Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Leukemic dendritic cells: potential for therapy and insights towards immune escape by leukemic blasts

Abstract

Dendritic cells (DCs) are a system of potent antigen-presenting cells (APCs) specialized to initiate primary immune responses. DCs are considered important elements in the induction of specific antitumor cytotoxic effectors. At present, because of potential therapeutic implications, the critical role of DCs in cancer patients is under intensive investigation. Interactions between DCs and acute myeloid leukemia cells represent an attractive model for the study of DC physiology. Moreover, DCs can be a valuable therapeutic tool for the adjuvant treatment of leukemic patients. However, DC subsets in vivo may also be affected by leukemogenesis and may contribute to the escape of leukemia from immune control. The aim of this review is to shed further light on this paradoxical picture where the line between immune tolerance and immune defense is narrow.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Banchereau J, Steinman RM . Dendritic cells and the control of immunity Nature 1998 392: 245–252

    CAS  PubMed  Google Scholar 

  2. Caux C, Dezutter-Dambuyant C, Schmitt D, Banchereau J . GM-CSF and TNF-alpha cooperate in the generation of dendritic Langerhans cells Nature 1992 360: 258–261

    CAS  PubMed  Google Scholar 

  3. Santiago-Schwarz F, Belilos E, Diamond B, Carsons SE . TNF in combination with GM-CSF enhances the differentiation of neonatal cord blood stem cells into dendritic cells and macrophages J Leukoc Biol 1992 52: 274–281

    CAS  PubMed  Google Scholar 

  4. Santiago-Schwarz F, Divaris N, Kay C, Carsons SE . Mechanisms of tumor necrosis factor-granulocyte–macrophage colonystimulating factor-induced dendritic cell development Blood 1993 82: 3019–3028

    CAS  PubMed  Google Scholar 

  5. Szabolcs P, Feller ED, Moore MA, Young JW . Progenitor recruitment and in vitro expansion of immunostimulatory dendritic cells from human CD34+ bone marrow cells by c-kit-ligand, GM-CSF, and TNF alpha Adv Exp Med Biol 1995 378: 17–20

    CAS  PubMed  Google Scholar 

  6. Santiago-Schwarz F, Rappa DA, Laky K, Carsons SE . Stem cell factor augments tumor necrosis factor-granulocyte–macrophage colony-stimulating factor-mediated dendritic cell hematopoiesis Stem Cells 1995 13: 186–197

    CAS  PubMed  Google Scholar 

  7. Young JW, Szabolcs P, Moore MA . Identification of dendritic cell colony-forming units among normal human CD34+ bone marrow progenitors that are expanded by c-kit-ligand and yield pure dendritic cell colonies in the presence of granulocyte/macrophage colony-stimulating factor and tumor necrosis factor alpha J Exp Med 1995 182: 1111–1119

    CAS  PubMed  Google Scholar 

  8. Strunk D, Rappersberger K, Egger C, Strobl H, Kromer E, Elbe A, Maurer D, Stingl G . Generation of human dendritic cells/Langerhans cells from circulating CD34+ hematopoietic progenitor cells Blood 1996 87: 1292–1302

    CAS  PubMed  Google Scholar 

  9. Saraya K, Reid CD . Stem cell factor and the regulation of dendritic cell production from CD34+ progenitors in bone marrow and cord blood Br J Haematol 1996 93: 258–264

    CAS  PubMed  Google Scholar 

  10. Caux C, Vanbervliet B, Massacrier C, Dezutter-Dambuyant C, de Saint-Vis B, Jacquet C, Yoneda K, Imamura S, Schmitt D, Banchereau J . CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to GM-CSF+TNF alpha J Exp Med 1996 184: 695–706

    CAS  PubMed  Google Scholar 

  11. Szabolcs P, Ciocon DH, Moore MA, Young JW . Growth and differentiation of human dendritic cells from CD34+ progenitors Adv Exp Med Biol 1997 417: 15–19

    CAS  PubMed  Google Scholar 

  12. Caux C, Massacrier C, Vanbervliet B, Dubois B, Durand I, Cella M, Lanzavecchia A, Banchereau J . CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to granulocyte–macrophage colony-stimulating factor plus tumor necrosis factor alpha: II. Functional analysis Blood 1997 90: 1458–1470

    CAS  PubMed  Google Scholar 

  13. Sallusto F, Lanzavecchia A . Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha J Exp Med 1994 179: 1109–1118

    CAS  PubMed  Google Scholar 

  14. Romani N, Gruner S, Brang D, Kampgen E, Lenz A, Trockenbacher B, Konwalinka G, Fritsch PO, Steinman RM, Schuler G . Proliferating dendritic cell progenitors in human blood J Exp Med 1994 180: 83–93

    CAS  PubMed  Google Scholar 

  15. Xu H, Kramer M, Spengler HP, Peters JH . Dendritic cells differentiated from human monocytes through a combination of IL-4, GM-CSF and IFN-gamma exhibit phenotype and function of blood dendritic cells Adv Exp Med Biol 1995 378: 75–78

    CAS  PubMed  Google Scholar 

  16. Piemonti L, Bernasconi S, Luini W, Trobonjaca Z, Minty A, Allavena P, Mantovani A . IL-13 supports differentiation of dendritic cells from circulating precursors in concert with GM-CSF Eur Cytokine Netw 1995 6: 245–252

    CAS  PubMed  Google Scholar 

  17. Kiertscher SM, Roth MD . Human CD14+ leukocytes acquire the phenotype and function of antigen-presenting dendritic cells when cultured in GM-CSF and IL-4 J Leukoc Biol 1996 59: 208–218

    CAS  PubMed  Google Scholar 

  18. Pickl WF, Majdic O, Kohl P, Stockl J, Riedl E, Scheinecker C, Bello-Fernandez C, Knapp W . Molecular and functional characteristics of dendritic cells generated from highly purified CD14+ peripheral blood monocytes J Immunol 1996 157: 3850–3859

    CAS  PubMed  Google Scholar 

  19. Chapuis F, Rosenzwajg M, Yagello M, Ekman M, Biberfeld P, Gluckman JC . Differentiation of human dendritic cells from monocytes in vitro Eur J Immunol 1997 27: 431–441

    CAS  PubMed  Google Scholar 

  20. Morse MA, Zhou LJ, Tedder TF, Lyerly HK, Smith C . Generation of dendritic cells in vitro from peripheral blood mononuclear cells with granulocyte–macrophage-colony-stimulating factor, interleukin-4, and tumor necrosis factor-alpha for use in cancer immunotherapy Ann Surg 1997 226: 6–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sung SS, Guo CY, Weed JM . Monoclonal antibodies against human dendritic cell-like peripheral blood monocytes activated by granulocyte/macrophage-colony-stimulating factor plus interleukin 4 Cell Immunol 1997 182: 113–124

    CAS  PubMed  Google Scholar 

  22. Sato K, Nagayama H, Tadokoro K, Juji T, Takahashi TA . Interleukin-13 is involved in functional maturation of human peripheral blood monocyte-derived dendritic cells Exp Hematol 1999 27: 326–336

    CAS  PubMed  Google Scholar 

  23. Alters SE, Gadea JR, Holm B, Lebkowski J, Philip R . IL-13 can substitute for IL-4 in the generation of dendritic cells for the induction of cytotoxic T lymphocytes and gene therapy J Immunother 1999 22: 229–236

    CAS  PubMed  Google Scholar 

  24. Morse MA, Lyerly HK, Li Y . The role of IL-13 in the generation of dendritic cells in vitro J Immunother 1999 22: 506–513

    CAS  PubMed  Google Scholar 

  25. Zheng Z, Takahashi M, Narita M, Toba K, Liu A, Furukawa T, Koike T, Aizawa Y . Generation of dendritic cells from adherent cells of cord blood by culture with granulocyte–macrophagecolony-stimulating factor, interleukin-4, and tumor necrosis factor-alpha J Hematother Stem Cell Res 2000 9: 453–464

    CAS  PubMed  Google Scholar 

  26. Ambe K, Mori M, Enjoji M . S-100 protein-positive dendritic cells in colorectal adenocarcinomas. Distribution and relation to the clinical prognosis Cancer 1989 63: 496–503

    CAS  PubMed  Google Scholar 

  27. Fox SB, Jones M, Dunnill MS, Gatter KC, Mason DY . Langerhans cells in human lung tumours: an immunohistological study Histopathology 1989 14: 269–275

    CAS  PubMed  Google Scholar 

  28. Schroder S, Schwarz W, Rehpenning W, Loning T, Bocker W . Dendritic/Langerhans cells and prognosis in patients with papillary thyroid carcinomas. Immunocytochemical study of 106 thyroid neoplasms correlated to follow-up data Am J Clin Pathol 1988 89: 295–300

    CAS  PubMed  Google Scholar 

  29. Thurnher M, Radmayr C, Ramoner R, Ebner S, Bock G, Klocker H, Romani N, Bartsch G . Human renal-cell carcinoma tissue contains dendritic cells Int J Cancer 1996 68: 1–7

    CAS  PubMed  Google Scholar 

  30. Chaux P, Moutet M, Faivre J, Martin F, Martin M . Inflammatory cells infiltrating human colorectal carcinomas express HLA class II but not B7-1 and B7-2 costimulatory molecules of the T-cell activation Lab Invest 1996 74: 975–983

    CAS  PubMed  Google Scholar 

  31. Nestle FO, Burg G, Fah J, Wrone-Smith T, Nickoloff BJ . Human sunlight-induced basal-cell-carcinoma-associated dendritic cells are deficient in T cell co-stimulatory molecules and are impaired as antigen-presenting cells Am J Pathol 1997 150: 641–651

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Chaux P, Favre N, Martin M, Martin F . Tumor-infiltrating dendritic cells are defective in their antigen-presenting function and inducible B7 expression in rats Int J Cancer 1997 72: 619–624

    CAS  PubMed  Google Scholar 

  33. Viac J, Schmitt D, Claudy A . CD40 expression in epidermal tumors Anticancer Res 1997 17: 569–572

    CAS  PubMed  Google Scholar 

  34. Enk AH, Jonuleit H, Saloga J, Knop J . Dendritic cells as mediators of tumor-induced tolerance in metastatic melanoma Int J Cancer 1997 73: 309–316

    CAS  PubMed  Google Scholar 

  35. Tas MP, Simons PJ, Balm FJ, Drexhage HA . Depressed monocyte polarization and clustering of dendritic cells in patients with head and neck cancer: in vitro restoration of this immunosuppression by thymic hormones Cancer Immunol Immunother 1993 36: 108–114

    CAS  PubMed  Google Scholar 

  36. Gabrilovich DI, Corak J, Ciernik IF, Kavanaugh D, Carbone DP . Decreased antigen presentation by dendritic cells in patients with breast cancer Clin Cancer Res 1997 3: 483–490

    CAS  PubMed  Google Scholar 

  37. Gabrilovich DI, Nadaf S, Corak J, Berzofsky JA, Carbone DP . Dendritic cells in antitumor immune responses. II. Dendritic cells grown from bone marrow precursors, but not mature DC from tumor-bearing mice, are effective antigen carriers in the therapy of established tumors Cell Immunol 1996 170: 111–119

    CAS  PubMed  Google Scholar 

  38. Gabrilovich DI, Ciernik IF, Carbone DP . Dendritic cells in antitumor immune responses. I. Defective antigen presentation in tumor-bearing hosts Cell Immunol 1996 170: 101–110

    CAS  PubMed  Google Scholar 

  39. Gabrilovich DI, Chen HL, Girgis KR, Cunningham HT, Meny GM, Nadaf S, Kavanaugh D, Carbone DP . Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells Nat Med 1996 2: 1096–1103

    CAS  PubMed  Google Scholar 

  40. Ishida T, Oyama T, Carbone DP, Gabrilovich DI . Defective function of Langerhans cells in tumor-bearing animals is the result of defective maturation from hemopoietic progenitors J Immunol 1998 161: 4842–4851

    CAS  PubMed  Google Scholar 

  41. Steinbrink K, Jonuleit H, Muller G, Schuler G, Knop J, Enk AH . Interleukin-10-treated human dendritic cells induce a melanoma-antigen-specific anergy in CD8(+) T cells resulting in a failure to lyse tumor cells Blood 1999 93: 1634–1642

    CAS  PubMed  Google Scholar 

  42. Buggins AG, Lea N, Gaken J, Darling D, Farzaneh F, Mufti GJ, Hirst WJ . Effect of costimulation and the microenvironment on antigen presentation by leukemic cells Blood 1999 94: 3479–3490

    CAS  PubMed  Google Scholar 

  43. Houghton AN . Cancer antigens: immune recognition of self and altered self J Exp Med 1994 180: 1–4

    CAS  PubMed  Google Scholar 

  44. Young JW, Inaba K . Dendritic cells as adjuvants for class I major histocompatibility complex-restricted antitumor immunity J Exp Med 1996 183: 7–11

    CAS  PubMed  Google Scholar 

  45. Schuler G, Steinman RM . Dendritic cells as adjuvants for immune-mediated resistance to tumors J Exp Med 1997 186: 1183–1187

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Huang AY, Golumbek P, Ahmadzadeh M, Jaffee E, Pardoll D, Levitsky H . Role of bone marrow-derived cells in presenting MHC class I-restricted tumor antigens Science 1994 264: 961–965

    Article  CAS  PubMed  Google Scholar 

  47. Porgador A, Gilboa E . Bone marrow-generated dendritic cells pulsed with a class I-restricted peptide are potent inducers of cytotoxic T lymphocytes J Exp Med 1995 182: 255–260

    CAS  PubMed  Google Scholar 

  48. Zitvogel L, Mayordomo JI, Tjandrawan T, DeLeo AB, Clarke MR, Lotze MT, Storkus WJ . Therapy of murine tumors with tumorpeptide-pulsed dendritic cells: dependence on T cells, B7 costimulation, and T helper cell 1-associated cytokines J Exp Med 1996 183: 87–97

    CAS  PubMed  Google Scholar 

  49. Toes RE, Ossendorp F, Offringa R, Melief CJ . CD4 T cells and their role in antitumor immune responses J Exp Med 1999 189: 753–756

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R, Burg G, Schadendorf D . Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells Nat Med 1998 4: 328–332

    CAS  PubMed  Google Scholar 

  51. Thurner B, Haendle I, Roder C, Dieckmann D, Keikavoussi P, Jonuleit H, Bender A, Maczek C, Schreiner D, von den Driesch P, Brocker EB, Steinman RM, Enk A, Kampgen E, Schuler G . Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma J Exp Med 1999 190: 1669–1678

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Fujii S, Shimizu K, Fujimoto K, Kiyokawa T, Shimomura T, Kinoshita M, Kawano F . Analysis of a chronic myelogenous leukemia patient vaccinated with leukemic dendritic cells following autologous peripheral blood stem cell transplantation Jpn J Cancer Res 1999 90: 1117–1129

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Titzer S, Christensen O, Manzke O, Tesch H, Wolf J, Emmerich B, Carsten C, Diehl V, Bohlen H . Vaccination of multiple myeloma patients with idiotype-pulsed dendritic cells: immunological and clinical aspects Br J Haematol 2000 108: 805–816

    CAS  PubMed  Google Scholar 

  54. Bendandi M, Gocke CD, Kobrin CB, Benko FA, Sternas LA, Pennington R, Watson TM, Reynolds CW, Gause BL, Duffey PL, Jaffe ES, Creekmore SP, Longo DL, Kwak LW . Complete molecular remissions induced by patient-specific vaccination plusgranulocyte–monocyte colony-stimulating factor against lymphoma Nat Med 1999 5: 1171–1177

    CAS  PubMed  Google Scholar 

  55. Kugler A, Stuhler G, Walden P, Zoller G, Zobywalski A, Brossart P, Trefzer U, Ullrich S, Muller CA, Becker V, Gross AJ, Hemmerlein B, Kanz L, Muller GA, Ringert RH . Regression of human metastatic renal cell carcinoma after vaccination with tumor cell-dendritic cell hybrids Nat Med 2000 6: 332–336

    CAS  PubMed  Google Scholar 

  56. Brossart P, Wirths S, Stuhler G, Reichardt VL, Kanz L, Brugger W . Induction of cytotoxic T-lymphocyte responses in vivo after vaccinations with peptide-pulsed dendritic cells Blood 2000 96: 3102–3108

    CAS  PubMed  Google Scholar 

  57. Lau R, Wang F, Jeffery G, Marty V, Kuniyoshi J, Bade E, Ryback ME, Weber J . Phase I trial of intravenous peptide-pulsed dendritic cells in patients with metastatic melanoma J Immunother 2001 24: 66–78

    CAS  PubMed  Google Scholar 

  58. Rains N, Cannan RJ, Chen W, Stubbs RS . Development of a dendritic cell (DC)-based vaccine for patients with advanced colorectal cancer Hepatogastroenterology 2001 48: 347–351

    CAS  PubMed  Google Scholar 

  59. Sadanaga N, Nagashima H, Mashino K, Tahara K, Yamaguchi H, Ohta M, Fujie T, Tanaka F, Inoue H, Takesako K, Akiyoshi T, Mori M . Dendritic cell vaccination with MAGE peptide is a novel therapeutic approach for gastrointestinal carcinomas Clin Cancer Res 2001 7: 2277–2284

    CAS  PubMed  Google Scholar 

  60. Banchereau J, Palucka AK, Dhodapkar M, Burkeholder S, Taquet N, Rolland A, Taquet S, Coquery S, Wittkowski KM, Bhardwaj N, Pineiro L, Steinman R, Fay J . Immune and clinical responses in patients with metastatic melanoma to CD34(+) progenitor-derived dendritic cell vaccine Cancer Res 2001 61: 6451–6458

    CAS  PubMed  Google Scholar 

  61. Geiger JD, Hutchinson RJ, Hohenkirk LF, McKenna EA, Yanik GA, Levine JE, Chang AE, Braun TM, Mule JJ . Vaccination of pediatric solid tumor patients with tumor lysate-pulsed dendritic cells can expand specific T cells and mediate tumor regression Cancer Res 2001 61: 8513–8519

    CAS  PubMed  Google Scholar 

  62. Andersen MH, Keikavoussi P, Brocker EB, Schuler-Thurner B, Jonassen M, Sondergaard I, Straten PT, Becker JC, Kampgen E . Induction of systemic CTL responses in melanoma patients by dendritic cell vaccination: cessation of CTL responses is associated with disease progression Int J Cancer 2001 94: 820–824

    CAS  PubMed  Google Scholar 

  63. Hernando J, Park TW, Kubler K, Offergeld R, Schlebusch H, Bauknecht T . Vaccination with autologous tumour antigen-pulsed dendritic cells in advanced gynaecological malignancies: clinical and immunological evaluation of a phase I trial Cancer Immunol Immunother 2002 51: 45–52

    CAS  PubMed  Google Scholar 

  64. Santin AD, Bellone S, Ravaggi A, Roman JJ, Pecorelli S, Parham GP, Cannon MJ . Induction of tumour-specific CD8(+) cytotoxic T lymphocytes by tumour lysate-pulsed autologous dendritic cells in patients with uterine serous papillary cancer Br J Cancer 2002 86: 151–157

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Timmerman JM, Czerwinski DK, Davis TA, Hsu FJ, Benike C, Hao ZM, Taidi B, Rajapaksa R, Caspar CB, Okada CY, vanBeckhoven A, Liles TM, Engleman EG, Levy R . Idiotype-pulsed dendritic cell vaccination for B-cell lymphoma: clinical and immune responses in 35 patients Blood 2002 99: 1517–1526

    CAS  PubMed  Google Scholar 

  66. Facchetti F, De Wolf-Peeters C, van den Oord JJ, Desmet VJ . Plasmacytoid monocytes (so-called plasmacytoid T cells) in Hodgkin's disease J Pathol 1989 158: 57–65

    CAS  PubMed  Google Scholar 

  67. Fialkow PJ, Singer JW, Raskind WH, Adamson JW, Jacobson RJ, Bernstein ID, Dow LW, Najfeld V, Veith R . Clonal development, stem-cell differentiation, and clinical remissions in acute nonlymphocytic leukemia N Engl J Med 1987 317: 468–473

    CAS  PubMed  Google Scholar 

  68. Bonnet D, Dick JE . Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell Nat Med 1997 3: 730–737

    CAS  PubMed  Google Scholar 

  69. Grouard G, Rissoan MC, Filgueira L, Durand I, Banchereau J, Liu YJ . The enigmatic plasmacytoid T cells develop into dendritic cells with interleukin (IL)-3 and CD40-ligand J Exp Med 1997 185: 1101–1111

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Rissoan MC, Soumelis V, Kadowaki N, Grouard G, Briere F, de Waal Malefyt R, Liu YJ . Reciprocal control of T helper cell and dendritic cell differentiation Science 1999 283: 1183–1186

    CAS  PubMed  Google Scholar 

  71. Cella M, Jarrossay D, Facchetti F, Alebardi O, Nakajima H, Lanzavecchia A, Colonna M . Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon Nat Med 1999 5: 919–923

    CAS  PubMed  Google Scholar 

  72. Cella M, Facchetti F, Lanzavecchia A, Colonna M . Plasmacytoid dendritic cells activated by influenza virus and CD40L drive a potent TH1 polarization Nat Immunol 2000 1: 305–310

    CAS  PubMed  Google Scholar 

  73. Kadowaki N, Antonenko S, Lau JY, Liu YJ . Natural interferon alpha/beta-producing cells link innate and adaptive immunity J Exp Med 2000 192: 219–226

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Abbas AK, Murphy KM, Sher A . Functional diversity of helper T lymphocytes Nature 1996 383: 787–793

    CAS  PubMed  Google Scholar 

  75. Mohty M, Jarrossay D, Lafage-Pochitaloff M, Zandotti C, Briere F, de Lamballeri XN, Isnardon D, Sainty D, Olive D, Gaugler B . Circulating blood dendritic cells from myeloid leukemia patients display quantitative and cytogenetic abnormalities as well as functional impairment Blood 2001 98: 3750–3756

    CAS  PubMed  Google Scholar 

  76. Siegal FP, Kadowaki N, Shodell M, Fitzgerald-Bocarsly PA, Shah K, Ho S, Antonenko S, Liu YJ . The nature of the principal type 1 interferon-producing cells in human blood Science 1999 284: 1835–1837

    CAS  PubMed  Google Scholar 

  77. Murphy KM, Ouyang W, Farrar JD, Yang J, Ranganath S, Asnagli H, Afkarian M, Murphy TL . Signaling and transcription in T helper development Annu Rev Immunol 2000 18: 451–494

    CAS  PubMed  Google Scholar 

  78. Pfeffer LM, Dinarello CA, Herberman RB, Williams BR, Borden EC, Bordens R, Walter MR, Nagabhushan TL, Trotta PP, Pestka S . Biological properties of recombinant alpha-interferons: 40th anniversary of the discovery of interferons Cancer Res 1998 58: 2489–2499

    CAS  PubMed  Google Scholar 

  79. Marrack P, Kappler J, Mitchell T . Type I interferons keep activated T cells alive J Exp Med 1999 189: 521–530

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Sun S, Zhang X, Tough DF, Sprent J . Type I interferon-mediated stimulation of T cells by CpG DNA J Exp Med 1998 188: 2335–2342

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Morris A, Zvetkova I . Cytokine research: the interferon paradigm J Clin Pathol 1997 50: 635–639

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Cataldi A, Santavenere E, Vitale M, Trubiani O, Lisio R, Tulipano G, Di Domenicantonio L, Zamai L, Miscia S . Interferon affects cell growth progression by modulating DNA polymerases activity Cell Prolif 1992 25: 225–231

    CAS  PubMed  Google Scholar 

  83. Brinkmann V, Geiger T, Alkan S, Heusser CH . Interferon alpha increases the frequency of interferon gamma-producing human CD4+ T cells J Exp Med 1993 178: 1655–1663

    CAS  PubMed  Google Scholar 

  84. Finkelman FD, Holmes J, Katona IM, Urban JF Jr, Beckmann MP, Park LS, Schooley KA, Coffman RL, Mosmann TR, Paul WE . Lymphokine control of in vivo immunoglobulin isotype selection Annu Rev Immunol 1990 8: 303–333

    CAS  PubMed  Google Scholar 

  85. Demeure CE, Wu CY, Shu U, Schneider PV, Heusser C, Yssel H, Delespesse G . In vitro maturation of human neonatal CD4 T lymphocytes. II. Cytokines present at priming modulate the development of lymphokine production J Immunol 1994 152: 4775–4782

    CAS  PubMed  Google Scholar 

  86. Biron CA . Activation and function of natural killer cell responses during viral infections Curr Opin Immunol 1997 9: 24–34

    CAS  PubMed  Google Scholar 

  87. Kayagaki N, Yamaguchi N, Nakayama M, Eto H, Okumura K, Yagita H . Type I interferons (IFNs) regulate tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) expression on human T cells: A novel mechanism for the antitumor effects of type I IFNs J Exp Med 1999 189: 1451–1460

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Rogge L, D'Ambrosio D, Biffi M, Penna G, Minetti LJ, Presky DH, Adorini L, Sinigaglia F . The role of Stat4 in species-specific regulation of Th cell development by type I IFNs J Immunol 1998 161: 6567–6574

    CAS  PubMed  Google Scholar 

  89. Schmid DS, Rouse BT . The role of T cell immunity in control of herpes simplex virus Curr Top Microbiol Immunol 1992 179: 57–74

    CAS  PubMed  Google Scholar 

  90. Chaperot L, Bendriss N, Manches O, Gressin R, Maynadie M, Trimoreau F, Orfeuvre H, Corront B, Feuillard J, Sotto JJ, Bensa JC, Briere F, Plumas J, Jacob MC . Identification of a leukemic counterpart of the plasmacytoid dendritic cells Blood 2001 97: 3210–3217

    CAS  PubMed  Google Scholar 

  91. Feuillard J, Jacob MC, Valensi F, Maynadie M, Gressin R, Chaperot L, Arnoulet C, Brignole-Baudouin F, Drenou B, Duchayne E, Falkenrodt A, Garand R, Homolle E, Husson B, Kuhlein E, Le Calvez G, Sainty D, Sotto MF, Trimoreau F, Bene MC . Clinical and biologic features of CD4+CD56+malignancies Blood 2002 99: 1556–1563

    CAS  PubMed  Google Scholar 

  92. Jonuleit H, Schmitt E, Schuler G, Knop J, Enk AH . Induction of interleukin 10-producing, nonproliferating CD4(+) T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells J Exp Med 2000 192: 1213–1222

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Dhodapkar MV, Steinman RM, Krasovsky J, Munz C, Bhardwaj N . Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells J Exp Med 2001 193: 233–238

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Young JW, Steinman RM . The hematopoietic development of dendritic cells: a distinct pathway for myeloid differentiation Stem Cells 1996 14: 376–387

    CAS  PubMed  Google Scholar 

  95. Shortman K, Caux C . Dendritic cell development: multiple pathways to nature's adjuvants Stem Cells 1997 15: 409–419

    CAS  PubMed  Google Scholar 

  96. Ardavin C, Wu L, Li CL, Shortman K . Thymic dendritic cells and T cells develop simultaneously in the thymus from a common precursor population Nature 1993 362: 761–763

    CAS  PubMed  Google Scholar 

  97. Baddoura FK, Hanson C, Chan WC . Plasmacytoid monocyte proliferation associated with myeloproliferative disorders Cancer 1992 69: 1457–1467

    CAS  PubMed  Google Scholar 

  98. Mongkonsritragoon W, Letendre L, Qian J, Li CY . Nodular lesions of monocytic component in myelodysplastic syndrome Am J Clin Pathol 1998 110: 154–162

    CAS  PubMed  Google Scholar 

  99. Ferry JA, Harris NL . Plasmacytoid monocytes? Am J Clin Pathol 1999 111: 569

    CAS  PubMed  Google Scholar 

  100. del Hoyo GM, Martin P, Vargas HH, Ruiz S, Arias CF, Ardavin C . Characterization of a common precursor population for dendritic cells Nature 2002 415: 1043–1047

    PubMed  Google Scholar 

  101. Appelbaum FR . Allogeneic hematopoietic stem cell transplantation for acute leukemia Semin Oncol 1997 24: 114–123

    CAS  PubMed  Google Scholar 

  102. Proctor SJ, Taylor PR, Stark A, Carey PJ, Bown N, Hamilton PJ, Reid MM . Evaluation of the impact of allogenic transplant in first remission on an unselected population of patients with acute myeloid leukaemia aged 15-55 years. The Northern Regional Haematology Group Leukemia 1995 9: 1246–1251

    CAS  PubMed  Google Scholar 

  103. Morley AA . Treatment of acute myelogenous leukemia N Engl J Med 1995 332: 1717 discussion 1718–1719

    CAS  PubMed  Google Scholar 

  104. Jourdan E, Maraninchi D, Reiffers J, Archimbaud E, Michallet M, Harousseau JL, Ifrah N, Rio B, Guyotat D, Guilhot F . Allogeneic bone marrow transplantation remains an efficient consolidation for adults with acute myeloid leukemia even when performed very soon after diagnosis. The SFGM (Societe Francaise de Greffe de Moelle) Leukemia 1995 9: 1068–1071

    CAS  PubMed  Google Scholar 

  105. Lowenberg B . Post-remission treatment of acute myelogenous leukemia N Engl J Med 1995 332: 260–262

    CAS  PubMed  Google Scholar 

  106. Bortin MM, Horowitz MM, Gale RP, Barrett AJ, Champlin RE, Dicke KA, Gluckman E, Kolb HJ, Marmont AM, Mrsic M . Changing trends in allogeneic bone marrow transplantation for leukemia in the 1980s JAMA 1992 268: 607–612

    CAS  PubMed  Google Scholar 

  107. Blaise D, Maraninchi D, Archimbaud E, Reiffers J, Devergie A, Jouet JP, Milpied N, Attal M, Michallet M, Ifrah N . Allogeneic bone marrow transplantation for acute myeloid leukemia in first remission: a randomized trial of a busulfan–cytoxan versus cytoxan–total body irradiation as preparative regimen: a report from the Group d'Etudes de la Greffe de Moelle Osseuse Blood 1992 79: 2578–2582

    CAS  PubMed  Google Scholar 

  108. Antin JH . Graft-versus-leukemia: no longer an epiphenomenon Blood 1993 82: 2273–2277

    CAS  PubMed  Google Scholar 

  109. Powles RL, Russell J, Lister TA, Oliver T, Whitehouse JM, Malpas J, Chapuis B, Crowther D, Alexander P . Immunotherapy for acute myelogenous leukaemia: a controlled clinical study 2 1/2 years after entry of the last patient Br J Cancer 1977 35: 265–272

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Kolb HJ, Schattenberg A, Goldman JM, Hertenstein B, Jacobsen N, Arcese W, Ljungman P, Ferrant A, Verdonck L, Niederwieser D . Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. European Group for Blood and Marrow Transplantation Working Party Chronic Leukemia Blood 1995 86: 2041–2050

    CAS  PubMed  Google Scholar 

  111. Costello RT, Mallet F, Sainty D, Maraninchi D, Gastaut JA, Olive D . Regulation of CD80/B7-1 and CD86/B7-2 molecule expression in human primary acute myeloid leukemia and their role in allogenic immune recognition Eur J Immunol 1998 28: 90–103

    CAS  PubMed  Google Scholar 

  112. Boyer MW, Vallera DA, Taylor PA, Gray GS, Katsanis E, Gorden K, Orchard PJ, Blazar BR . The role of B7 costimulation by murine acute myeloid leukemia in the generation and function of a CD8+ T-cell line with potent in vivo graft-versus-leukemia properties Blood 1997 89: 3477–3485

    CAS  PubMed  Google Scholar 

  113. Mutis T, Schrama E, Melief CJ, Goulmy E . CD80-Transfected acute myeloid leukemia cells induce primary allogeneic T-cell responses directed at patient specific minor histocompatibility antigens and leukemia-associated antigens Blood 1998 92: 1677–1684

    CAS  PubMed  Google Scholar 

  114. Matulonis U, Dosiou C, Freeman G, Lamont C, Mauch P, Nadler LM, Griffin JD . B7-1 is superior to B7-2 costimulation in the induction and maintenance of T cell-mediated antileukemia immunity. Further evidence that B7-1 and B7-2 are functionally distinct J Immunol 1996 156: 1126–1131

    CAS  PubMed  Google Scholar 

  115. Falkenburg JH, Smit WM, Willemze R . Cytotoxic T-lymphocyte (CTL) responses against acute or chronic myeloid leukemia Immunol Rev 1997 157: 223–230

    CAS  PubMed  Google Scholar 

  116. Santiago-Schwarz F, Coppock DL, Hindenburg AA, Kern J . Identification of a malignant counterpart of the monocyte-dendritic cell progenitor in an acute myeloid leukemia Blood 1994 84: 3054–3062

    CAS  PubMed  Google Scholar 

  117. Charbonnier A, Gaugler B, Sainty D, Lafage-Pochitaloff M, Olive D . Human acute myeloblastic leukemia cells differentiate in vitro into mature dendritic cells and induce the differentiation of cytotoxic T cells against autologous leukemias Eur J Immunol 1999 29: 2567–2578

    CAS  PubMed  Google Scholar 

  118. Choudhury BA, Liang JC, Thomas EK, Flores-Romo L, Xie QS, Agusala K, Sutaria S, Sinha I, Champlin RE, Claxton DF . Dendritic cells derived in vitro from acute myelogenous leukemia cells stimulate autologous, antileukemic T-cell responses Blood 1999 93: 780–786

    CAS  PubMed  Google Scholar 

  119. Hart DN . Dendritic cells: unique leukocyte populations which control the primary immune response Blood 1997 90: 3245–3287

    CAS  PubMed  Google Scholar 

  120. Robinson SP, English N, Jaju R, Kearney L, Knight SC, Reid CD . The in-vitro generation of dendritic cells from blast cells in acute leukaemia Br J Haematol 1998 103: 763–771

    CAS  PubMed  Google Scholar 

  121. Cignetti A, Bryant E, Allione B, Vitale A, Foa R, Cheever MA . CD34(+) acute myeloid and lymphoid leukemic blasts can be induced to differentiate into dendritic cells Blood 1999 94: 2048–2055

    CAS  PubMed  Google Scholar 

  122. Brouwer RE, van der Hoorn M, Kluin-Nelemans HC, vanZelderen-Bhola S, Willemze R, Falkenburg JH . The generation ofdendritic-like cells with increased allostimulatory function from acute myeloid leukemia cells of various FAB subclasses Hum Immunol 2000 61: 565–574

    CAS  PubMed  Google Scholar 

  123. Oehler L, Berer A, Kollars M, Keil F, Konig M, Waclavicek M, Haas O, Knapp W, Lechner K, Geissler K . Culture requirements for induction of dendritic cell differentiation in acute myeloid leukemia Ann Hematol 2000 79: 355–362

    CAS  PubMed  Google Scholar 

  124. Kohler T, Plettig R, Wetzstein W, Schmitz M, Ritter M, Mohr B, Schaekel U, Ehninger G, Bornhauser M . Cytokine-driven differentiation of blasts from patients with acute myelogenous and lymphoblastic leukemia into dendritic cells Stem Cells 2000 18: 139–147

    CAS  PubMed  Google Scholar 

  125. Harrison BD, Adams JA, Briggs M, Brereton ML, Yin JA . Stimulation of autologous proliferative and cytotoxic T-cell responses by ‘leukemic dendritic cells’ derived from blast cells in acute myeloid leukemia Blood 2001 97: 2764–2771

    CAS  PubMed  Google Scholar 

  126. Woiciechowsky A, Regn S, Kolb HJ, Roskrow M . Leukemic dendritic cells generated in the presence of FLT3 ligand have the capacity to stimulate an autologous leukemia-specific cytotoxic T cell response from patients with acute myeloid leukemia Leukemia 2001 15: 246–255

    CAS  PubMed  Google Scholar 

  127. Hulette BC, Rowden G, Ryan CA, Lawson CM, Dawes SM, Ridder GM, Gerberick GF . Cytokine induction of a human acute myelogenous leukemia cell line (KG-1) to a CD1a+ dendritic cell phenotype Arch Dermatol Res 2001 293: 147–158

    CAS  PubMed  Google Scholar 

  128. Hagihara M, Shimakura Y, Tsuchiya T, Ueda Y, Gansuvd B, Munkhbat B, Chargui J, Ando K, Kato S, Hotta T . The efficient generation of CD83 positive immunocompetent dendritic cells from CD14 positive acute myelomonocytic or monocytic leukemia cells in vitro Leuk Res 2001 25: 249–258

    CAS  PubMed  Google Scholar 

  129. Narita M, Takahashi M, Liu A, Ayres F, Satoh N, Abe T, Nikkuni K, Furukawa T, Toba K, Aizawa Y . Generation of dendritic cells from leukaemia cells of a patient with acute promyelocytic leukaemia by culture with GM-CSF, IL-4 and TNF-alpha Acta Haematol 2001 106: 89–94

    CAS  PubMed  Google Scholar 

  130. Rigolin GM, Della Porta M, Bigoni R, Tieghi A, Cuneo A, Castoldi G . Dendritic cells in acute promyelocytic leukaemia Br J Haematol 2001 114: 830–833

    CAS  PubMed  Google Scholar 

  131. Panoskaltsis N, Belanger TJ, Liesveld JL, Abboud CN . Optimal cytokine stimulation for the enhanced generation of leukemic dendritic cells in short-term culture Leuk Res 2002 26: 191–201

    CAS  PubMed  Google Scholar 

  132. Re F, Arpinati M, Testoni N, Ricci P, Terragna C, Preda P, Ruggeri D, Senese B, Chirumbolo G, Martelli V, Urbini B, Baccarani M, Tura S, Rondelli D . Expression of CD86 in acute myelogenous leukemia is a marker of dendritic/monocytic lineage Exp Hematol 2002 30: 126–134

    CAS  PubMed  Google Scholar 

  133. Sallusto F, Lanzavecchia A . Understanding dendritic cell and T-lymphocyte traffic through the analysis of chemokine receptor expression Immunol Rev 2000 177: 134–140

    CAS  PubMed  Google Scholar 

  134. Mosmann TR, Sad S . The expanding universe of T-cell subsets: Th1, Th2 and more Immunol Today 1996 17: 138–146

    CAS  PubMed  Google Scholar 

  135. Powrie F, Menon S, Coffman RL . Interleukin-4 and interleukin-10 synergize to inhibit cell-mediated immunity in vivo Eur J Immunol 1993 23: 3043–3049

    CAS  PubMed  Google Scholar 

  136. Powrie F, Leach MW, Mauze S, Caddle LB, Coffman RL . Phenotypically distinct subsets of CD4+ T cells induce or protect from chronic intestinal inflammation in C. B-17 scid mice Int Immunol 1993 5: 1461–1471

    CAS  PubMed  Google Scholar 

  137. Powrie F, Coffman RL . Inhibition of cell-mediated immunity by IL4 and IL10 Res Immunol 1993 144: 639–643

    CAS  PubMed  Google Scholar 

  138. Nishimura T, Iwakabe K, Sekimoto M, Ohmi Y, Yahata T, Nakui M, Sato T, Habu S, Tashiro H, Sato M, Ohta A . Distinct role of antigen-specific T helper type 1 (Th1) and Th2 cells in tumor eradication in vivo J Exp Med 1999 190: 617–627

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Egeter O, Mocikat R, Ghoreschi K, Dieckmann A, Rocken M . Eradication of disseminated lymphomas with CpG-DNA activated T helper type 1 cells from nontransgenic mice Cancer Res 2000 60: 1515–1520

    CAS  PubMed  Google Scholar 

  140. Song K, Chang Y, Prud'homme GJ . Regulation of T-helper-1 versus T-helper-2 activity and enhancement of tumor immunity by combined DNA-based vaccination and nonviral cytokine gene transfer Gene Ther 2000 7: 481–492

    CAS  PubMed  Google Scholar 

  141. Tasaki K, Yoshida Y, Maeda T, Miyauchi M, Kawamura K, Takenaga K, Yamamoto H, Kouzu T, Asano T, Ochiai T, Sakiyama S, Tagawa M . Protective immunity is induced in murine colon carcinoma cells by the expression of interleukin-12 or interleukin-18, which activate type 1 helper T cells Cancer Gene Ther 2000 7: 247–254

    CAS  PubMed  Google Scholar 

  142. Xiang J, Moyana T . Regression of engineered tumor cells secreting cytokines is related to a shift in host cytokine profile from type 2 to type 1 J Interfer Cytok Res 2000 20: 349–354

    CAS  Google Scholar 

  143. Reuben JM, Lee BN, Johnson H, Fritsche H, Kantarjian HM, Talpaz M . Restoration of Th1 cytokine synthesis by T cells of patients with chronic myelogenous leukemia in cytogenetic and hematologic remission with interferon-alpha Clin Cancer Res 2000 6: 1671–1677

    CAS  PubMed  Google Scholar 

  144. Nishimura T, Nakui M, Sato M, Iwakabe K, Kitamura H, Sekimoto M, Ohta A, Koda T, Nishimura S . The critical role of Th1-dominant immunity in tumor immunology Cancer Chemother Pharmacol 2000 46: S52–61

    CAS  PubMed  Google Scholar 

  145. Casares N, Lasarte JJ, de Cerio AL, Sarobe P, Ruiz M, Melero I, Prieto J, Borras-Cuesta F . Immunization with a tumor-associated CTL epitope plus a tumor-related or unrelated Th1 helper peptide elicits protective CTL immunity Eur J Immunol 2001 31: 1780–1789

    CAS  PubMed  Google Scholar 

  146. Yoo EK, Cassin M, Lessin SR, Rook AH . Complete molecular remission during biologic response modifier therapy for Sezary syndrome is associated with enhanced helper T type 1 cytokine production and natural killer cell activity J Am Acad Dermatol 2001 45: 208–216

    CAS  PubMed  Google Scholar 

  147. Bockenstedt LK, Kang I, Chang C, Persing D, Hayday A, Barthold SW . CD4+ T helper 1 cells facilitate regression of murine Lyme carditis Infect Immunol 2001 69: 5264–5269

    CAS  Google Scholar 

  148. Weber KS, Grone HJ, Rocken M, Klier C, Gu S, Wank R, Proudfoot AE, Nelson PJ, Weber C . Selective recruitment of Th2-type cells and evasion from a cytotoxic immune response mediated by viral macrophage inhibitory protein-II Eur J Immunol 2001 31: 2458–2466

    CAS  PubMed  Google Scholar 

  149. Riemensberger J, Bohle A, Brandau S . IFN-gamma and IL-12 but not IL-10 are required for local tumour surveillance in a syngeneic model of orthotopic bladder cancer Clin Exp Immunol 2002 127: 20–26

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the ‘Fondation de France’, and from the ‘Société Française de Greffe de Moelle et de Thérapie Cellulaire (SFGM-TC)’ (to M Mohty) Paris, France. We would like to thank Pr Didier Blaise (Institut Paoli-Calmettes) for his continuous support, helpful discussions and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohty, M., Olive, D. & Gaugler, B. Leukemic dendritic cells: potential for therapy and insights towards immune escape by leukemic blasts. Leukemia 16, 2197–2204 (2002). https://doi.org/10.1038/sj.leu.2402710

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402710

Keywords

This article is cited by

Search

Quick links