Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Spotlight
  • Published:

Spotlight on Molecular Targeted Therapy

Hsp-90-associated oncoproteins: multiple targets of geldanamycin and its analogs

Abstract

Geldanamycin (GA), herbimycin A and radicicol bind heat-shock protein-90 (Hsp90) and destabilize its client proteins including v-Src, Bcr-Abl, Raf-1, ErbB2, some growth factor receptors and steroid receptors. Thus, Hsp90-active agents induce ubiquitination and proteasomal degradation of numerous oncoproteins. Depending on the cellular context, HSP90-active agents cause growth arrest, differentiation and apoptosis, or can prevent apoptosis. HSP-active agents are undergoing clinical trials. Like targets of most chemotherapeutics, Hsp90 is not a cancer-specific protein. By attacking a nonspecific target, HSP-90-active compounds still may preferentially kill certain tumor cells. How can this be achieved? How can therapeutic potentials be exploited? This article starts the discussion.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

References

  1. Ernst P, Killmann SA . Effect of anti-leukemic drugs on cell cycle of human leukemic blast cells in vivo Acta Med Scand 1969 186: 239–240

    Article  CAS  PubMed  Google Scholar 

  2. Pardee AB . G1 events and regulation of cell proliferation Science 1989 246: 603–608

    Article  CAS  PubMed  Google Scholar 

  3. Bartek J, Lukas J, Bartkova J . Perspective: defects in cell cycle control and cancer J Pathol 1999 187: 95–99

    Article  CAS  PubMed  Google Scholar 

  4. Hanahan D, Weinberg RA . The hallmarks of cancer Cell 2000 100: 57–70

    Article  CAS  PubMed  Google Scholar 

  5. Sherr CJ . The Pezcoller lecture: Cancer cell cycle revisited Cancer Res 2000 60: 3689–3695

    CAS  PubMed  Google Scholar 

  6. Evan GI, Vousden KH . Proliferation, cell cycle and apoptosis in cancer Nature 2001 411: 342–348

    Article  CAS  PubMed  Google Scholar 

  7. Fisher DE . Apoptosis in cancer therapy: crossing the threshold Cell 1994 78: 539–542

    Article  CAS  PubMed  Google Scholar 

  8. Lowe SW, Lin AW . Apoptosis in cancer Carcinogenesis 2000 21: 485–495

    Article  CAS  PubMed  Google Scholar 

  9. Blagosklonny MV, Pardee AB . Exploiting cancer cell cycling for selective protection of normal cells Cancer Res 2001 61: 4301–4305

    CAS  PubMed  Google Scholar 

  10. Shapiro GI, Harper JW . Anticancer drug targets: cell cycle and checkpoint control J Clin Invest 1999 104: 1645–1653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kaelin WGJ . Choosing anticancer drug targets in the postgenomic era J Clin Invest 1999 104: 1503–1506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kaelin WG . Taking aim at novel molecular targets in cancer therapy J Clin Invest 1999 104: 1495–1506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gibbs JB . Mechanism-based target identification and drug discovery in cancer Science 2000 287: 1969–1973

    Article  CAS  PubMed  Google Scholar 

  14. Buolamwini JK . Cell cycle molecular targets and drug discovery. In: Blagosklonny MV (ed.) Cell Cycle Checkpoints and Cancer Landes Bioscience: Austin, TX 2002 235–246

    Google Scholar 

  15. Vogelstein B, Kinzler KW . The multistep nature of cancer Trends Genet 1993 9: 138–141

    Article  CAS  PubMed  Google Scholar 

  16. An WG, Schnur RC, Neckers LM, Blagosklonny MV . Depletion of ErbB2, Raf-1 and mutant p53 proteins by geldanamycin derivatives correlates with antiproliferative activity Cancer Chemother Pharmacol 1997 40: 60–64

    Article  CAS  PubMed  Google Scholar 

  17. Uehara Y, Hori M, Takeuchi T, Umezawa H . Phenotypic change from transformed to normal induced by benzoquinonoid ansamycins accompanies inactivation of p60src in rat kidney cells infected with Rous sarcoma virus Mol Cell Biol 1986 6: 2198–2206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Whitesell L, Mimnaugh EG, De Costa B, Myers CE, Neckers LM . Inhibition of HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation Proc Natl Acad Sci USA 1994 91: 8324–8328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Morimoto RI, Santoro MG . Stress-inducible responses and heat shock proteins: new pharmacologic targets for cytoprotection Nat Biotechnol 1998 16: 833–838

    Article  CAS  PubMed  Google Scholar 

  20. Creagh EM, Sheehan D, Cotter TG . Heat shock proteins – modulators of apoptosis in tumour cells Leukemia 2000 14: 1161–1173

    Article  CAS  PubMed  Google Scholar 

  21. Young JC, Moarefi I, Hartl FU . Hsp90: a specialized but essential protein-folding tool J Cell Biol 2001 154: 267–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Richter K, Buchner J . Hsp90: chaperoning signal transduction J Cell Physiol 2001 188: 281–290

    Article  CAS  PubMed  Google Scholar 

  23. Jolly C, Morimoto RI . Role of the heat shock response and molecular chaperones in oncogenesis and cell death J Natl Cancer Inst 2000 92: 1564–1572

    Article  CAS  PubMed  Google Scholar 

  24. Stebbins CE, Russo AA, Schnieder C, Rosen N, Hartl FU, Pavletich NP . Crystal structure of an Hsp90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent Cell 1997 89: 239–250

    Article  CAS  PubMed  Google Scholar 

  25. Grenert JP, Sullivan WP, Fadden P, Haystead TAJ, Clark J, Mimnaugh E, Krutzsch H, Ochel HJ, Schulte TW, Sausville E, Neckers LM, Toft DO . The amino-terminal domain of heat shock protein 90 (hsp90) that binds geldanamycin is an ATP/ADP switch domain that regulates hsp90 conformation J Biol Chem 1997 272: 23843–23850

    Article  CAS  PubMed  Google Scholar 

  26. Bohen SP . Genetic and biochemical analysis of p23 and ansamycin antibiotics in the function of Hsp90-dependent signaling proteins Mol Cell Biol 1998 18: 3330–3339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Roe SM, Prodromou C, O'Brien R, Ladbury JE, Piper PW, Pearl LH . Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin J Med Chem 1999 42: 260–266

    Article  CAS  PubMed  Google Scholar 

  28. Maki CG, Huibregtse JM, Howley PM . In vivo ubiquitination and proteasome-mediated degradation of p53 Cancer Res 1996 56: 2649–2654

    CAS  PubMed  Google Scholar 

  29. DeSalle LM, Pagano M . Regulation of the G1 to S transition by the ubiquitin pathway FEBS Lett 2001 490: 179–189

    Article  CAS  PubMed  Google Scholar 

  30. Sepp-Lorenzino L, Ma Z, Lebwohl DE, Vinitsky A, Rosen N . Herbimycin A induces the 20 S proteasome- and ubiquitin-dependent degradation of receptor tyrosine kinases J Biol Chem 1995 270: 16580–16587

    Article  CAS  PubMed  Google Scholar 

  31. Mimnaugh EG, Chavany C, Neckers L . Polyubiquitination and proteasomal degradation of the p185(c-erbB-2) receptor protein-tyrosine kinase induced by geldanamycin J Biol Chem 1996 271: 22796–22801

    Article  CAS  PubMed  Google Scholar 

  32. Nimmanapalli R, O'Bryan E, Bhalla K . Geldanamycin and its analogue 17-allylamino-17-demethoxygeldanamycin lowers Bcr-Abl levels and induces apoptosis and differentiation of Bcr-Abl-positive human leukemic blasts Cancer Res 2001 61: 1799–1804

    CAS  PubMed  Google Scholar 

  33. Drexler HC . Activation of the cell death program by inhibition of proteasome function Proc Natl Acad Sci USA 1997 94: 855–860

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Adams J, Palombella VJ, Sausville EA, Johnson J, Destree A, Lazarus DD, Maas J, Pien CS, Prakash S, Elliott PJ . Proteasome inhibitors: a novel class of potent and effective antitumor agents Cancer Res 1999 59: 2615–2622

    CAS  PubMed  Google Scholar 

  35. An WG, Hwang SG, Trepel JB, Blagosklonny MV . Protease inhibitor-induced apoptosis: accumulation wt p53, p21WAF1/CIP1, and induction of apoptosis are independent markers of proteasome inhibition Leukemia 2000 14: 1276–1283

    Article  CAS  PubMed  Google Scholar 

  36. Blagosklonny MV, Fojo T, Bhalla KN, Kim J-S, Trepel JB, Figg WD, Rivera Y, Neckers LM . The Hsp90 inhibitor geldanamycin selectively sensitizes Bcr-Abl-expressing leukemia cells to cytotoxic chemotherapy Leukemia 2001 15: 1537–1543

    Article  CAS  PubMed  Google Scholar 

  37. Blagosklonny MV, Wu GS, Omura S, El-Deiry WS . Proteasome-dependent regulation of p21WAF1/CIP1 expression Biochem Biophys Res Comm 1996 227: 564–569

    Article  CAS  PubMed  Google Scholar 

  38. Kubbutat MHG, Jones SN, Vousden KH . Regulation of p53 stability by Mdm2 Nature 1997 387: 299–303

    Article  CAS  PubMed  Google Scholar 

  39. Haupt Y, Maya R, Kazaz A, Oren M . Mdm2 promotes the rapid degradation of p53 Nature 1997 387: 296–299

    Article  CAS  PubMed  Google Scholar 

  40. Blagosklonny MV . Loss of function and p53 stabilization Oncogene 1997 15: 1889–1893

    Article  CAS  PubMed  Google Scholar 

  41. Midgley CA, Lane DP . p53 protein stability in tumour cells is not determined by mutation but is dependent on Mdm2 binding Oncogene 1997 15: 1179–1189

    Article  CAS  PubMed  Google Scholar 

  42. Blagosklonny MV, Toretskey J, Neckers LM . Geldanamycin selectively destabilizes and conformationally alters mutated p53 Oncogene 1995 11: 933–939

    CAS  PubMed  Google Scholar 

  43. Whitesell L, Sutphin P, An WG, Schulte T, Blagosklonny MV, Neckers L . Geldanamycin-stimulated destabolization of mutated p53 is mediated by the proteasome in vivo Oncogene 1997 14: 2809–2816

    Article  CAS  PubMed  Google Scholar 

  44. Nagata Y, Anan T, Yoshida T, Mizukami T, Taya Y, Fujiwara T, Kato H, Saya H, Nakao M . The stabilization mechanism of mutant-type p53 by impaired ubiquitination: the loss of wild-type p53 function and the hsp90 association Oncogene 1999 18: 6037–6049

    Article  CAS  PubMed  Google Scholar 

  45. Blagosklonny MV, Toretskey J, Bohen S, Neckers LM . Conformation of mutated p53 requires functional HSP90 Proc Natl Acad Sci USA 1996 93: 8379–8383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Loo MA, Jensen TJ, Cui L, Hou Y, Chang XB, Riordan JR . Perturbation of Hsp90 interaction with nascent CFTR prevents its maturation and accelerates its degradation by the proteasome EMBO J 1998 17: 6879–6887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Blagosklonny MV, Schulte TW, Nguyen P, Mimnaugh EG, Trepel J, Neckers L . Taxol induction of p21Waf1 and p53 requires c-raf-1 Cancer Res 1995 55: 4623–4626

    CAS  PubMed  Google Scholar 

  48. Miller P, DiOrio C, Moyer M, Schnur RC, Bruskin A, Cullen W, Moyer JD . Depletion of the erbB-2 gene product p185 by benzoquinoid ansamycins Cancer Res 1994 54: 2724–2730

    CAS  PubMed  Google Scholar 

  49. Tikhomirov O, Carpenter G . Geldanamycin induces ErbB-2 degradation by proteolytic fragmentation J Biol Chem 2000 275: 26625–26631

    Article  CAS  PubMed  Google Scholar 

  50. Supino-Rosin L, Yoshimura A, Yarden Y, Elazar Z, Neumann D . Intracellular retention and degradation of the epidermal growth factor receptor, two distinct processes mediated by benzoquinone ansamycins J Biol Chem 2000 275: 21850–21855

    Article  CAS  PubMed  Google Scholar 

  51. Schulte TW, Blagosklonny MV, Romanova L, Mushinski JF, Monia BP, Johnston JF, Nguyen P, Trepel J, Neckers LM . Destabilization of Raf-1 by geldanamycin leads to disruption of the Raf-1-MEK-Mitogen-activated protein kinase signalling pathway Mol Cell Biol 1996 16: 5839–5845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hartson SD, Barrett DJ, Burn P, Matts RL . Hsp90-mediated folding of the lymphoid cell kinase p56lck Biochemistry 1996 35: 13451–13459

    Article  CAS  PubMed  Google Scholar 

  53. Stepanova L, Leng X, Parker SB, Harper JW . Mammalian p50Cdc37 is a protein kinase-targeting subunit of Hsp90 that binds and stabilizes Cdk4 Genes Dev 1996 10: 1491–1502

    Article  CAS  PubMed  Google Scholar 

  54. Sato S, Fujita N, Tsuruo T . Modulation of akt kinase activity by binding to hsp90 Proc Natl Acad Sci USA 2000 97: 10832–10837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Muise-Helmericks RC, Grimes HL, Bellacosa A, Malstrom SE, Tsichlis PN, Rosen N . Cyclin D expression is controlled post-transcriptionally via a phosphatidylinositol 3-kinase/Akt-dependent pathway J Biol Chem 1998 273: 29864–29872

    Article  CAS  PubMed  Google Scholar 

  56. Sherr CJ, Roberts JM . CDK inhibitors: positive and negative regulators of G1-phase progression Genes Dev 1999 13: 1501–1512

    Article  CAS  PubMed  Google Scholar 

  57. Kwon HJ, Yoshida M, Fukui Y, Horinouchi S, Beppu T . Potent and specific inhibition of p60v-src protein kinase both in vivo and in vitro by radicicol Cancer Res 1992 52: 6926–6930

    CAS  PubMed  Google Scholar 

  58. Zhao JF, Nakano H, Sharma S . Suppression of RAS and MOS transformation by radicicol Oncogene 1995 11: 161–173

    CAS  PubMed  Google Scholar 

  59. Soga S, Kozawa T, Narumi H, Akinaga S, Irie K, Matsumoto K, Sharma SV, Nakano H, Mizukami T, Hara M . Radicicol leads to selective depletion of Raf kinase and disrupts K-Ras-activated aberrant signaling pathway J Biol Chem 1998 273: 822–828

    Article  CAS  PubMed  Google Scholar 

  60. Soga S, Neckers LM, Schulte TW, Shiotsu Y, Akasaka K, Narumi H, Agatsuma T, Ikuina Y, Murakata C, Tamaoki T, Akinaga S . KF25706, a novel oxime derivative of radicicol, exhibits in vivo antitumor activity via selective depletion of Hsp90 binding signaling molecules Cancer Res 1999 59: 2931–2938

    CAS  PubMed  Google Scholar 

  61. Sharma SV, Agatsuma T, Nakano H . Targeting of the protein chaperone, HSP90, by the transformation suppressing agent, radicicol Oncogene 1998 16: 2639–2645

    Article  CAS  PubMed  Google Scholar 

  62. Gibbs JB . Anticancer drug targets: growth factors and growth factor signaling J Clin Invest 2000 105: 9–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Weinstein-Oppenheimer CR, Blalock WL, Steelman LS, Chang FM, McCubrey JA . The Raf signal transduction cascade as a target for chemotherapeutic intervention in growth factor-responsive tumors Pharmacol Ther 2000 88: 229–279

    Article  CAS  PubMed  Google Scholar 

  64. Dunn SE, Torres JV, Oh JS, Cykert DM, Barrett JC . Up-regulation of urokinase-type plasminogen activator by insulin-like growth factor-I depends upon phosphatidylinositol-3 kinase and mitogen-activated protein kinase kinase Cancer Res 2001 61: 1367–1374

    CAS  PubMed  Google Scholar 

  65. Blagosklonny MV . The mitogen-activated protein kinase pathway mediates growth arrest or E1A-dependent apoptosis in SKBr3 human breast cancer cells Int J Cancer 1998 78: 511–517

    Article  CAS  PubMed  Google Scholar 

  66. Blagosklonny MV, Chuman Y, Bergan RC, Fojo T . Mitogen-activated protein kinase pathway is dispensable for microtubule-active drug-induced Raf-1/Bcl-2 phosphorylation and apoptosis in leukemia cells Leukemia 1999 13: 1028–1036

    Article  CAS  PubMed  Google Scholar 

  67. Chiosis G, Timaul MN, Lucas B, Munster PN, Zheng FF, Sepp-Lorenzino L, Rosen N . A small molecule designed to bind to the adenine nucleotide pocket of Hsp90 causes Her2 degradation and the growth arrest and differentiation of breast cancer cells Chem Biol 2001 8: 289–299

    Article  CAS  PubMed  Google Scholar 

  68. Tsai M-J, O'Malley BW . Molecular mechanisms of action of steroid/thyroid hormone receptor superfamily members Ann Rev Biochem 1994 63: 451–486

    Article  CAS  PubMed  Google Scholar 

  69. Pratt WB, Silverstein AM, Galigniana MD . A model for the cytoplasmic trafficking of signalling proteins involving the hsp90-binding immunophilins and p50cdc37 Cell Signal 1999 11: 839–851

    Article  CAS  PubMed  Google Scholar 

  70. Whitesell L, Cook P . Stable and specific binding of heat shock protein 90 by geldanamycin disrupts glucocorticoid receptor function in intact cells Mol Endocrinol 1996 10: 705–712

    CAS  PubMed  Google Scholar 

  71. Czar MJ, Galigniana MD, Silverstein AM, Pratt WB . Geldanamycin, a heat shock protein 90-binding benzoquinone ansamycin, inhibits steroid-dependent translocation of the glucocorticoid receptor from the cytoplasm to the nucleus Biochemistry 1997 36: 7776–7785

    Article  CAS  PubMed  Google Scholar 

  72. Galigniana MD, Scruggs JL, Herrington J, Welsh MJ, Carter-Su C, Housley PR, Silverstein AM, Pratt WB . Heat shock protein 90-dependent (geldanamycin-inhibited) movement of the glucocorticoid receptor through the cytoplasm to the nucleus requires intact cytoskeleton Mol Endocrinol 1998 12: 1903–1913

    Article  CAS  PubMed  Google Scholar 

  73. Bagatell R, Khan O, Paine-Murrieta G, Taylor CW, Akinaga S, Whitesell L . Destabilization of steroid receptors by heat shock protein 90-binding drugs: a ligand-independent approach to hormonal therapy of breast cancer Clin Cancer Res 2001 7: 2076–2084

    CAS  PubMed  Google Scholar 

  74. Yen A, Soong S, Kwon HJ, Yoshida M, Beppu T, Varvayanis S . Enhanced cell differentiation when RB is hypophosphorylated and down-regulated by radicicol, a SRC-kinase inhibitor Exp Cell Res 1994 214: 163–171

    Article  CAS  PubMed  Google Scholar 

  75. Srethapakdi M, Liu F, Tavorath R, Rosen N . Inhibition of Hsp90 function by ansamycins causes retinoblastoma gene product-dependent G1 arrest Cancer Res 2000 60: 3940–3946

    CAS  PubMed  Google Scholar 

  76. Munster PN, Srethapakdi M, Moasser MM, Rosen N . Inhibition of heat shock protein 90 function by ansamycins causes the morphological and functional differentiation of breast cancer cells Cancer Res 2001 61: 2945–2952

    CAS  PubMed  Google Scholar 

  77. Shiotsu Y, Neckers LM, Wortman I, An WG, Schulte TW, Soga S, Murakata C, Tamaoki T, Akinaga S . Novel oxime derivatives of radicicol induce erythroid differentiation associated with preferential G(1) phase accumulation against chronic myelogenous leukemia cells through destabilization of Bcr-Abl with Hsp90 complex Blood 2000 96: 2284–2291

    CAS  PubMed  Google Scholar 

  78. Kim HR, Lee CH, Choi YH, Kang HS, Kim HD . Geldanamycin induces cell cycle arrest in K562 erythroleukemic cells IUBMB Life 1999 48: 425–428

    Article  CAS  PubMed  Google Scholar 

  79. Blagosklonny MV, Schulte TW, Nguyen P, Trepel J, Neckers L . Taxol-induced apoptosis and phosphorylation of Bcl-2 protein involves c-raf-1 and represents a novel c-Raf-1 signal transduction pathway Cancer Res 1996 56: 1851–1854

    CAS  PubMed  Google Scholar 

  80. Ibrado AM, Liu L, Bhalla K . Bcl-xL overexpression inhibits progression of molecular events leading to paclitaxel-induced apoptosis of human AML HL-60 cells Cancer Res 1997 57: 1109–1115

    CAS  PubMed  Google Scholar 

  81. Sausville EA . Combining cytotoxics and 17-allylamino, 17-demethoxygeldanamycin: sequence and tumor biology matters Clin Cancer Res 2001 7: 2155–2158

    CAS  PubMed  Google Scholar 

  82. Munster PN, Basso A, Solit D, Norton L, Rosen N . Modulation of Hsp90 function by ansamycins sensitizes breast cancer cells to chemotherapy-induced apoptosis in an RB and schedule-dependent manner Clin Cancer Res 2001 7: 2228–2236

    CAS  PubMed  Google Scholar 

  83. Nguyen DM, Chen A, Mixon A, Schrump DS . Sequence-dependent enhancement of paclitaxel toxicity in non-small cell lung cancer by 17-allylamino 17-demethoxygeldanamycin J Thor Cardiovascular Surg 1999 118: 908–915

    Article  CAS  Google Scholar 

  84. Deininger MWN, Goldman JM, Melo JV . The molecular biology of chronic myeloid leukemia Blood 2000 96: 3343–3356

    CAS  PubMed  Google Scholar 

  85. Bedi A, Barber JP, Bedi GC, el-Deiry WS, Sidransky D, Vala MS, Akhtar AJ, Hilton J, Jones RJ . BCR-ABL-mediated inhibition of apoptosis with delay of G2/M transition after DNA damage: a mechanism of resistance to multiple anticancer agents Blood 1995 86: 1148–1158

    CAS  PubMed  Google Scholar 

  86. Dubrez L, Eymin B, Sordet O, Droin N, Turhan AG, Solary E . BCR-ABL delays apoptosis upstream of procaspase-3 activation Blood 1998 91: 2415–2422

    CAS  PubMed  Google Scholar 

  87. Amarante-Mendes GP, Naekyung Kim C, Liu L, Huang Y, Perkins CL, Green DR, Bhalla K . Bcr-Abl exerts its antiapoptotic effect against diverse apoptotic stimuli through blockage of mitochondrial release of cytochrome C and activation of caspase-3 Blood 1998 91: 1700–1705

    CAS  PubMed  Google Scholar 

  88. McCubrey JA, May WS, Duronio V, Mufson A . Serine/threonine phosphorylation in cytokine signal transduction Leukemia 2000 14: 1060–1079

    Article  CAS  PubMed  Google Scholar 

  89. An WG, Schulte TW, Neckers LM . The HSP90 antagonist geldanamycin alters chaperone association with p210BCR-ABL and v-src proteins prior to their degradation by the proteasome Cell Growth Diff 2000 11: 355–360

    CAS  PubMed  Google Scholar 

  90. Druker BJ, Sawyers CL, Kantarjian H, Resta DJ, Reese SF, Ford JM, Capdeville R, Talpaz M . Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome N Engl J Med 2001 344: 1038–1042

    Article  CAS  PubMed  Google Scholar 

  91. Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM, Lydon NB, Kantarjian H, Capdeville R, Ohno-Jones S, Sawyers CL . Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia N Engl J Med 2001 344: 1031–1037

    Article  CAS  PubMed  Google Scholar 

  92. Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN, Sawyers CL . Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification Science 2001 293: 876–880

    Article  CAS  PubMed  Google Scholar 

  93. Sirulink A, Silver RT, Najfeld V . Marked ploidy and BCR-ABL gene amplification in vivo in a patient treated with STI571 Leukemia 2001 15: 1795–1797

    Article  CAS  PubMed  Google Scholar 

  94. Tse KF, Mukherjee G, Small D . Constitutive activation of FLT3 stimulates multiple intracellular signal transducers and results in transformation Leukemia 2000 14: 1766–1776

    Article  CAS  PubMed  Google Scholar 

  95. Zhao M, Kiyoi H, Yamamoto Y, Ito M, Towatari M, Omura S, Kitamura T, Ueda R, Saito H, Naoe T . In vivo treatment of mutant FLT3-transformed murine leukemia with a tyrosine kinase inhibitor Leukemia 2000 14: 374–378

    Article  CAS  PubMed  Google Scholar 

  96. Ferrarini M, Heltai S, Zocchi MR, Rugarli C . Unusual expression and localization of heat-shock proteins in human tumor cells Int J Cancer 1992 51: 613–619

    Article  CAS  PubMed  Google Scholar 

  97. Scholz GM, Hartson SD, Cartledge K, Volk L, Matts RL, Dunn AR . The molecular chaperone Hsp90 is required for signal trans- duction by wild-type Hck and maintenance of its constitutively active counterpart Cell Growth Diff 2001 12: 409–417

    CAS  PubMed  Google Scholar 

  98. Mandler R, Wu C, Sausville EA, Roettinger AJ, Newman DJ, Ho DK, King CR, Yang D, Lippman ME, Landolfi NF, Dadachova E, Brechbiel MW, Waldmann TA . Immunoconjugates of geldanamycin and anti-HER2 monoclonal antibodies: antiproliferative activity on human breast carcinoma cell lines J Natl Cancer Inst 2000 92: 1573–1581

    Article  CAS  PubMed  Google Scholar 

  99. Mendelsohn J . Use of an antibody to target geldanamycin J Natl Cancer Inst 2000 92: 1549–1551

    Article  CAS  PubMed  Google Scholar 

  100. Kelland LR, Sharp SY, Rogers PM, Myers TG, Workman P . DT-diaphorase expression and tumor cell sensitivity to 17-allylamino,17-demethoxygeldanamycin, an inhibitor of heat shock protein 90 J Natl Cancer Inst 1999 91: 1940–1949

    Article  CAS  PubMed  Google Scholar 

  101. Sano M . Radicicol and geldanamycin prevent neurotoxic effects of anti-cancer drugs on cultured embryonic sensory neurons Neuropharmacology 2001 40: 947–953

    Article  CAS  PubMed  Google Scholar 

  102. Kim HR, Kang HS, Kim HD . Geldanamycin induces heat shock protein expression through activation of HSF1 in K562 erythroleukemic cells IUBMB Life 1999 48: 429–433

    Article  CAS  PubMed  Google Scholar 

  103. Bagatell R, Paine-Murrieta GD, Taylor CW, Pulcini EJ, Akinaga S, Benjamin IJ, Whitesell L . Induction of a heat shock factor 1-dependent stress response alters the cytotoxic activity of hsp90-binding agents Clin Cancer Res 2000 6: 3312–3328

    CAS  PubMed  Google Scholar 

  104. Murakami Y, Uehara Y, Yamamoto C, Fukazawa H, Mizuno S . Induction of hsp 72/73 by herbimycin A, an inhibitor of transformation by tyrosine kinase oncogenes Exp Cell Res 1991 195: 338–344

    Article  CAS  PubMed  Google Scholar 

  105. Morris SD, Cumming DV, Latchman DS, Yellon DM . Specific induction of the 70-kD heat stress proteins by the tyrosine kinase inhibitor herbimycin-A protects rat neonatal cardiomyocytes A new pharmacological route to stress protein expression? J Clin Invest 1996 97: 706–712

    CAS  PubMed  Google Scholar 

  106. Egorin MJ, Zuhowski EG, Rosen DM, Sentz DL, Covey JM, Eiseman JL . Plasma pharmacokinetics and tissue distribution of 17-(allylamino)-17-demethoxygeldanamycin (NSC 330507) in CD2F1 mice Cancer Chemother Pharmacol 2001 47: 291–302

    Article  CAS  PubMed  Google Scholar 

  107. Khan SM, Oliver RH, Dauffenbach LM, Yeh J . Depletion of Raf-1 protooncogene by geldanamycin causes apoptosis in human luteinized granulosa cells Fertil Steril 2000 74: 359–365

    Article  CAS  PubMed  Google Scholar 

  108. Wilson RH, Takimoto CH, Agnew EB, Morrison G, Grollman F, Thomas RR, Saif MW, Hopkins J, Allegra C, Grochow L, Szabo E, Hamilton JM, Brian P, Monahan BP, Neckers L, Grem JL . Demethoxygeldanamycin (AAG) in adult patients with advanced solid tumors Proc Am Soc Clin Oncol 2001 (Abstr. 325)

  109. Munster PN, Tong W, Schwartz L, Larson S, Kenneson K, De La Cruz A, Rosen N, Scher H . Phase I trial of 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) in patients (Pts) with advanced solid malignancies Proc Am Soc Clin Oncol 2001 (Abstr. 327)

  110. Banerji U, O'Donnell A, Scurr M, Benson C, Hanwell J, Clark S, Raynaud F, Turner A, Walton M, Workman P, Judson I . Phase I trial of the heat shock protein 90 (HSP90) inhibitor 17-allylamino 17-demethoxygeldanamycin 17aag). Pharmacokinetic (PK) profile and pharmacodynamic (PD) endpoints Proc Am Soc Clin Oncol 2001 (Abstr. 326)

  111. Kennedy MJ, Armstrong DK, Huelskamp AM, Ohly K, Clarke BV, Colvin OM, Grochow LB, Chen TL, Davidson NE . Phase I and pharmacologic study of the alkylating agent modulator novobiocin in combination with high-dose chemotherapy for the treatment of metastatic breast cancer J Clin Oncol 1995 13: 1136–1143

    Article  CAS  PubMed  Google Scholar 

  112. Murren JR, DiStasio SA, Lorico A, McKeon A, Zuhowski EG, Egorin MJ, Sartorelli AC, Rappa G . Phase I and pharmacokinetic study of novobiocin in combination with VP-16 in patients with refractory malignancies Cancer J 2000 6: 256–265

    CAS  PubMed  Google Scholar 

  113. Stocker U, Schaefer A, Marquardt H . DMSO-like rapid decrease in c-myc and c-myb mRNA levels and induction of differentiation in HL-60 cells by the anthracycline antitumor antibiotic aclarubicin Leukemia 1995 9: 146–154

    CAS  PubMed  Google Scholar 

  114. Marcu MG, Schulte TW, Neckers L . Novobiocin and related coumarins and depletion of heat shock protein 90-dependent signaling proteins J Natl Cancer Inst 2000 92: 242–248

    Article  CAS  PubMed  Google Scholar 

  115. Eder JP, Wheeler CA, Teicher BA, Schnipper LE . A phase I clinical trial of novobiocin, a modulator of alkylating agent cytotoxicity Cancer Res 1991 51: 510–513

    CAS  PubMed  Google Scholar 

  116. Breivik J . Don't stop for repair in a war zone: darwinian evolution unites genes and environment in cancer development Proc Natl Acad Sci USA 2001 98: 5379–5381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blagosklonny, M. Hsp-90-associated oncoproteins: multiple targets of geldanamycin and its analogs. Leukemia 16, 455–462 (2002). https://doi.org/10.1038/sj.leu.2402415

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402415

Keywords

This article is cited by

Search

Quick links