Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Spotlight
  • Published:

Spotlight on Acute Promyelocytic Leukemia

Alterations of the FLT3 gene in acute promyelocytic leukemia: association with diagnostic characteristics and analysis of clinical outcome in patients treated with the Italian AIDA protocol

Abstract

Alterations in the FLT3 gene, including internal tandem duplications (ITDs) and D835 mutations occur frequently in acute myelogenous leukemia. We investigated the prevalence and clinico-biological correlations of FLT3 ITDs and D835 mutations in 90 patients with acute promyelocytic leukemia (APL) receiving the AIDA protocol. Twenty patients in which both presentation and relapse material was available were analyzed sequentially. Thirty-three patients (37%) harbored the ITD, and seven (7.7%) the D835 mutation in blasts obtained at diagnosis. Presence of ITDs was strongly associated with high WBC count (P = 0.0001), M3 variant (P = 0.0004), and the short (BCR3) PML/RARα isoform (P = 0.003). There was no difference in response to induction in the two ITD+ve and ITD−ve groups, while a trend towards inferior outcome was observed for ITD+ve cases when analyzing disease-free survival (DFS) and relapse risk (RR). These differences, however, did not reach statistical significance. Sequential studies showed variable patterns in diagnostic and relapse material, ie ITD (−ve/−ve, +ve/+ve, +ve/−ve, −ve/+ve) and D835 (−ve/−ve, +ve/−ve, −ve/+ve). Our results indicate that FLT3 alterations are associated in APL with more aggressive clinical features and suggest that these lesions may not play a major role in leukemia progression.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

References

  1. Andre C, Martin E, Cornu F, Hu WX, Wang XP, Galibert F . Genomic organization of the human c-kit gene: evolution of the receptor tyrosine kinase subclass III Oncogene 1992 7: 685–691

    CAS  PubMed  Google Scholar 

  2. Shurin MR, Esche C, Lotze MT . FLT3: receptor and ligand. Biology and potential clinical application Cytokine Growth Factor Rev 1998 9: 37–48

    Article  CAS  PubMed  Google Scholar 

  3. Weiss A, Sclessinger J . Switching signals on or off by receptor dimerization Cell 1998 94: 277–280

    Article  CAS  PubMed  Google Scholar 

  4. Robertson SC, Tynan JA, Donoghue DJ . RTK mutations and human syndromes when good receptors turn bad Trends Genet 2000 16: 265–271

    Article  CAS  PubMed  Google Scholar 

  5. Nakao M, Yokota S, Iwai T, Kaneko H, Horiike S, Kashima K, Sonoda Y, Fujimoto T, Misawa S . Internal tandem pduplication of the flt3 gene found in acute myeloid leukemia Leukemia 1996 10: 1911–1918

    CAS  PubMed  Google Scholar 

  6. Hayakawa F, Towatari M, Kiyoi H, Tanimoto M, Kitamura T, Saito H, Naoe T . Tandem-duplicated Flt3 constitutively activates STAT5 and MAP kinase and introduces autonomous cell growth in IL-3-dependent cell lines Oncogene 2000 19: 624–631

    Article  CAS  PubMed  Google Scholar 

  7. Yokota S, Kiyoi H, Nakao M, Iwai T, Misawa S, Okuda T, Sonoda Y, Abe T, Kahsima K, Matsuo Y, Naoe T . Internal tandem duplication of the FLT3 gene is preferentially seen in acute myeloid leukemia and myelodysplastic syndrome among various hematological malignancies. A study on a large series of patients and cell lines Leukemia 1997 11: 1605–1609

    Article  CAS  PubMed  Google Scholar 

  8. Kiyoi H, Naoe T, Nakano Y, Yokota S, Minami S, Miyawaki S, Asou N, Kuriyama K, Jinnai I, Shimazaki C, Akiyama H, Saito K, Oh H, Motoji T, Omoto E, Saito H, Ohno R, Ueda R . Prognostic implication of FLT3 and N-RAS gene mutations in acute myeloid leukemia Blood 1999 93: 3074–3080

    CAS  PubMed  Google Scholar 

  9. Kondo M, Horibe K, Takahashi Y, Matsumoto K, Fukuda M, Inaba J, Kato K, Kojima S, Matsuyama T . Prognostic value of internal tandem duplication of the FLT3 gene in childhood acute myelogenous leukemia Med Pediatr Oncol 1999 33: 525–529

    Article  CAS  PubMed  Google Scholar 

  10. Abu-Duhier FM, Goodeve AC, Wilson GA, Gari MA, Peake IR, Rees EA, Vandenberghe EA, Winship PR, Reilly JT . FLT3 internal tandem duplication mutations in adult acute myeloid leukaemia define a high-risk group Br J Haematol 2000 111: 190–195

    Article  CAS  PubMed  Google Scholar 

  11. Meshinchi S, Woods WG, Stirewalt DL, Sweetser DA, Buckley JD, Tjoa TK, Bernstein ID, Radich JP . Prevalence and prognostic significance of Flt3 internal tandem duplication in pediatric acute myeloid leukemia Blood 2001 97: 89–94

    Article  CAS  PubMed  Google Scholar 

  12. Kottaridis PD, Gale RE, Frew ME, Harrison G, Langabeer SE, Belton AA, Walker H, Wheatley K, Bowen DT, Burnett AK, Goldstone AH, Linch DC . The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials Blood 2001 98: 1752–1759

    Article  CAS  PubMed  Google Scholar 

  13. Frohling S, Breitruck J, Schlenk R, Kreitmeier S, Tobis K, Dohner H, Dohner K . FLT3 internal tandem duplications and survival in adult acute myeloid leukemia: analysis of 188 intensively treated patients Blood 2001 2995: 717a

    Google Scholar 

  14. Whitman SP, Archer KJ, Feng L, Baldus C, Becknell B, Carlson BD, Carrol AJ, Krzystof M, Vardiman JW, George SL, Kolitz JE, Larson RA, Bloomfield CA, Caligiuri MA . Absence of the wild-type allele predicts poor prognosis in adult de novo acute myeloid leukemia with normal cytogenetics and the internal tandem duplication of FLT3: a cancer and leukemia group B study Cancer Res 2001 61: 7233–7239

    CAS  PubMed  Google Scholar 

  15. Yamamoto Y, Kiyoi H, Nakano Y, Suzuki R, Kodera Y, Miyawaki Sh, Asou N, Kuriyama K, Yagasaki F, Schimazaki Ch, Akiyama H, Saito K, Nishimura M, Toshiko M, Shinagawa K, Takeshita A, Saito H, Ueda R, Ohno R, Naoe T . Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies Blood 2001 97: 2434–2439

    Article  CAS  PubMed  Google Scholar 

  16. Kiyoi H, Naoe T, Yokota S, Minami S, Kuriyama K, Takeshita A, Saito K, Hasegawa S, Shimodaira S, Tamura J, Shimazaki C, Matsue K, Kobayashi H, Arima N, Suzuki R, Morishita H, Saito H, Ueda R, Ohno R . Internal tandem duplication of FLT3 associated with leukocytosis in acute promyelocytic leukemia Leukemia 1997 11: 1447–1452

    Article  CAS  PubMed  Google Scholar 

  17. Mandelli F, Diverio D, Avvisati G, Luciano A, Barbui T, Bernasconi C, Broccia G, Cerri R, Falda M, Saglio G, Vegna ML, Visani G, Jhen U, Willemze R, Muus P, Pelicci PG, Biondi A, Lo Coco F . Molecular remission in PML/RARα-positive acute promyelocytic leukemia by combined all-trans retinoic acid and idarubicin (AIDA) therapy Blood 1997 90: 1014–1021

    CAS  PubMed  Google Scholar 

  18. Lo Coco F, Diverio D, Avvisati G, Petti MC, Meloni G, Pogliani EM, Biondi A, Rossi G, Carlo-Stella C, Selleri C, Martino B, Specchia G, Mandelli F . Therapy of molecular relapse in acute promyelocytic leukemia Blood 1999 94: 2225–2229

    CAS  PubMed  Google Scholar 

  19. Chomczynsky P, Sacchi N . Single step method of RNA isolation by acid guanidium thiocyanate-phenol chloroform extraction Anal Biochem 1987 162: 156–159

    Google Scholar 

  20. van Dongen JJ, Macintyre EA, Gabert JA, Delabesse E, Rossi V, Saglio G, Gottardi E, Rambaldi A, Dotti G, Griesinger F, Parreira A, Gameiro P, Diaz MG, Malec M, Langerak AW, San Miguel JF, Biondi A . Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Report of the BIOMED-1 Concerted Action: investigation of minimal residual disease in acute leukemia Leukemia 1999 13: 1901–1928

    Article  CAS  PubMed  Google Scholar 

  21. Kaplan EL, Meier P . Nonparametric estimation from incomplete observations J Am Stat Assoc 1958 53: 457–481

    Article  Google Scholar 

  22. Mantel N . Evaluation of survival data and two new rank order statistics arising in its consideration Cancer Chemother Rep 1966 50: 163

    CAS  PubMed  Google Scholar 

  23. Harrington D, Fleming TR . A class of rank test procedures for censored survival data Biometrika 1982 69: 133

    Article  Google Scholar 

  24. Harrington D, Fleming TR . Counting Processes and Survival Analysis Wiley: New York 1991

    Google Scholar 

  25. Sanz MA, Lo Coco F, Martin G, Avvisati G, Rayon C, Barbui T, Diaz-Mediavilla J, Fioritoni G, Gonzalez JD, Liso V, Esteve J, Ferrara F, Bolufer P, Bernasconi C, Gonzalez M, Rodeghiero F, Colomer D, Petti MC, Ribera JM, Mandelli F . Definition of relapse risk and role of non-anthracycline drugs for consolidation in patients with acute promyelocytic leukemia: a joint study of the PETHEMA and GIMEMA cooperative groups Blood 2000 96: 1247–1253

    CAS  PubMed  Google Scholar 

  26. Gonzalez M, Barragan E, Bolufer P, Chillon C, Colomer D, Borstein R, Calasanz MJ, Gomez-Casares MT, Villegas A, Marugan I, Roman J, Martin G, Rayon C, Deben G, Tormo M, Diaz-Mediavilla J, Esteve J, Gonzalez-San Miguel J, Rivas C, Perez-Equiza K, Garcia-Sanz R, Capote FJ, Ribera JM, Arias J, Leon A, Sanz MA Spanish Programme for the Study and Treatment of Haematological Malignancies (PETHEMA) Group. Pretreatment characteristics and clinical outcome of acute promyelocytic leukaemia patients according to the PML-RAR alpha isoforms: a study of the PETHEMA group Br J Haematol 2001 114: 99–103

    Article  CAS  PubMed  Google Scholar 

  27. Nakano Y, Kiyoi H, Miyawaki S, Asou N, Ohno R, Saito H, Naoe T . Molecular evolution of acute myeloid leukaemia in relapse: unstable N-ras and FLT3 genes compared with p53 gene Br J Haematol 1999 104: 659–664

    Article  CAS  PubMed  Google Scholar 

  28. Naoe T, Kiyoi H, Yamamoto Y, Minami Y, Yamamoto K, Ueda R, Saito H . FLT3 tyrosine kinase as a target molecule for selective antileukemia therapy Cancer Chemother Pharmacol 2001 48 (Suppl. 1): S27–S30

    Article  Google Scholar 

  29. Levis M, Tse KF, Smith BD, Garrett E, Small D . A FLT3 tyrosine kinase inhibitor is selectively cytotoxic to acute myeloid leukemia blasts harboring FLT3 internal tandem duplication mutations Blood 2001 98: 885–887

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from AIL, AIRC, MURST and Ministero della Salute. At the time of this study, NIN was on leave of absence from Dept of Chemical Biochemistry (Hematology) Universidad Nacional de Rosario (Argentina), while VC was on leave from the Dept of Hematology, Republic University, Army Hospital and AEPSM, Montevideo, Uruguay. We are indebted to Dr Guillermo Martin for helpful comments and statistical analysis.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noguera, N., Breccia, M., Divona, M. et al. Alterations of the FLT3 gene in acute promyelocytic leukemia: association with diagnostic characteristics and analysis of clinical outcome in patients treated with the Italian AIDA protocol. Leukemia 16, 2185–2189 (2002). https://doi.org/10.1038/sj.leu.2402723

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402723

Keywords

This article is cited by

Search

Quick links