996 7: 487–500

    CAS  PubMed  Google Scholar 

  85. Wang XY, McCubrey JA . Regulation of interleukin 3 expression in normal and autocrine transformed hematopoietic cells Intl J Oncol 1997 10: 989–1001

    CAS  Google Scholar 

  86. Wang XY, McCubrey JA . Differential effects of retroviral, long terminal repeats on interleukin-3 gene expression and autocrine transformation Leukemia 1997 11: 1711–1725

    Article  CAS  PubMed  Google Scholar 

  87. Wang XY, Hoyle PE, McCubrey JA . Characterization of proteins binding the 3′ regulatory region of the IL-3 gene in IL-3 dependent and autocrine-transformed hematopoietic cells Leukemia 1998 12: 520–531

    Article  CAS  PubMed  Google Scholar 

  88. Steelman LS, Algate PA, Blalock WL, Wang XY, Prevost KD, Hoyle PE, McCubrey JA . Oncogenic effects of overexpression of the interleukin-3 receptor on hematopoietic cells Leukemia 1996 10: 528–542

    CAS  PubMed  Google Scholar 

  89. Jordan CT, Upchurch D, Szilvassy SJ, Guzman ML, Howard DS, Pettigrew AL, Meyerrose T, Rossi R, Grimes B, Rizzieri DA, Luger SM, Phillips GL . The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells Leukemia 2001 14: 1777–1784

    Article  CAS  Google Scholar 

  90. McCormack MP, Gonda TJ . Myeloproliferative disorder and leukaemia in mice induced by different classes of constitutive mutants of the human IL-3/IL-5/GM-CSF receptor common beta subunit Oncogene 1999 18: 7190–7199

    Article  CAS  PubMed  Google Scholar 

  91. D'Andrea RJ, Harrison-Findik D, Butcher CM, Finnie J, Blumbergs P, Bartley P, McCormack M, Jones K, Rowland R, Gonda TJ, Vadas MA . Dysregulated hematopoiesis and a progressive neurological disorder induced by expression of an activated form of the human common beta chain in transgenic mice J Clin Invest 1998 102: 1951–1960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hoyle PE, Steelman LS, McCubrey JA . Autocrine transformation of human hematopoietic cells after transfection with an activated GM-CSF gene Cytokines Cell Mol Ther 1997 3: 159–168

    CAS  PubMed  Google Scholar 

  93. Gale RE, Freeburn RW, Khwaja A, Chopra R, Linch DC . A truncated isoform of the human beta chain common to the receptors for granulocyte–macrophage colony-stimulating factor, interleukin-3 (IL-3), and IL-5 with increased mRNA expression in some patients with acute leukemia Blood 1998 91: 54–63

    CAS  PubMed  Google Scholar 

  94. Sun Q, Woodcock JM, Rapoport A, Stomski FC, Korpelainen EI, Bagley CJ, Goodall GJ, Smith WB, Gamble JR, Vadas MA, Lopez AF . Monoclonal antibody 7G3 recognizes the N-terminal domain of the human interleukin-3 (IL-3) receptor alpha-chain and functions as a specific IL-3 receptor antagonist Blood 1996 87: 83–92

    CAS  PubMed  Google Scholar 

  95. Sun Q, Jones K, McClure B, Cambareri B, Zacharakis B, Iversen PO, Stomski F, Woodcock JM, Bagley CJ, D'Andrea R, Lopez AF . Simultaneous antagonism of interleukin-5, granulocyte–macrophage colony-stimulating factor, and interleukin-3 stimulation of human eosinophils by targetting the common cytokine binding site of their receptors Blood 1999 94: 1943–1951

    CAS  PubMed  Google Scholar 

  96. Hogge DE, Willman CL, Kreitman RJ, Berger M, Hall PD, Kopecky KJ, McLain C, Tagge EP, Eaves CJ, Frankel AE . Malignant progenitors from patients with acute myelogenous leukemia are sensitive to a diphtheria toxin granulocyte–macrophage colony-stimulating factor fusion protein Blood 1998 92: 589–595

    CAS  PubMed  Google Scholar 

  97. Frankel AE, Lilly M, Kreitman R, Hogge D, Beran M, Freedman MH, Emanuel PD, McLain C, Hall P, Tagge E, Berger M, Eaves C . Diphtheria toxin fused to granulocyte–macrophage colony-stimulating factor is toxic to blasts from patients with juvenile myelomonocytic leukemia and chronic myelomonocytic leukemia Blood 1998 92: 4279–4286

    CAS  PubMed  Google Scholar 

  98. Frankel AE, McCubrey JA, Miller MS, Delatte S, Ramage J, Kiser M, Kucera GL, Alexander RL, Beran M, Tagge EP, Kreitman RJ, Hogge DE . Diphtheria toxin fused to human interleukin-3 is toxic to blasts from patients with myeloid leukemias Leukemia 2000 14: 576–585

    Article  CAS  PubMed  Google Scholar 

  99. Kiser M, McCubrey JA, Steelman LS, Shelton JG, Miller MS, Ramage J, Alexander RL, Kucera GL, Pettenati M, Willingham MC, Frankel AE . Oncogene-dependent engraftment of human myeloid leukemia cells in immunosuppressed mice Leukemia 2001 15: 814–818

    Article  CAS  PubMed  Google Scholar 

  100. Vallera DA, Seo SY, Panoskaltsis-Mortari A, Griffin JD, Blazar BR . Targeting myeloid leukemia with a DT(390)-mIL-3 fusion immunotoxin: ex vivo and in vivo studies in mice Protein Eng 1999 12: 779–785

    Article  CAS  PubMed  Google Scholar 

  101. McWherter CA, Feng Y, Zurfluh LL, Klein BK, Baganoff MP, Polazzi JO, Hood WF, Paik K, Abegg AL, Grabbe ES, Shieh JJ, Donnelly AM, McKearn JP . Circular permutation of the granulocyte colony-stimulating factor receptor agonist domain of myelopoietin Biochemistry 1999 38: 4564–4571

    Article  CAS  PubMed  Google Scholar 

  102. McCubrey JA, Blalock WL, Saleh O, Pearce M, Burrows C, Steelman LS, Lee JT, Franklin RA, Oberhaus SM, Moye PW, Doshi PD, McKearn JP . Enhanced ability of daniplestim and myelopoietin-1 to suppress apoptosis in human hematopoietic cells Leukemia 2001 15: 1203–1216

    Article  CAS  PubMed  Google Scholar 

  103. Abegg AL, Vickery LE, Bremer ME, Donnelly AM, Doshi PD, Evans ML, Thurman TL, Braford SR, Caparon MH, Bauer SC, Giri JG, Welply JK, McKearn JP, Smith WG . The enhanced in vitro hematopoietic activity of leridistim, a chimeric dual G-CSF and IL-3 receptor agonist Leukemia 2001 (in press)

  104. Srinivasa SP, Doshi PD . Extracellular signal-regulated kinase and p38 mitogen-activated protein kinase pathways cooperate in mediating cytokine-induced proliferation of a leukemic cell line Leukemia 2001 16: 244–253

    Article  Google Scholar 

  105. Padua RA, Guinn BA, Al-Sabah AI, Smith M, Taylor C, Pettersson T, Ridge S, Carter G, White D, Oscier D, Chevret S, West R . RAS, FMS and p53 mutations and poor clinical outcome in myelodysplasias: a 10-year follow-up Leukemia 1998 12: 887–892

    Article  CAS  PubMed  Google Scholar 

  106. MacKenzie KL, Dolnikov A, Millington M, Shounan Y, Symonds G . Mutant N-ras induces myeloproliferative disorders and apoptosis in bone marrow repopulated mice Blood 1999 93: 2043–2056

    CAS  PubMed  Google Scholar 

  107. Schaich M, Ritter M, Illmer T, Lisske P, Thiede C, Schakel U, Mohr B, Ehninger G, Neubauer A . Mutations in ras proto-oncogenes are associated with lower mdr1 gene expression in adult acute myeloid leukaemia Br J Haematol 2001 112: 300–307

    Article  CAS  PubMed  Google Scholar 

  108. Stirewalt DL, Kopecky KJ, Meshinchi S, Appelbaum FR, Slovak ML, Willman CL, Radich JP . FLT3, RAS, and TP53 mutations in elderly patients with acute myeloid leukemia Blood 2001 97: 3589–3595

    Article  CAS  PubMed  Google Scholar 

  109. Buday L, Downward J . Epidermal growth factor regulates p21ras through the formation of a complex of receptor, Grb2 adapter protein, and Sos nucleotide exchange factor Cell 1993 73: 611–620

    Article  CAS  PubMed  Google Scholar 

  110. Moodie SA, Willumsen BM, Weber MJ, Wolfman A . Complexes of Ras-GTP with Raf-1 and mitogen-activated protein kinase kinase Science 1993 260: 1658–1660

    Article  CAS  PubMed  Google Scholar 

  111. Vojtek AB, Hollenberg SM, Cooper JA . Mammalian Ras interacts directly with the serine/threonine kinase Raf Cell 1993 74: 205–214

    Article  CAS  PubMed  Google Scholar 

  112. Zhang X, Settleman J, Kyriakis JM, Takeuchi-Suzuki E, Elledge SJ, Marshall MS, Bruder JT, Rapp UR, Avruch J . Normal and oncogenic p21ras proteins bind to the amino-terminal regulatory domain of c-Raf-1 Nature 1993 364: 308–314

    Article  CAS  PubMed  Google Scholar 

  113. Warne PH, Viciana RP, Downward J . Direct interaction of Ras and the amino-terminal region of Raf-1 in vitro Nature 1993 364: 353–355

    Article  Google Scholar 

  114. Ross EM, Wilkie TM . GTPase-activating proteins for heterotrimeric G proteins: regulators of G protein signaling (RGS) and RGS-like proteins Annu Rev Biochem 2000 69: 795–827

    Article  CAS  PubMed  Google Scholar 

  115. Adjei AA . Blocking oncogenic Ras signaling for cancer therapy J Natl Cancer Inst 2001 93: 1062–1074

    Article  CAS  PubMed  Google Scholar 

  116. Karp JE, Lancet JE, Kaufmann SH, End DW, Wright JJ, Bol K, Horak I, Tidwell ML, Liesveld J, Kottke TJ, Ange D, Buddharaju L, Gojo I, Highsmith WE, Belly RT, Hohl RJ, Rybak ME, Thibault A, Rosenblatt J . Clinical and biologic activity of the farnesyltransferase inhibitor R115777 in adults with refractory and relapsed acute leukemias: a phase 1 clinical–laboratory correlative trial Blood 2001 97: 3361–3369

    Article  CAS  PubMed  Google Scholar 

  117. Karp JE . Farnesyl protein transferase inhibitors as targeted therapies for hematologic malignancies Semin Hematol 2001 38: 16–23

    Article  CAS  PubMed  Google Scholar 

  118. Adjei AA, Erlichman C, Davis JN, Cutler DL, Sloan JA, Marks RS, Hanson LJ, Svingen PA, Atherton P, Bishop WR, Kirschmeier P, Kaufmann SH . A phase I trial of the farnesyl transferase inhibitor SCH66336: evidence for biological and clinical activity Cancer Res 2000 60: 1871–1877

    CAS  PubMed  Google Scholar 

  119. Du W, Prendergast GC . Geranylgeranylated RhoB mediates suppression of human tumor cell growth by farnesyltransferase inhibitors Cancer Res 1999 59: 5492–5496

    CAS  PubMed  Google Scholar 

  120. Jiang K, Coppola D, Crespo NC, Nicosia SV, Hamilton AD, Sebti SM, Cheng JQ . The phosphoinositide 3-OH kinase/AKT2 pathway as a critical target for farnesyltransferase inhibitor-induced apoptosis Mol Cell Bio 2000 20: 139–148

    Article  Google Scholar 

  121. Law BK, Norgaard P, Gnudi L, Kahn BB, Poulson HS, Moses HL . Inhibition of DNA synthesis by a farnesyltransferase inhibitor involves inhibition of the p70(s6k) pathway J Biol Chem 1999 274: 4743–4748

    Article  CAS  PubMed  Google Scholar 

  122. Zhang Y, Mukhopadhyay T, Donehower LA, Georges RN, Roth JA . Retroviral vector-mediated transduction of K-ras antisense RNA into human lung cancer cells inhibits expression of the malignant phenotype Hum Gene Ther 1993 4: 451–460

    Article  CAS  PubMed  Google Scholar 

  123. Song JJ, Lee H, Kim E, Kim YS, Yoo NC, Roh JK, Kim BS, Kim J . Transduction effect of antisense K-ras on malignant phenotypes in gastric cancer cells Cancer Lett 2000 157: 1–7

    Article  CAS  PubMed  Google Scholar 

  124. Mukhopadhyay T, Tainsky M, Cavender AC, Roth JA . Specific inhibition of K-ras expression and tumorgenicity of lung cancer by antisense RNA Cancer Res 1991 51: 1744–1748

    CAS  PubMed  Google Scholar 

  125. Hagemann C, Rapp UR . Isotype-specific functions of Raf kinases Exp Cell Res 1999 253: 34–46

    Article  CAS  PubMed  Google Scholar 

  126. Franklin RA, McCubrey JA . Kinases: positive and negative regulators of apoptosis Leukemia 2000 14: 2019–2034

    Article  CAS  PubMed  Google Scholar 

  127. White MK, McCubrey JA . Suppression of apoptosis: role in cell growth and neoplasia Leukemia 2001 15: 1011–1021

    Article  CAS  PubMed  Google Scholar 

  128. Eychene A, Dusanter-Fourt I, Barnier JV, Papin C, Charon M, Gisselbrecht S, Calothy G . Expression and activation of B-Raf kinase isoforms in human and murine leukemia cell lines Oncogene 1995 10: 1159–1165

    CAS  PubMed  Google Scholar 

  129. McCubrey JA, Steelman LS, Hoyle PE, Blalock WL, Weinstein-Oppenheimer C, Franklin RA, Cherwinski H, Bosch E, McMahon M . Differential abilities of activated Raf oncoproteins to abrogate cytokine dependency, prevent apoptosis and induce autocrine growth factor synthesis in human hematopoietic cells Leukemia 1998 12: 1903–1929

    Article  CAS  PubMed  Google Scholar 

  130. McCubrey JA, Steelman LS, Moye PW, Hoyle PE, Weinstein-Oppenheimer C, Chang F, Pearce M, White MK, Franklin RA, Blalock WL . Effects of deregulated Raf and MEK1 expression on the cytokine-dependency of hematopoietic cells Adv Enzyme Regl 2000 40: 305–337

    Article  CAS  Google Scholar 

  131. Weinstein-Oppenheimer C, Steelman LS, Algate PA, Blalock WL, Burrows C, Hoyle PE, Lee JT, Moye PW, Shelton JG, Franklin RA, McCubrey JA . Effects of deregulated Raf activation on integrin, cytokine-receptor expression and the induction of apoptosis in hematopoietic cells Leukemia 2000 14: 1921–1938

    Article  CAS  PubMed  Google Scholar 

  132. Moye PW, Blalock WL, Hoyle PE, Chang F, Franklin RA, Weinstein-Oppenheimer C, Pearce M, Steelman LS, McMahon M, McCubrey JA . Synergy between Raf and BCL2 in abrogating the cytokine-dependency of hematopoietic cells Leukemia 2000 14: 1060–1079

    Article  CAS  PubMed  Google Scholar 

  133. Weinstein-Oppenheimer CR, Blalock WL, Steelman LS, Chang F, McCubrey JA . Raf signal transduction cascade as a target for chemotherapeutic intervention in growth factor-dependent tumors Pharm Ther 2000 88: 229–279

    Article  CAS  Google Scholar 

  134. Chung GT, Huang DP, Lo KW, Chan MK, Wong FW . Genetic lesion in the carcinogenesis of cervical cancer Anticancer Res 1992 12: 1485–1490

    CAS  PubMed  Google Scholar 

  135. Habuchi T, Kinoshita H, Yamada H, Kakehi Y, Ogawa O, Wu WJ, Takahashi R, Sugiyama T, Yoshida O . Oncogene amplification in urothelial cancers with p53 gene mutation or MDM2 amplification J Natl Cancer Inst 1994 86: 1331–1335

    Article  CAS  PubMed  Google Scholar 

  136. Ishikawa F, Takaku F, Nagao M, Sugimura T . Rat c-raf oncogene activation by a rearrangement that produces a fused protein Mol Cell Biol 1987 7: 1226–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Sithanandam G, Dean M, Brennscheidt U, Beck T, Gazdar A, Minna JD, Brauch H, Zbar B, Rapp UR . Loss of heterozygosity at the c-raf locus in small cell lung carcinoma Oncogene 1989 4: 451–455

    CAS  PubMed  Google Scholar 

  138. Storm SM, Rapp UR . Oncogene activation: c-raf-1 gene mutations in experimental and naturally occurring tumors Toxicol Lett 1993 67: 201–210

    Article  CAS  PubMed  Google Scholar 

  139. Weber CK, Slupsky JR, Kalmes HA, Rapp UR . Active Ras induces heterodimerization of cRaf and BRaf Cancer Res 2001 61: 3595–3598

    CAS  PubMed  Google Scholar 

  140. Van Aelst L, Barr M, Marcus S, Polverino A, Wigler M . Complex formation between RAS and RAF and other protein kinases Proc Natl Acad Sci USA 1993 90: 6213–6217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Vojtek AB, Hollenberg SM, Cooper JA . Mammalian Ras interacts directly with the serine/threonine kinase Raf Cell 1993 74: 205–214

    Article  CAS  PubMed  Google Scholar 

  142. Erpel T, Courtneidge SA . Src family protein tyrosine kinases and cellular signal transduction pathways Curr Opin Cell Biol 1995 7: 176–182

    Article  CAS  PubMed  Google Scholar 

  143. Pathan NI, Ashendel CL, Geahlen RL, Harrison ML . Activation of T cell Raf-1 at mitosis requires the protein-tyrosine kinase Lck J Biol Chem 1996 271: 30315–30317

    Article  CAS  PubMed  Google Scholar 

  144. Sozeri O, Vollmer K, Liyanage M, Frith D, Kour G, Mark GE 3rd, Stabel S . Activation of the c-Raf protein kinase by protein kinase C phosphorylation Oncogene 1992 7: 2259–2262

    CAS  PubMed  Google Scholar 

  145. Morrison DK, Heidecker G, Rapp UR, Copeland TD . Identification of the major phosphorylation sites of the Raf-1 kinase J Biol Chem 1993 268: 17309–17316

    CAS  PubMed  Google Scholar 

  146. Farrar MA, Alberol-Ila J, Perlmutter RM . Activation of the Raf-1 kinase cascade by coumermycin-induced dimerization Nature 1996 383: 178–181

    Article  CAS  PubMed  Google Scholar 

  147. Weber CK, Slupsky JR, Herrmann C, Schuler M, Rapp UR, Block C . Mitogenic signaling of Ras is regulated by differential interaction with Raf isozymes Oncogene 2000 19: 169–176

    Article  CAS  PubMed  Google Scholar 

  148. Chang F, McCubrey JA . p21Cip1 induced by Raf is associated with increased Cdk4 activity in hematopoietic cells Oncogene 2001 20: 4353–4364

    Article  Google Scholar 

  149. Schulte TW, Blagosklonny MV, Ingui C, Neckers L . Disruption of the Raf-1-Hsp90 molecular complex results in destabilization of Raf-1 and loss of Raf-1-Ras association J Biol Chem 1995 270: 24585–24588

    Article  CAS  PubMed  Google Scholar 

  150. Schulte TW, Blagosklonny MV, Romanova L, Mushinski JF, Monia BP, Johnston JF, Nguyen P, Trepel J, Neckers LM . Destabilization of Raf-1 by geldanamycin leads to disruption of the Raf-1-MEK-mitogen-activated protein kinase signalling pathway Mol Cell Biol 1996 16: 5839–5845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Blagosklonny MV, Fojo T, Bhalla KN, Kim JS, Trepel JB, Figg WD, Rivera Y, Neckers LM . The Hsp90 inhibitor geldanamycin selectively sensitizes Bcr-Abl-expressing leukemia cells to cytotoxic chemotherapy Leukemia 2001 15: 1537–1543

    Article  CAS  PubMed  Google Scholar 

  152. Soga S, Neckers LM, Schulte TW, Shiotsu Y, Akasaka K, Narumi H, Agatsuma T, Ikuina Y, Murakata C, Tamaoki T, Akinaga S . KF25706, a novel oxime derivative of radicicol, exhibits in vivo antitumor activity via selective depletion of Hsp90 binding signaling molecules Cancer Res 1999 59: 2931–2938

    CAS  PubMed  Google Scholar 

  153. Shiotsu Y, Neckers LM, Wortman I, An WG, Schulte TW, Soga S, Murakata C, Tamaoki T, Akinaga S . Novel oxime derivatives of radicicol induce erythroid differentiation associated with preferential G(1) phase accumulation against chronic myelogenous leukemia cells through destabilization of Bcr-Abl with Hsp90 complex Blood 2000 96: 2284–2291

    CAS  PubMed  Google Scholar 

  154. Kimoto M, Sakamoto K, Shirouzu M, Hirao I, Yokoyama S . RNA aptamers that specifically bind to the Ras-binding domain of Raf-1 FEBS Lett 1998 441: 322–326

    Article  CAS  PubMed  Google Scholar 

  155. Barnard D, Sun H, Baker L, Marshall MS . In vitro inhibition of Ras-Raf association by short peptides Biochem Biophys Res Commun 1998 247: 176–180

    Article  CAS  PubMed  Google Scholar 

  156. Cioffi CL, Garay M, Johnston JF, McGraw K, Boggs RT, Hreniuk D, Monia BP . Selective inhibition of A-Raf and C-Raf mRNA expression by antisense oligodeoxynucleotides in rat vascular smooth muscle cells: role of A-Raf and C-Raf in serum-induced proliferation Mol Pharmacol 1997 51: 383–389

    CAS  PubMed  Google Scholar 

  157. Schumacher C, Cioffi CL, Sharif H, Haston W, Monia BP, Wennogle L . Exposure of human vascular smooth muscle cells to Raf-1 antisense oligodeoxynucleotides: cellular responses and pharmacodynamic implications Mol Pharmacol 1998 53: 97–104

    Article  CAS  PubMed  Google Scholar 

  158. Kolch W, Heidecker G, Kochs G, Hummel R, Vahidi H, Mischak H, Finkenzeller G, Marme D, Rapp UR . Protein kinase C alpha activates RAF-1 by direct phosphorylation Nature 1993 364: 249–252

    Article  CAS  PubMed  Google Scholar 

  159. Cacace AM, Ueffing M, Philipp A, Han EK, Kolch W, Weinstein IB . PKC epsilon functions as an oncogene by enhancing activation of the Raf kinase Oncogene 1996 13: 2517–2526

    CAS  PubMed  Google Scholar 

  160. Zhang Y, Yao B, Delikat S, Bayoumy S, Lin XH, Basu S, McGinley M, Chan-Hui PY, Lichenstein H, Kolesnick R . Kinase suppressor of Ras is ceramide-activated protein kinase Cell 1997 89: 63–72

    Article  CAS  PubMed  Google Scholar 

  161. Xia K, Mukhopadhyay NK, Inhorn RC, Barber DL, Rose PE, Lee RS, Narsimhan RP, D'Andrea AD, Griffin JD, Roberts TM . The cytokine-activated tyrosine kinase JAK2 activates Raf-1 in a p21ras-dependent manner Proc Natl Acad Sci USA 1996 93: 11681–11686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Marais R, Light Y, Paterson HF, Mason CS, Marshall CJ . Differential regulation of Raf-1, A-Raf, and B-Raf by oncogenic ras and tyrosine kinases J Biol Chem 1997 272: 4378–4383

    Article  CAS  PubMed  Google Scholar 

  163. Mason CS, Springer CJ, Cooper RG, Superti-Furga G, Marshall CJ, Marais R . Serine and tyrosine phosphorylations cooperate in Raf-1, but not B-Raf activation EMBO J 1999 18: 2137–2148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Shuai K, Horvath CM, Huang LH, Qureshi SA, Cowburn D, Darnell JE Jr . Interferon activation of the transcription factor Stat91 involves dimerization through SH2-phosphotyrosyl peptide interactions Cell 1994 76: 821–828

    Article  CAS  PubMed  Google Scholar 

  165. Darnell JE Jr, Kerr IM, Stark GR . Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins Science 1994 264: 1415–1421

    Article  CAS  PubMed  Google Scholar 

  166. Ihle JN, Witthuhn BA, Quelle FW, Yamamoto K, Thierfelder WE, Kreider B, Silvennoinen O . Signaling by the cytokine receptor superfamily: JAKs and STATs Trends Biochem Sci 1994 19: 222–227

    Article  CAS  PubMed  Google Scholar 

  167. Goodman PA, Niehoff LB, Uckun FM . Role of tyrosine kinases in induction of the c-jun proto-oncogene in irradiated B-lineage lymphoid cells J Biol Chem 1998 273: 17742–17748

    Article  CAS  PubMed  Google Scholar 

  168. Sudbeck EA, Liu XP, Narla RK, Mahajan S, Ghosh S, Mao C, Uckun FM . Structure-based design of specific inhibitors of Janus kinase 3 as apoptosis-inducing antileukemic agents Clin Cancer Res 1999 5: 1569–1582

    CAS  PubMed  Google Scholar 

  169. Meydan N, Grunberger T, Dadi H, Shahar M, Arpaia E, Lapidot Z, Leeder JS, Freedman M, Cohen A, Gazit A, Levitzki A, Roifman CM . Inhibition of acute lymphoblastic leukaemia by a Jak-2 inhibitor Nature 1996 379: 645–648

    Article  CAS  PubMed  Google Scholar 

  170. Eriksen KW, Kaltoft K, Mikkelsen G, Nielsen M, Zhang Q, Geisler C, Nissen MH, Ropke C, Wasik MA, Odum N . Constitutive STAT3-activation in Sezary syndrome: tyrphostin AG490 inhibits STAT3-activation, interleukin-2 receptor expression and growth of leukemic Sezary cells Leukemia 2001 15: 787–793

    Article  CAS  PubMed  Google Scholar 

  171. De Vos J, Jourdan M, Tarte K, Jasmin C, Klein B . JAK2 tyrosine kinase inhibitor tyrphostin AG490 downregulates the mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription (STAT) pathways and induces apoptosis in myeloma cells Br J Haematol 2000 109: 823–828

    Article  CAS  PubMed  Google Scholar 

  172. Kolch W, Heidecker G, Kochs G, Hummel R, Vahidi H, Mischak H, Finkenzeller G, Marme D, Rapp UR . Protein kinase C alpha activates RAF-1 by direct phosphorylation Nature 1993 364: 249–252

    Article  CAS  PubMed  Google Scholar 

  173. Tamaoki T . Use and specificity of staurosporine, UCN-01, and calphostin C as protein kinase inhibitors Meth Enzymol 1991 201: 340–347

    Article  CAS  Google Scholar 

  174. Takahashi I, Kobayashi E, Asano K, Yoshida M, Nakano H . UCN-01, a selective inhibitor of protein kinase C from Streptomyces J Antibiot 1987 40: 1782–1784

    Article  CAS  Google Scholar 

  175. Seynaeve CM, Kazanietz MG, Blumberg PM, Sausville EA, Worland PJ . Differential inhibition of protein kinase C isozymes by UCN-01, a staurosporine analogue Mol Pharmacol 1994 45: 1207–1214

    CAS  PubMed  Google Scholar 

  176. Seynaeve CM, Stetler-Stevenson M, Sebers S, Kaur G, Sausville EA, Worland PJ . Cell cycle arrest and growth inhibition by the protein kinase antagonist UCN-01 in human breast carcinoma cells Cancer Res 1993 53: 2081–2086

    CAS  PubMed  Google Scholar 

  177. Wang Q, Worland PJ, Clark JL, Carlson BA, Sausville EA . Apoptosis in 7-hydroxystaurosporine-treated T lymphoblasts correlates with activation of cyclin-dependent kinases 1 and 2 Cell Growth Differ 1995 6: 927–936

    CAS  PubMed  Google Scholar 

  178. Meyer T, Regenass U, Fabbro D, Alteri E, Rosel J, Muller M, Caravatti G, Matter A . A derivative of staurosporine (CGP 41 251) shows selectivity for protein kinase C inhibition and in vitro anti-proliferative, as well as in vivo anti-tumor activity Int J Cancer 1989 43: 851–856

    Article  CAS  PubMed  Google Scholar 

  179. Thavasu P, Propper D, McDonald A, Dobbs N, Ganesan T, Talbot D, Braybrook J, Caponigro F, Hutchison C, Twelves C, Man A, Fabbro D, Harris A, Balkwill F . The protein kinase C inhibitor CGP41251 suppresses cytokine release and extracellular signal-regulated kinase 2 expression in cancer patients Cancer Res 1999 59: 3980–3984

    CAS  PubMed  Google Scholar 

  180. Fabbro D, Buchdunger E, Wood J, Mestan J, Hofmann F, Ferrari S, Mett H, O'Reilly T, Meyer T . Inhibitors of protein kinases: CGP 41251, a protein kinase inhibitor with potential as an anticancer agent Pharmacol Ther 1999 82: 293–301

    Article  CAS  PubMed  Google Scholar 

  181. Morrison DK . KSR: a MAPK scaffold of the Ras pathway? J Cell Sci 2001 114: 1609–1612

    CAS  PubMed  Google Scholar 

  182. Zhang Y, Yao B, Delikat S, Bayoumy S, Lin XH, Basu S, McGinley M, Chan-Hui PY, Lichenstein H, Kolesnick R . Kinase suppressor of Ras is ceramide-activated protein kinase Cell 1997 89: 63–72

    Article  CAS  PubMed  Google Scholar 

  183. Denouel-Galy A, Douville EM, Warne PH, Papin C, Laugier D, Calothy G, Downward J, Eychene A . Murine Ksr interacts with MEK and inhibits Ras-induced transformation Cell Biol 1998 8: 46–55

    CAS  Google Scholar 

  184. Jacobs D, Glossip D, Xing H, Muslin AJ, Kornfeld K . Multiple docking sites on substrate proteins form a modular system that mediates recognition by ERK MAP kinase Genes Dev 2001 13: 163–175

    Article  Google Scholar 

  185. Muller J, Cacace AM, Lyons WE, McGill CB, Morrison DK . Identification of B-KSR1, a novel brain-specific isoform of KSR1 that functions in neuronal signaling Mol Cell Biol 2000 20: 5529–5539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Cacace AM, Michaud NR, Therrien M, Mathes K, Copeland T, Rubin GM, Morrison DK . Identification of constitutive and ras-inducible phosphorylation sites of KSR: implications for 14–3-3 binding, mitogen-activated protein kinase binding, and KSR overexpression Mol Cell Biol 1999 19: 229–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Therrien M, Michaud NR, Rubin GM, Morrison DK . KSR modulates signal propagation within the MAPK cascade Genes Dev 1996 10: 2684–2695

    Article  CAS  PubMed  Google Scholar 

  188. Zheng CF, Guan KL . Properties of MEKs, the kinases that phosphorylate and activate the extracellular signal-regulated kinases J Biol Chem 1993 268: 23933–23939

    CAS  PubMed  Google Scholar 

  189. English JM, Vanderbilt CA, Xu S, Marcus S, Cobb MH . Isolation of MEK5 and differential expression of alternatively spliced forms J Biol Chem 1995 270: 28897–28902

    Article  CAS  PubMed  Google Scholar 

  190. Catling AD, Schaeffer HJ, Reuter CW, Reddy GR, Weber MJ . A proline-rich sequence unique to MEK1 and MEK2 is required for raf binding and regulates MEK function Mol Cell Biol 1995 15: 5214–5225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Zheng CF, Guan KL . Activation of MEK family kinases requires phosphorylation of two conserved Ser/Thr residues EMBO J 1994 13: 1123–1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Papin C, Eychene A, Brunet A, Pages G, Pouyssegur J, Calothy G, Barnier JV . B-Raf protein isoforms interact with and phosphorylate Mek-1 on serine residues 218 and 222 Oncogene 1995 10: 1647–1651

    CAS  PubMed  Google Scholar 

  193. Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, Cobb MH . Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions Endocr Rev 2001 22: 153–183

    CAS  PubMed  Google Scholar 

  194. Mansour SJ, Matten WT, Hermann AS, Candia JM, Rong S, Fukasawa K, Vande Woude GF, Ahn NG . Transformation of mammalian cells by constitutively active MAP kinase kinase Science 1994 265: 966–970

    Article  CAS  PubMed  Google Scholar 

  195. Okuda K, Matulonis U, Salgia R, Kanakura Y, Druker B, Griffin JD . Factor independence of human myeloid leukemia cell lines is associated with increased phosphorylation of the proto-oncogene Raf-1 Exp Hematol 1994 11: 1111–1117

    Google Scholar 

  196. Kang CD, Yoo SD, Hwang BW, Kim KW, Kim DW, Kim CM, Kim SH, Chung BS . The inhibition of ERK/MAPK not the activation of JNK/SAPK is primarily required to induce apoptosis in chronic myelogenous leukemic K562 cells Leuk Res 2000 24: 527–534

    Article  CAS  PubMed  Google Scholar 

  197. Blalock WL, Pearce M, Steelman LS, Franklin RA, McCarthy SA, Cherwinski H, McMahon M, McCubrey JA . A conditionally active form of MEK1 results in autocrine transformation of human and mouse hematopoietic cells Oncogene 2000 19: 526–536

    Article  CAS  PubMed  Google Scholar 

  198. Blalock WL, Moye PW, Chang F, Pearch M, Steelman LS, McMahon M, McCubrey JA . Combined effects of aberrant MEK1 activity and BCL2 overexpression on relieving the cytokine-dependency of hematopoietic cells Adv Enzyme Regl 2000 40: 305–337

    Article  Google Scholar 

  199. Blalock WL, Pearce M, Chang F, Lee JT, Pohnert S, Burrows C, Steelman LS, Franklin RA, McMahon M, McCubrey JA . Effects of inducible MEK1 activation on the cytokine-dependency of lymphoid cells Leukemia 2001 15: 794–807

    Article  CAS  PubMed  Google Scholar 

  200. Hoyle PE, Moye PW, Steelman LS, Blalock WL, Franklin RA, Pearce M, Cherwinski H, Bosch E, McMahon M, McCubrey JA . Differential abilities of the Raf family of protein kinases to abrogate cytokine-dependency and prevent apoptosis in murine hematopoietic cells by a MEK1-dependent mechanism Leukemia 2000 14: 642–656

    Article  CAS  PubMed  Google Scholar 

  201. Alessi DR, Cuenda A, Cohen P, Dudley DT, Saltiel AR . PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo J Biol Chem 1995 270: 27489–27494

    Article  CAS  PubMed  Google Scholar 

  202. Dudley DT, Pang L, Decker SJ, Bridges AJ, Saltiel AR . A synthetic inhibitor of the mitogen-activated protein kinase cascade Proc Natl Acad Sci USA 1995 92: 7686–7689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Pages G, Lenormand P, L'Allemain G, Chambard JC, Meloche S, Pouyssegur J . Mitogen-activated protein kinases p42mapk and p44mapk are required for fibroblast proliferation Proc Natl Acad Sci USA 1993 90: 8319–8323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Eliceiri BP, Klemke R, Stromblad S, Cheresh DA . Integrin alphavbeta3 requirement for sustained mitogen-activated protein kinase activity during angiogenesis J Cell Biol 1998 140: 1255–1263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Pang L, Sawada T, Decker SJ, Saltiel AR . Inhibition of MAP kinase kinase blocks the differentiation of PC-12 cells induced by nerve growth factor J Biol Chem 1995 270: 13585–13588

    Article  CAS  PubMed  Google Scholar 

  206. Finlay D, Healy V, Furlong F, O'Connell FC, Keon NK, Martin F . MAP kinase pathway signalling is essential for extracellular matrix determined mammary epithelial cell survival Cell Death Differ 2000 7: 302–313

    Article  CAS  PubMed  Google Scholar 

  207. Holmstrom TH, Tran SE, Johnson VL, Ahn NG, Chow SC, Eriksson JE . Inhibition of mitogen-activated kinase signaling sensitizes HeLa cells to Fas receptor-mediated apoptosis Mol Cell Biol 1999 19: 5991–6002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Favata MF, Horiuchi KY, Manos EJ, Daulerio AJ, Stradley DA, Feeser WS, Van Dyk DE, Pitts WJ, Earl RA, Hobbs F, Copeland RA, Magolda RL, Scherle PA, Trzaskos JM . Identification of a novel inhibitor of mitogen-activated protein kinase kinase J Biol Chem 1998 273: 18623–18632

    Article  CAS  PubMed  Google Scholar 

  209. Sebolt-Leopold JS, Dudley DT, Herrera R, Van Becelaere K, Wiland A, Gowan RC, Tecle H, Barrett SD, Bridges A, Przybranowski S, Leopold WR, Saltiel AR . Blockade of the MAP kinase pathway suppresses growth of colon tumors in vivo Nat Med 1999 5: 810–816

    Article  CAS  PubMed  Google Scholar 

  210. Sebolt-Leopold JS . Development of anticancer drugs targeting the MAP kinase pathway Oncogene 2000 19: 6594–6599

    Article  CAS  PubMed  Google Scholar 

  211. Dai Y, Yu C, Singh V, Tang L, Wang Z, McInistry R, Dent P, Grant S . Pharmacological inhibitors of the mitogen-activated protein kinase (MAPK) kinase/MAPK cascade interact synergistically with UCN-01 to induce mitochondrial dysfunction and apoptosis in human leukemia cells Cancer Res 2001 61: 5106–5115

    CAS  PubMed  Google Scholar 

  212. Deb A, Zamanian-Daryoush M, Xu Z, Kadereit S, Williams RG . Protein kinase PKR is required for platelet-derived growth factor signaling of c-fos gene expression via Erks and Stat3 EMBO J 2001 20: 2487–2496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Peus D, Vasa RA, Beyerle A, Meves A, Krautmacher C, Pittelkow MR . UVB activates ERK1/2 and p38 signaling pathways via reactive oxygen species in cultured keratinocytes J Invest Derm 1999 112: 751–756

    Article  CAS  PubMed  Google Scholar 

  214. Bhat NR, Zhang P . Hydrogen peroxide activation of multiple mitogen-activated protein kinases in an oligodendrocyte cell line: role of extracellular signal-regulated kinase in hydrogen peroxide-induced cell death J Neurochem 1999 72: 112–119

    Article  CAS  PubMed  Google Scholar 

  215. Stevenson MA, Pollock SS, Coleman CN, Calderwood SK . X-irradiation, phorbol esters, and H2O2 stimulate mitogen-activated protein kinase activity in NIH-3T3 cells through the formation of reactive oxygen intermediates Cancer Res 1994 54: 12–15

    CAS  PubMed  Google Scholar 

  216. Ferrell JE Jr . MAP kinases in mitogenesis and development Curr Top Dev Biol 1996 33: 1–60

    Article  CAS  PubMed  Google Scholar 

  217. Khokhlatchev AV, Canagarajah B, Wilsbacher J, Robinson M, Atkinson M, Goldsmith E, Cobb MH . Phosphorylation of the MAP kinase ERK2 promotes its homodimerization and nuclear translocation Cell 1998 93: 605–615

    Article  CAS  PubMed  Google Scholar 

  218. Canagarajah BJ, Khokhlatchev A, Cobb MH, Goldsmith EJ . Activation mechanism of the MAP kinase ERK2 by dual phosphorylation Cell 1997 90: 859–869

    Article  CAS  PubMed  Google Scholar 

  219. Cobb MH, Goldsmith EJ . Dimerization in MAP-kinase signaling Trends Biochem Sci 2000 25: 7–9

    Article  CAS  PubMed  Google Scholar 

  220. Shapiro PS, Whalen AM, Tolwinski NS, Wilsbacher J, Froelich-Ammon SJ, Garcia M, Osheroff N, Ahn NG . Extracellular signal-regulated kinase activates topoisomerase IIalpha through a mechanism independent of phosphorylation Mol Cell Biol 1999 19: 3551–3560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Sturgill TW, Ray LB, Erikson E, Maller JL . Insulin-stimulated MAP-2 kinase phosphorylates and activates ribosomal protein S6 kinase II Nature 1988 334: 715–718

    Article  CAS  PubMed  Google Scholar 

  222. Seger R, Krebs EG . The MAPK signaling cascade FASEB J 1995 9: 726–735

    Article  CAS  PubMed  Google Scholar 

  223. Poteet-Smith CE, Smith JA, Lannigan DA, Freed TA, Sturgill TW . Generation of constitutively active p90 ribosomal S6 kinase in vivo. Implications for the mitogen-activated protein kinase-activated protein kinase family J Biol Chem 1999 274: 22135–22138

    Article  CAS  PubMed  Google Scholar 

  224. Kim SC, Hahn JS, Min YH, Yoo NC, Ko YW, Lee WJ . Constitutive activation of extracellular signal-regulated kinase in human acute leukemias: combined role of activation of MEK, hyperexpression of extracellular signal-regulated kinase, and downregulation of a phosphatase, PAC1 Blood 1999 93: 3893–3899

    CAS  PubMed  Google Scholar 

  225. Morgan MA, Dolp O, Reuter CW . Cell-cycle-dependent activation of mitogen-activated protein kinase kinase (MEK-1/2) in myeloid leukemia cell lines and induction of growth inhibition and apoptosis by inhibitors of RAS signaling Blood 2001 97: 1823–1834

    Article  CAS  PubMed  Google Scholar 

  226. Ajenjo N, Aaronson DS, Ceballos E, Richard C, Leon J, Crespo P . Myeloid leukemia cell growth and differentiation are independent of mitogen-activated protein kinase ERK1/2 activation J Biol Chem 2000 275: 7189–7197

    Article  CAS  PubMed  Google Scholar 

  227. Iida M, Towatari M, Nakao A, Iida H, Kiyoi H, Nakano Y, Tanimoto M, Saito H, Naoe T . Lack of constitutive activation of MAP kinase pathway in human acute myeloid leukemia cells with N-Ras mutation Leukemia 1999 13: 585–589

    Article  CAS  PubMed  Google Scholar 

  228. Horiuchi KY, Scherle PA, Trzaskos JM, Copeland RA . Competitive inhibition of MAP kinase activation by a peptide representing the alpha C helix of ERK Biochemistry 1998 37: 8879–8885

    Article  CAS  PubMed  Google Scholar 

  229. Zhang H, Shi X, Hampong M, Blanis L, Pelech S . Stress-induced inhibition of ERK1 and ERK2 by direct interaction with p38 MAP kinase J Biol Chem 2001 276: 6905–6908

    Article  CAS  PubMed  Google Scholar 

  230. Fisher TL, Blenis J . Evidence for two catalytically active kinase domains in pp90rsk Mol Cell Biol 1996 16: 1212–1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Alcorta DA, Crews CM, Sweet LJ, Bankston L, Jones SW, Erikson RL . Sequence and expression of chicken and mouse rsk: homologs of Xenopus laevis ribosomal S6 kinase Mol Cell Biol 1989 9: 3850–3859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Moller DE, Xia CH, Tang W, Zhu AX, Jakubowski M . Human rsk isoforms: cloning and characterization of tissue-specific expression Am J Physiol 1994 266: C351–C359

    Article  CAS  PubMed  Google Scholar 

  233. Zhao Y, Bjorbaek C, Weremowicz S, Morton CC, Moller DE . RSK3 encodes a novel pp90rsk isoform with a unique N-terminal sequence: growth factor-stimulated kinase function and nuclear translocation Mol Cell Biol 1995 15: 4353–4363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Jensen CJ, Buch MB, Krag TO, Hemmings BA, Gammeltoft S, Frodin M . 90-kDa ribosomal S6 kinase is phosphorylated and activated by 3-phosphoinositide-dependent protein kinase-1 J Biol Chem 1999 274: 27168–27176

    Article  CAS  PubMed  Google Scholar 

  235. Frodin M, Jensen CJ, Merienne K, Gammeltoft S . A phosphoserine-regulated docking site in the protein kinase RSK2 that recruits and activates PDK1 EMBO J 2000 19: 2924–2934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Xing J, Ginty DD, Greenberg ME . Coupling of the RAS-MAPK pathway to gene activation by RSK2, a growth factor-regulated CREB kinase Science 1996 273: 959–963

    Article  CAS  PubMed  Google Scholar 

  237. Joel PB, Smith J, Sturgill TW, Fisher TL, Blenis J, Lannigan DA . pp90rsk1 regulates estrogen receptor-mediated transcription through phosphorylation of Ser-167 Mol Cell Biol 1998 18: 1978–1984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Schouten GJ, Vertegaal AC, Whiteside ST, Israel A, Toebes M, Dorsman JC, van der Eb AJ, Zantema A . IkappaB alpha is a target for the mitogen-activated 90 kDa ribosomal S6 kinase EMBO J 1997 16: 3133–3144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Ghoda L, Lin X, Greene WC . The 90-kDa ribosomal S6 kinase (pp90rsk) phosphorylates the N-terminal regulatory domain of IkappaBalpha and stimulates its degradation in vitro J Biol Chem 1997 272: 21281–21288

    Article  CAS  PubMed  Google Scholar 

  240. Chen RH, Abate C, Blenis J . Phosphorylation of the c-Fos transrepression domain by mitogen-activated protein kinase and 90-kDa ribosomal S6 kinase Proc Natl Acad Sci USA 1993 90: 10952–10956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Crans HN . Transcription factors and translocations in lymphoid and myeloid leukemia Leukemia 2001 15: 313–331

    Article  CAS  PubMed  Google Scholar 

  242. Jean D, Harbison M, McConkey DJ, Ronai Z, Bar-Eli M . CREB and its associated proteins act as survival factors for human melanoma cells J Biol Chem 1998 273: 24884–24890

    Article  CAS  PubMed  Google Scholar 

  243. Ginty DD, Bonni A, Greenberg ME . Nerve growth factor activates a Ras-dependent protein kinase that stimulates c-fos transcription via phosphorylation of CREB Cell 1994 77: 713–725

    Article  PubMed  Google Scholar 

  244. Sakamoto KM, Fraser JK, Lee HJ, Lehman E, Gasson JC . Granulocyte–macrophage colony-stimulating factor and interleukin-3 signaling pathways converge on the CREB-binding site in the human egr-1 promoter Mol Cell Biol 1994 14: 5975–5985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Pugazhenthi S, Miller E, Sable C, Young P, Heidenreich KA, Boxer LM, Reusch JE . Insulin-like growth factor-I induces bcl-2 promoter through the transcription factor cAMP-response element-binding protein J Biol Chem 1999 274: 27529–27535

    Article  CAS  PubMed  Google Scholar 

  246. Facchini LM, Penn LZ . The molecular role of Myc in growth and transformation: recent discoveries lead to new insights FASEB J 1998 12: 633–651

    Article  CAS  PubMed  Google Scholar 

  247. Boyd KE, Farnham PJ . Identification of target genes of oncogenic transcription factors Proc Soc Exp Biol Med 1999 222: 9–28

    Article  CAS  PubMed  Google Scholar 

  248. Li LH, Nerlov C, Prendergast G, MacGregor D, Ziff EB . c-Myc represses transcription in vivo by a novel mechanism dependent on the initiator element and Myc box II EMBO J 1994 13: 4070–4079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Philipp A, Schneider A, Vasrik I, Finke K, Xiong Y, Beach D, Alitalo K, Eilers M . Repression of cyclin D1: a novel function of MYC Mol Cell Biol 1994 14: 4032–4043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Reisman D, Elkind NB, Roy B, Beamon J, Rotter V . c-Myc trans-activates the p53 promoter through a required downstream CACGTG motif Cell Growth Differ 1993 4: 57–65

    CAS  PubMed  Google Scholar 

  251. Jones RM, Branda J, Johnston KA, Polymenis M, Gadd M, Rustgi A, Callanan L, Schmidt EV . An essential E box in the promoter of the gene encoding the mRNA cap-binding protein (eukaryotic initiation factor 4E) is a target for activation by c-myc Mol Cell Biol 1996 16: 4754–4764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Bello-Fernandez C, Packham G, Cleveland JL . The ornithine decarboxylase gene is a transcriptional target of c-Myc Proc Natl Acad Sci USA 1993 90: 7804–7808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Dittmer J, Nordheim A . Ets transcription factors and human disease Biochim Biophys Acta 1998 1377: F1–F11

    CAS  PubMed  Google Scholar 

  254. Iwasaka C, Tanaka K, Abe M, Sato Y . Ets-1 regulates angiogenesis by inducing the expression of urokinase-type plasminogen activator and matrix metalloproteinase-1 and the migration of vascular endothelial cells J Cell Physiol 1996 169: 522–531

    Article  CAS  PubMed  Google Scholar 

  255. Schneikert J, Peterziel H, Defossez PA, Klocker H, Launoit Y, Cato AC . Androgen receptor-Ets protein interaction is a novel mechanism for steroid hormone-mediated down-modulation of matrix metalloproteinase expression J Biol Chem 1996 271: 23907–23913

    Article  CAS  PubMed  Google Scholar 

  256. Gambarotta G, Boccaccio C, Giordano S, Ando M, Stella MC, Comoglio PM . Ets up-regulates MET transcription Oncogene 1996 13: 1911–1917

    CAS  PubMed  Google Scholar 

  257. Dittmer J, Gitlin SD, Reid RL, Brady JN . Transactivation of the P2 promoter of parathyroid hormone-related protein by human T-cell lymphotropic virus type I Tax1: evidence for the involvement of transcription factor Ets1 J Virol 1993 67: 6087–6095

    CAS  PubMed  PubMed Central  Google Scholar 

  258. Shaulian E, Karin M . AP-1 in cell proliferation and survival Oncogene 2001 20: 2390–2400

    Article  CAS  PubMed  Google Scholar 

  259. Lee W, Haslinger A, Karin M, Tjian R . Activation of transcription by two factors that bind promoter and enhancer sequences of the human metallothionein gene and SV40 Nature 1987 325: 368–372

    Article  CAS  PubMed  Google Scholar 

  260. Fu Sl, Bottoli I, Goller M, Vogt PK . Heparin-binding epidermal growth factor-like growth factor, a v-Jun target gene, induces oncogenic transformation Proc Natl Acad Sci USA 1999 96: 5716–5721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Cohen SB, Waha A, Gelman IH, Vogt PK . Expression of a down-regulated target, SSeCKS, reverses v-Jun-induced transformation of 10T1/2 murine fibroblasts Oncogene 2001 20: 141–146

    Article  CAS  PubMed  Google Scholar 

  262. Vial E, Perez S, Castellazzi M . Transcriptional control of SPARC by v-Jun and other members of the AP1 family of transcription factors Oncogene 2000 19: 5020–5029

    Article  CAS  PubMed  Google Scholar 

  263. Epinat JC, Gilmore TD . Diverse agents act at multiple levels to inhibit the Rel/NF-kappaB signal transduction pathway Oncogene 1999 18: 6896–6909

    Article  CAS  PubMed  Google Scholar 

  264. Chen FE, Ghosh G . Regulation of DNA binding by Rel/NF-kappaB transcription factors: structural views Oncogene 1999 18: 6845–6852

    Article  CAS  PubMed  Google Scholar 

  265. Chen C, Edelstein LC, Gelinas C . The Rel/NF-kappaB family directly activates expression of the apoptosis inhibitor Bcl-x(L) Mol Cell Biol 2000 20: 2687–2695

    Article  PubMed  PubMed Central  Google Scholar 

  266. Schreck R, Baeuerle PA . NF-kappa B as inducible transcriptional activator of the granulocyte–macrophage colony-stimulating factor gene Mol Cell Biol 1990 10: 1281–1286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Duyao MP, Kessler DJ, Spicer DB, Sonenshein GE . Transactivation of the c-myc gene by HTLV-1 tax is mediated by NFkB Curr Top Microbiol Immunol 1992 182: 421–424

    CAS  PubMed  Google Scholar 

  268. Guttridge DC, Albanese C, Reuther JY, Pestell RG, Baldwin AS Jr . NF-kappaB controls cell growth and differentiation through transcriptional regulation of cyclin D1 Mol Cell Biol 1999 19: 5785–5799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Xing J, Ginty DD, Greenberg ME . Coupling of the RAS-MAPK pathway to gene activation by RSK2, a growth factor-regulated CREB kinase Science 1996 273: 959–963

    Article  CAS  PubMed  Google Scholar 

  270. Xing J, Kornhauser JM, Xia Z, Thiele EA, Greenberg ME . Nerve growth factor activates extracellular signal-regulated kinase and p38 mitogen-activated protein kinase pathways to stimulate CREB serine 133 phosphorylation Mol Cell Biol 1998 18: 1946–1955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Parker D, Ferreri K, Nakajima T, LaMorte VJ, Evans R, Koerber SC, Hoeger C, Montminy MR . Phosphorylation of CREB at Ser-133 induces complex formation with CREB-binding protein via a direct mechanism Mol Cell Biol 1996 16: 694–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Chrivia JC, Kwok RP, Lamb N, Hagiwara M, Montminy MR, Goodman RH . Phosphorylated CREB binds specifically to the nuclear protein CBP Nature 1993 365: 855–859

    Article  CAS  PubMed  Google Scholar 

  273. Wagner EF . AP-1: Introductory remarks Oncogene 2001 20: 2334–2335

    Article  CAS  PubMed  Google Scholar 

  274. Yu W, Fantl WJ, Harrowe G, Williams LT . Regulation of the MAP kinase pathway by mammalian Ksr through direct interaction with MEK and ERK Curr Biol 1998 8: 56–64

    Article  CAS  PubMed  Google Scholar 

  275. Smeal T, Binetruy B, Mercola DA, Birrer M, Karin M . Oncogenic and transcriptional cooperation with Ha-Ras requires phosphorylation of c-Jun on serines 63 and 73 Nature 1991 354: 494–496

    Article  CAS  PubMed  Google Scholar 

  276. Hibi M, Lin A, Smeal T, Minden A, Karin M . Identification of an oncoprotein- and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain Genes Dev 1993 7: 2135–2148

    Article  CAS  PubMed  Google Scholar 

  277. Derijard B, Hibi M, Wu IH, Barrett T, Su B, Deng T, Karin M, Davis RJ . JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain Cell 1994 76: 1025–1037

    Article  CAS  PubMed  Google Scholar 

  278. Minden A, Lin A, Smeal T, Derijard B, Cobb M, Davis R, Karin M . c-Jun N-terminal phosphorylation correlates with activation of the JNK subgroup but not the ERK subgroup of mitogen-activated protein kinases Mol Cell Biol 1994 14: 6683–6688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Chou SY, Baichwal V, Ferrell JE Jr . Inhibition of c-Jun DNA binding by mitogen-activated protein kinase Mol Biol Cell 1992 3: 1117–1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Smeal T, Binetruy B, Mercola DA, Birrer M, Karin M . Oncogenic and transcriptional cooperation with Ha-Ras requires phosphorylation of c-Jun on serines 63 and 73 Nature 1991 354: 494–496

    Article  CAS  PubMed  Google Scholar 

  281. Binetruy B, Smeal T, Karin M . Ha-Ras augments c-Jun activity and stimulates phosphorylation of its activation domain Nature 1991 351: 122–127

    Article  CAS  PubMed  Google Scholar 

  282. Lloyd A, Yancheva N, Wasylyk B . Transformation suppressor activity of a Jun transcription factor lacking its activation domain Nature 1991 352: 635–638

    Article  CAS  PubMed  Google Scholar 

  283. Johnson R, Spiegelman B, Hanahan D, Wisdom R . Cellular transformation and malignancy induced by ras require c-jun Mol Cell Biol 1996 16: 4504–4511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Suzuki T, Murakami M, Onai N, Fukuda E, Hashimoto Y, Sonobe MH, Kameda T, Ichinose M, Miki K, Iba H . Analysis of AP-1 function in cellular transformation pathways J Virol 1994 68: 3527–3535

    CAS  PubMed  PubMed Central  Google Scholar 

  285. Chen RH, Abate C, Blenis J . Phosphorylation of the c-Fos transrepression domain by mitogen-activated protein kinase and 90-kDa ribosomal S6 kinase Proc Natl Acad Sci USA 1993 90: 10952–10956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Chen RH, Juo PC, Curran T, Blenis J . Phosphorylation of c-Fos at the C-terminus enhances its transforming activity Oncogene 1996 12: 1493–1502

    CAS  PubMed  Google Scholar 

  287. Davis RJ . Signal transduction by the c-Jun N-terminal kinase Biochem Soc Symp 1999 64: 1–12

    CAS  PubMed  Google Scholar 

  288. van Dam H, Castellazzi M . Distinct roles of Jun : Fos and Jun : ATF dimers in oncogenesis Oncogene 2001 20: 2453–2464

    Article  CAS  PubMed  Google Scholar 

  289. Chiariello M, Marinissen MJ, Gutkind JS . Multiple mitogen-activated protein kinase signaling pathways connect the cot oncoprotein to the c-jun promoter and to cellular transformation Mol Cell Biol 2000 20: 1747–1758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Verma IM, Stevenson JK, Schwarz EM, Van Antwerp D, Miyamoto S . Rel/NF-kappa B/I kappa B family: intimate tales of association and dissociation Genes Dev 1995 9: 2723–2735

    Article  CAS  PubMed  Google Scholar 

  291. Pahl HL . Activators and target genes of Rel/NF-kappaB transcription factors Oncogene 1999 18: 6853–6866

    Article  CAS  PubMed  Google Scholar 

  292. Lee FS, Hagler J, Chen ZJ, Maniatis T . Activation of the IkappaB alpha kinase complex by MEKK1, a kinase of the JNK pathway Cell 1997 88: 213–222

    Article  CAS  PubMed  Google Scholar 

  293. Baeuerle PA, Baltimore D . NF-kappa B: ten years after Cell 1996 87: 13–20

    Article  CAS  PubMed  Google Scholar 

  294. Li S, Sedivy JM . Raf-1 protein kinase activates the NF-kappa B transcription factor by dissociating the cytoplasmic NF-kappa B-I kappa B complex Proc Natl Acad Sci USA 1993 90: 9247–9251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Ghoda L, Lin X, Greene WC . The 90-kDa ribosomal S6 kinase (pp90rsk) phosphorylates the N-terminal regulatory domain of IkappaBalpha and stimulates its degradation in vitro J Biol Chem 1997 272: 21281–21288

    Article  CAS  PubMed  Google Scholar 

  296. Schouten GJ, Vertegaal AC, Whiteside ST, Israel A, Toebes M, Dorsman JC, van der Eb AJ, Zantema A . IkappaB alpha is a target for the mitogen-activated 90 kDa ribosomal S6 kinase EMBO J 1997 16: 3133–3144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Wang W, Abbruzzese JL, Evans DB, Larry L, Cleary KR, Chiao PJ . The nuclear factor-kappa B RelA transcription factor is constitutively activated in human pancreatic adenocarcinoma cells Clin Cancer Res 1999 5: 119–127

    CAS  PubMed  Google Scholar 

  298. Giallongo A, Appella E, Ricciardi R, Rovera G, Croce CM . Identification of the c-myc oncogene product in normal and malignant B cells Science 1983 222: 430–432

    Article  CAS  PubMed  Google Scholar 

  299. Ramsay G, Evan GI, Bishop JM . The protein encoded by the human proto-oncogene c-myc Proc Natl Acad Sci USA 1984 81: 7742–7746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Schmidt EV . The role of c-myc in cellular growth control Oncogene 1999 18: 2988–2996

    Article  CAS  PubMed  Google Scholar 

  301. Grandori C, Cowley SM, James LP, Eisenman RN . The Myc/Max/Mad network and the transcriptional control of cell behavior Annu Rev Cell Dev Biol 2000 16: 653–699

    Article  CAS  PubMed  Google Scholar 

  302. Roussel MF, Ashmun RA, Sherr CJ, Eisenman RN, Ayer DE . Inhibition of cell proliferation by the Mad1 transcriptional repressor Mol Cell Biol 1996 16: 2796–2801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Baudino TA, Cleveland JL . The Max network gone mad Mol Cell Biol 2001 21: 691–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Fujioka Y, Taira T, Maeda Y, Tanaka S, Nishihara H, Iguchi-Ariga SM, Nagashima K, Ariga H . MM-1, a c-Myc-binding protein, is a candidate for a tumor suppressor in leukemia/lymphoma and tongue cancer J Biol Chem 2001 276: 45137–45144

    Article  CAS  PubMed  Google Scholar 

  305. Mori K, Maeda Y, Kitaura H, Taira T, Iguchi-Ariga SM, Ariga H . MM-1, a novel c-Myc-associating protein that represses transcriptional activity of c-Myc J Biol Chem 1998 273: 29794–29800

    Article  CAS  PubMed  Google Scholar 

  306. Seth A, Alvarez E, Gupta S, Davis RJ . A phosphorylation site located in the NH2-terminal domain of c-Myc increases transactivation of gene expression J Biol Chem 1991 266: 23521–23524

    CAS  PubMed  Google Scholar 

  307. Seth A, Gonzalez FA, Gupta S, Raden DL, Davis RJ . Signal transduction within the nucleus by mitogen-activated protein kinase J Biol Chem 1992 267: 24796–24804

    CAS  PubMed  Google Scholar 

  308. Lutterbach B, Hann SR . c-Myc transactivation domain-associated kinases: questionable role for map kinases in c-Myc phosphorylation J Cell Biochem 1999 72: 483–491

    Article  CAS  PubMed  Google Scholar 

  309. Colman MS, Ostrowski MC . The transactivation potential of a c-Myc N-terminal region (residues 92–143) is regulated by growth factor/Ras signaling Nucleic Acids Res 1996 24: 1971–1978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Sears R, Leone G, DeGregori J, Nevins JR . Ras enhances Myc protein stability Mol Cell 1999 3: 169–179

    Article  CAS  PubMed  Google Scholar 

  311. Kerkhoff E, Houben R, Loffler S, Troppmair J, Lee JE, Rapp UR . Regulation of c-myc expression by Ras/Raf signalling Oncogene 1998 16: 211–216

    Article  CAS  PubMed  Google Scholar 

  312. Noguchi K, Kitanaka C, Yamana H, Kokubu A, Mochizuki T, Kuchino Y . Regulation of c-Myc through phosphorylation at Ser-62 and Ser-71 by c-Jun N-terminal kinase J Biol Chem 1999 274: 32580–32587

    Article  CAS  PubMed  Google Scholar 

  313. Wasylyk B, Hagman J, Gutierrez-Hartmann A . Ets transcription factors: nuclear effectors of the Ras-MAP-kinase signaling pathway Trends Biochem Sci 1998 23: 213–216

    Article  CAS  PubMed  Google Scholar 

  314. Wasylyk B, Hahn SL, Giovane A . The Ets family of transcription factors Eur J Biochem 1993 211: 7–18

    Article  CAS  PubMed  Google Scholar 

  315. Sementchenko VI, Watson DK . Ets target genes: past, present and future Oncogene 2000 19: 6533–6548

    Article  CAS  PubMed  Google Scholar 

  316. Yordy JS, Muise-Helmericks RC . Signal transduction and the Ets family of transcription factors Oncogene 2000 19: 6503–6513

    Article  CAS  PubMed  Google Scholar 

  317. Brunner D, Ducker K, Oellers N, Hafen E, Scholz H, Klambt C . The ETS domain protein pointed-P2 is a target of MAP kinase in the sevenless signal transduction pathway Nature 1994 370: 386–389

    Article  CAS  PubMed  Google Scholar 

  318. Hipskind RA, Buscher D, Nordheim A, Baccarini M . Ras/MAP kinase-dependent and -independent signaling pathways target distinct ternary complex factors Genes Dev 1994 8: 1803–1816

    Article  CAS  PubMed  Google Scholar 

  319. Hipskind RA, Baccarini M, Nordheim A . Transient activation of RAF-1, MEK, and ERK2 coincides kinetically with ternary complex factor phosphorylation and immediate-early gene promoter activity in vivo Mol Cell Biol 1994 14: 6219–6231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  320. Keyse SM . Protein phosphatases and the regulation of mitogen-activated protein kinase signalling Curr Opin Cell Biol 2000 12: 186–192

    Article  CAS  PubMed  Google Scholar 

  321. Camps M, Nichols A, Arkinstall S . Dual specificity phosphatases: a gene family for control of MAP kinase function FASEB J 2000 14: 6–16

    Article  CAS  PubMed  Google Scholar 

  322. Sun H, Charles CH, Lau LF, Tonks NK . MKP-1 (3CH134), an immediate early gene product, is a dual specificity phosphatase that dephosphorylates MAP kinase in vivo Cell 1993 75: 487–493

    Article  CAS  PubMed  Google Scholar 

  323. King AG, Ozanne BW, Smythe C, Ashworth A . Isolation and characterisation of a uniquely regulated threonine, tyrosine phosphatase (TYP 1) which inactivates ERK2 and p54jnk Oncogene 1995 11: 2553–2563

    CAS  PubMed  Google Scholar 

  324. Guan KL, Butch E . Isolation and characterization of a novel dual specific phosphatase, HVH2, which selectively dephosphorylates the mitogen-activated protein kinase J Biol Chem 1995 270: 7197–7203

    Article  CAS  PubMed  Google Scholar 

  325. Muda M, Theodosiou A, Rodrigues N, Boschert U, Camps M, Gillieron C, Davies K, Ashworth A, Arkinstall S . The dual specificity phosphatases M3/6 and MKP-3 are highly selective for inactivation of distinct mitogen-activated protein kinases J Biol Chem 1996 271: 27205–27208

    Article  CAS  PubMed  Google Scholar 

  326. Muda M, Boschert U, Dickinson R, Martinou JC, Martinou I, Camps M, Schlegel W, Arkinstall S . MKP-3, a novel cytosolic protein-tyrosine phosphatase that exemplifies a new class of mitogen-activated protein kinase phosphatase J Biol Chem 1996 271: 4319–4326

    Article  CAS  PubMed  Google Scholar 

  327. Muda M, Boschert U, Smith A, Antonsson B, Gillieron C, Chabert C, Camps M, Martinou I, Ashworth A, Arkinstall S . Molecular cloning and functional characterization of a novel mitogen-activated protein kinase phosphatase, MKP-4 J Biol Chem 1997 272: 5141–5151

    Article  CAS  PubMed  Google Scholar 

  328. Tanoue T, Moriguchi T, Nishida E . Molecular cloning and characterization of a novel dual specificity phosphatase, MKP-5 J Biol Chem 1999 274: 19949–19956

    Article  CAS  PubMed  Google Scholar 

  329. Theodosiou A, Smith A, Gillieron C, Arkinstall S, Ashworth A . MKP5, a new member of the MAP kinase phosphatase family, which selectively dephosphorylates stress-activated kinases Oncogene 1999 18: 6981–6988

    Article  CAS  PubMed  Google Scholar 

  330. Tanoue T, Yamamoto T, Maeda R, Nishida E . A novel MAPK phosphatase MKP-7 acts preferentially on JNK/SAPK and p38 alpha and beta MAPKs J Biol Chem 2001 276: 26629–26639

    Article  CAS  PubMed  Google Scholar 

  331. Marti F, Krause A, Post NH, Lyddane C, Dupont B, Sadelain M, King PD . Negative-feedback regulation of CD28 costimulation by a novel mitogen-activated protein kinase phosphatase, MKP6 J Immunol 2001 166: 197–206

    Article  CAS  PubMed  Google Scholar 

  332. Brondello JM, Brunet A, Pouyssegur J, McKenzie FR . The dual specificity mitogen-activated protein kinase phosphatase-1 and -2 are induced by the p42/p44MAPK cascade J Biol Chem 1997 272: 1368–1376

    Article  CAS  PubMed  Google Scholar 

  333. Shapiro PS, Ahn NG . Feedback regulation of Raf-1 and mitogen-activated protein kinase (MAP) kinase kinases 1 and 2 by MAP kinase phosphatase-1 (MKP-1) J Biol Chem 1998 273: 1788–1793

    Article  CAS  PubMed  Google Scholar 

  334. Camps M, Nichols A, Gillieron C, Antonsson B, Muda M, Chabert C, Boschert U, Arkinstall S . Catalytic activation of the phosphatase MKP-3 by ERK2 mitogen-activated protein kinase Science 1998 280: 1262–1265

    Article  CAS  PubMed  Google Scholar 

  335. Reffas S, Schlegel W . Compartment-specific regulation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) mitogen-activated protein kinases (MAPKs) by ERK-dependent and non-ERK-dependent inductions of MAPK phosphatase (MKP)-3 and MKP-1 in differentiating P19 cells Biochem J 2000 352: 701–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  336. Haystead TA, Sim AT, Carling D, Honnor RC, Tsukitani Y, Cohen P, Hardie DG . Effects of the tumour promoter okadaic acid on intracellular protein phosphorylation and metabolism Nature 1989 337: 78–81

    Article  CAS  PubMed  Google Scholar 

  337. Orgad S, Brewis ND, Alphey L, Axton JM, Dudai Y, Cohen PT . The structure of protein phosphatase 2A is as highly conserved as that of protein phosphatase 1 FEBS Lett 1990 275: 44–48

    Article  CAS  PubMed  Google Scholar 

  338. Wassarman DA, Solomon NM, Chang HC, Karim FD, Therrien M, Rubin GM . Protein phosphatase 2A positively and negatively regulates Ras1-mediated photoreceptor development in Drosophila Genes Dev 1996 10: 272–278

    Article  CAS  PubMed  Google Scholar 

  339. Manfroid I, Martial JA, Muller M . Inhibition of protein phosphatase PP1 in GH3B6, but not in GH3 cells, activates the MEK/ERK/c-fos pathway and the human prolactin promoter, involving the coactivator CPB/p300 Mol Endocrinol 2001 15: 625–637

    Article  CAS  PubMed  Google Scholar 

  340. Chung H, Brautigan DL . Protein phosphatase 2A suppresses MAP kinase signalling and ectopic protein expression Cell Signal 1999 11: 575–580

    Article  CAS  PubMed  Google Scholar 

  341. Braconi Quintaje SB, Church DJ, Rebsamen M, Valloton MB, Hemmings BA, Lang U . Role of protein phosphatase 2A in the regulation of mitogen-activated protein kinase activity in ventricular cardiomyocytes Biochem Biophys Res Commun 1996 221: 539–547

    Article  CAS  PubMed  Google Scholar 

  342. Jaumot M, Hancock JF . Protein phosphatases 1 and 2A promote Raf-1 activation by regulating 14–3-3 interactions Oncogene 2000 20: 3949–3958

    Article  CAS  Google Scholar 

  343. Abraham D, Podar K, Pacher M, Kubicek M, Welzel N, Hemmings BA, Dilworth SM, Mischak H, Kolch W, Baccarini M . Raf-1-associated protein phosphatase 2A as a positive regulator of kinase activation J Biol Chem 2000 275: 22300–22304

    Article  CAS  PubMed  Google Scholar 

  344. Kiguchi K, Glesne D, Chubb CH, Fujiki H, Huberman E . Differential induction of apoptosis in human breast tumor cells by okadaic acid and related inhibitors of protein phosphatases 1 and 2A Cell Growth Differ 1994 5: 995–1004

    CAS  PubMed  Google Scholar 

  345. Hiles ID, Otsu M, Volinia S, Fry MJ, Gout I, Dhand R, Panayotou G, Ruiz-Larrea F, Thompson A, Totty NF et al. Phosphatidylinositol 3-kinase: structure and expression of the 110 kd catalytic subunit Cell 1992 70: 419–429

    Article  CAS  PubMed  Google Scholar 

  346. Klippel A, Escobedo JA, Fantl WJ, Williams LT . The C-terminal SH2 domain of p85 accounts for the high affinity and specificity of the binding of phosphatidylinositol 3-kinase to phosphorylated platelet-derived growth factor beta receptor Mol Cell Biol 1992 12: 1451–1459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  347. Whitman M, Downes CP, Keeler M, Keller T, Cantley L . Type I phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate Nature 1988 332: 644–646

    Article  CAS  PubMed  Google Scholar 

  348. Anderson KE, Coadwell J, Stephens LR, Hawkins PT . Translocation of PDK-1 to the plasma membrane is important in allowing PDK-1 to activate protein kinase B Curr Biol 1998 8: 684–691

    Article  CAS  PubMed  Google Scholar 

  349. Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P, Hemmings BA . Mechanism of activation of protein kinase B by insulin and IGF-1 EMBO J 1996 15: 6541–6551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  350. Alessi DR, Deak M, Casamayor A, Caudwell FB, Morrice N, Norman DG, Gaffney P, Reese CB, MacDougall CN, Harbison D, Ashworth A, Bownes M . 3-Phosphoinositide-dependent protein kinase-1 (PDK1): structural and functional homology with the Drosophila DSTPK61 kinase Curr Biol 1997 7: 776–789

    Article  CAS  PubMed  Google Scholar 

  351. Aoki M, Batista O, Bellacosa A, Tsichlis P, Vogt PK . The akt kinase: molecular determinants of oncogenicity Proc Natl Acad Sci USA 1998 95: 14950–14955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  352. Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB, Cohen P . Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha Curr Biol 1997 7: 261–269

    Article  CAS  PubMed  Google Scholar 

  353. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg ME . Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery Cell 1997 91: 231–241

    Article  CAS  PubMed  Google Scholar 

  354. del Peso L, Gonzalez-Garcia M, Page C, Herrera R, Nunez G . Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt Science 1997 278: 687–689

    Article  CAS  PubMed  Google Scholar 

  355. Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E, Frisch S, Reed JC . Regulation of cell death protease caspase-9 by phosphorylation Science 1998 282: 1318–1321

    Article  CAS  PubMed  Google Scholar 

  356. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME . Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor Cell 1999 96: 857–868

    Article  CAS  PubMed  Google Scholar 

  357. Kane LP, Shapiro VS, Stokoe D, Weiss A . Induction of NF-kappaB by the Akt/PKB kinase Curr Biol 1999 9: 601–604

    Article  CAS  PubMed  Google Scholar 

  358. Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, Puc J, Miliaresis C, Rodgers L, McCombie R, Bigner SH, Giovanella BC, Ittmann M, Tycko B, Hibshoosh H, Wigler MH, Parsons R . PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer Science 1997 275: 1943–1947

    Article  CAS  PubMed  Google Scholar 

  359. Stambolic V, Suzuki A, de la Pompa JL, Brothers GM, Mirtsos C, Sasaki T, Ruland J, Penninger JM, Siderovski DP, Mak TW . Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN Cell 1998 95: 29–39

    Article  CAS  PubMed  Google Scholar 

  360. Gu J, Tamura M, Yamada KM . Tumor suppressor PTEN inhibits integrin- and growth factor-mediated mitogen-activated protein (MAP) kinase signaling pathways J Cell Biol 1998 143: 1375–1383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  361. Maehama T, Dixon JE . The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate J Biol Chem 1998 273: 13375–13378

    Article  CAS  PubMed  Google Scholar 

  362. Myers MP, Pass I, Batty IH, Van der Kaay J, Stolarov JP, Hemmings BA, Wigler MH, Downes CP, Tonks NK . The lipid phosphatase activity of PTEN is critical for its tumor supressor function Proc Natl Acad Sci USA 1998 95: 13513–13518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  363. Di Cristofano A, Pesce B, Cordon-Cardo C, Pandolfi PP . Pten is essential for embryonic development and tumour suppression Nat Genet 1998 19: 348–355

    Article  CAS  PubMed  Google Scholar 

  364. Podsypanina K, Ellenson LH, Nemes A, Gu J, Tamura M, Yamada KM, Cordon-Cardo C, Catoretti G, Fisher PE, Parsons R . Mutation of Pten/Mmac1 in mice causes neoplasia in multiple organ systems Proc Natl Acad Sci USA 1999 96: 1563–1568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  365. Arcaro A, Wymann MP . Wortmannin is a potent phosphatidylinositol 3-kinase inhibitor: the role of phosphatidylinositol 3,4,5-trisphosphate in neutrophil responses Biochem J 1993 296: 297–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  366. Powis G, Bonjouklian R, Berggren MM, Gallegos A, Abraham R, Ashendel C, Zalkow L, Matter WF, Dodge J, Grindey G, Vlahos CJ . Wortmannin, a potent and selective inhibitor of phosphatidylinositol-3-kinase Cancer Res 1994 54: 2419–2423

    CAS  PubMed  Google Scholar 

  367. Vlahos CJ, Matter WF, Hui KY, Brown RF . A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002) J Biol Chem 1994 269: 5241–5248

    CAS  PubMed  Google Scholar 

  368. Hu Y, Qiao L, Wang S, Rong SB, Meuillet EJ, Berggren M, Gallegos A, Powis G, Kozikowski AP . 3-(Hydroxymethyl)-bearing phosphatidylinositol ether lipid analogues and carbonate surrogates block PI3-K, Akt, and cancer cell growth J Med Chem 2000 43: 3045–3051

    Article  CAS  PubMed  Google Scholar 

  369. King WG, Mattaliano MD, Chan TO, Tsichlis PN, Brugge JS . Phosphatidylinositol 3-kinase is required for integrin-stimulated AKT and Raf-1/mitogen-activated protein kinase pathway activation Mol Cell Biol 1997 17: 4406–4418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  370. Wennstrom S, Downward J . Role of phosphoinositide 3-kinase in activation of ras and mitogen-activated protein kinase by epidermal growth factor Mol Cell Biol 1999 19: 4279–4288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  371. Sheng H, Shao J, DuBois RN . Akt/PKB activity is required for Ha-Ras-mediated transformation of intestinal epithelial cells J Biol Chem 2001 276: 14498–14504

    Article  CAS  PubMed  Google Scholar 

  372. von Gise A, Lorenz P, Wellbrock C, Hemmings B, Berberich-Siebelt F, Rapp UR, Troppmair J . Apoptosis suppression by Raf-1 and MEK1 requires MEK- and phosphatidylinositol 3-kinase-dependent signals Mol Cell Biol 2001 21: 2324–2236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  373. McCubrey JA, Lee JT, Steelman LS, Blalock WL, Moye PW, Chang F, Pearce M, Shelton JG, White MK, Franklin RA, Pohnert SC . Interactions between the PI3K and Raf signaling pathways can result in the transformation of hematopoietic cells Cancer Detect Prev 2001 25: 375–393

    CAS  PubMed  Google Scholar 

  374. Reusch HP, Zimmermann S, Schaefer M, Paul M, Moelling K . Regulation of Raf by Akt controls growth and differentiation in vascular smooth muscle cells J Biol Chem 2001 276: 33630–33637

    Article  CAS  PubMed  Google Scholar 

  375. Guan KL, Figueroa C, Brtva TR, Zhu T, Taylor J, Barber TD, Vojtek AB . Negative regulation of the serine/threonine kinase B-Raf by Akt J Biol Chem 2000 275: 27354–27359

    CAS  PubMed  Google Scholar 

  376. Zimmermann S, Moelling K . Phosphorylation and regulation of Raf by Akt (protein kinase B) Science 1999 286: 1741–1744

    Article  CAS  PubMed  Google Scholar 

  377. Rommel C, Clarke BA, Zimmermann S, Nunez L, Rossman R, Reid K, Moelling K, Yancopoulos GD, Glass DJ . Differentiation stage-specific inhibition of the Raf-MEK-ERK pathway by Akt Science 1999 286: 1738–1741

    Article  CAS  PubMed  Google Scholar 

  378. Ruvolo PP, Deng X, May WS . Phosphorylation of Bcl2 and regulation of apoptosis Leukemia 2001 15: 515–522

    Article  CAS  PubMed  Google Scholar 

  379. Ruvolo PP . Ceramide regulates cellular homeostasis via diverse stress signaling pathways Leukemia 2001 15: 1153–1160

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by RO1CA51025 from the National Cancer Institute and 2000-ARG-0003 from the North Carolina Biotechnology Center. We wish to thank Ms Catherine Spruill for the excellent artwork.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee Jr, J., McCubrey, J. The Raf/MEK/ERK signal transduction cascade as a target for chemotherapeutic intervention in leukemia. Leukemia 16, 486–507 (2002). https://doi.org/10.1038/sj.leu.2402460

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402460

Keywords

This article is cited by

Search

Quick links