Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Childhood ALL

Flow cytometry and allele-specific oligonucleotide PCR are equally effective in detection of minimal residual disease in ALL

Abstract

The analysis of minimal residual disease (MRD) has assumed a growing role in the follow-up of patients with acute lymphoblastic leukemia (ALL). We have applied multiparameter flow cytometry (FC) with ‘live-gate’ analysis and allele-specific oligonucleotide (ASO)-PCR detecting leukemia-specific T cell receptor γ and δ gene rearrangements for MRD follow-up in 30 ALL patients. The comparison of results obtained in 89 follow-up samples from 23 patients showed significantly consistent results in 70 samples (78%); (P < 0.001). Bone marrow samples taken during the first phase of treatment (during or immediately after induction) showed a lower level of consistency when compared to samples taken during later phases of treatment (69% vs 85% consistent results, respectively). Some of the discrepant results were due to low cellularity of the samples obtained for FC and some due to the presence of PCR inhibitors. Of 29 patients evaluated at the end of the induction treatment, 18 (62%) had detectable levels of MRD and six of these patients suffered relapse. In all these patients MRD levels by FC increased preceding relapse. Our results suggest that FC offers a MRD detection tool that can be easily applied in clinical practice and is as informative as molecular methods.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Campana D, Pui CH . Detection of minimal residual disease in acute leukemia: methodologic advances and clinical significance Blood 1995 85: 1416–1434

    CAS  PubMed  Google Scholar 

  2. Orfao A, Ciudad J, Lopez-Berges MC, Lopez A, Vidriales B, Caballero MD, Valverde B, Gonzalez M, San Miguel JF . Acute lymphoblastic leukemia (ALL): detection of minimal residual disease (MRD) at flow cytometry Leuk Lymphoma 1994 13: (Suppl. 1) 87–90

    Article  PubMed  Google Scholar 

  3. van Dongen JJ, Szczepanski T, de Bruijn MA, van den Beemed MW, de Bruin-Versteeg S, Wijkhuijs JM, Tibbe GJ, van Gastel-Mol EJ, Groeneveld K, Hooijkaas H . Detection of minimal residual disease in acute leukemia patients Cytokines Mol Ther 1996 2: 121–133

    CAS  PubMed  Google Scholar 

  4. Jacquy C, Delepaut B, Van Daele S, Vaerman JL, Zenebergh A, Brichard B, Vermylen C, Cornu G, Martiat P . A prospective study of minimal residual disease in childhood B-lineage acute lymphoblastic leukaemia: MRD level at the end of induction is a strong predictive factor of relapse Br J Haematol 1997 98: 140–146

    Article  CAS  PubMed  Google Scholar 

  5. Gruhn B, Hongeng S, Yi H, Hancock ML, Rubnitz JE, Neale GA, Kitchingman GR . Minimal residual disease after intensive induction therapy in childhood acute lymphoblastic leukemia predicts outcome Leukemia 1998 12: 675–681

    Article  CAS  PubMed  Google Scholar 

  6. van Dongen JJ, Seriu T, Panzer-Grumayer ER, Biondi A, Pongers-Willemse MJ, Corral L, Stolz F, Schrappe M, Masera G, Kamps WA, Gadner H, van Wering ER, Ludwig WD, Basso G, De Bruijn MA, Cazzaniga G, Hettinger K, van der Does-van den Berg A, Hop WC, Riehm H, Bartram CR . Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood Lancet 1998 352: 1731–1738

    Article  CAS  PubMed  Google Scholar 

  7. Sykes PJ, Brisco MJ, Hughes E, Snell LE, Dolman G, Neoh SH, Peng LM, Toogood I, Venables WN, Morley AA . Minimal residual disease in childhood acute lymphoblastic leukaemia quantified by aspirate and trephine: is the disease multifocal? Br J Haematol 1998 103: 60–65

    CAS  PubMed  Google Scholar 

  8. Cave H, van der Werff ten Bosch, Suciu S, Guidal C, Waterkeyn C, Otten J, Bakkus M, Thielemans K, Grandchamp B, Vilmer E . Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia. European Organization for Research and Treatment of Cancer – Childhood Leukemia Cooperative Group N Engl J Med 1998 339: 591–598

    Article  CAS  PubMed  Google Scholar 

  9. Knechtli CJ, Goulden NJ, Hancock JP, Harris EL, Garland RJ, Jones CG, Grandage VL, Rowbottom AW, Green AF, Clarke E, Lankester AW, Potter MN, Cornish JM, Pamphilon DH, Steward CG, Oakhill A . Minimal residual disease status as a predictor of relapse after allogeneic bone marrow transplantation for children with acute lymphoblastic leukaemia Br J Haematol 1998 102: 860–871

    Article  CAS  PubMed  Google Scholar 

  10. Pongers-Willemse MJ, Seriu T, Stolz F, d'Aniello E, Gameiro P, Pisa P, Gonzalez M, Bartram CR, Panzer-Grumayer ER, Biondi A, San Miguel JF, van Dongen JJ . Primers and protocols forstandardized detection of minimal residual disease in acutelymphoblastic leukemia using immunoglobulin and T cell receptor gene rearrangements and TAL1 deletions as PCR targets: report of the BIOMED-1 CONCERTED ACTION: investigation of minimal residual disease in acute leukemia Leukemia 1999 13: 110–118

    Article  CAS  PubMed  Google Scholar 

  11. Szczepanski T, Langerak AW, Wolvers-Tettero IL, Ossenkoppele GJ, Verhoef G, Stul M, Petersen EJ, De Bruijn MA, van't Veer MB, van Dongen JJ . Immunoglobulin and T cell receptor gene rearrangement patterns in acute lymphoblastic leukemia are less mature in adults than in children: implications for selection of PCR targets for detection of minimal residual disease Leukemia 1998 12: 1081–1088

    Article  CAS  PubMed  Google Scholar 

  12. Ouspenskaia MV, Johnston DA, Roberts WM, Estrov Z, Zipf TF . Accurate quantitation of residual B-precursor acute lymphoblastic leukemia by limiting dilution and a PCR-based detection system: a description of the method and the principles involved Leukemia 1995 9: 321–328

    CAS  PubMed  Google Scholar 

  13. Roberts WM, Estrov Z, Ouspenskaia MV, Johnston DA, McClain KL, Zipf TF . Measurement of residual leukemia during remission in childhood acute lymphoblastic leukemia N Engl J Med 1997 336: 317–323

    Article  CAS  PubMed  Google Scholar 

  14. Seriu T, Hansen-Hagge TE, Erz DH, Bartram CR . Improved detection of minimal residual leukemia through modifications of polymerase chain reaction analyses based on clonospecific T cell receptor junctions Leukemia 1995 9: 316–320

    CAS  PubMed  Google Scholar 

  15. Wells DA, Sale GE, Shulman HM, Myerson D, Bryant EM, Gooley T, Loken MR . Multidimensional flow cytometry of marrow can differentiate leukemic from normal lymphoblasts and myeloblasts after chemotherapy and bone marrow transplantation Am J Clin Pathol 1998 110: 84–94

    Article  CAS  PubMed  Google Scholar 

  16. Dworzak MN, Fritsch G, Fleischer C, Printz D, Froschl G, Buchinger P, Mann G, Gadner H . Multiparameter phenotype mapping of normal and post-chemotherapy B lymphopoiesis in pediatric bone marrow Leukemia 1997 11: 1266–1273

    Article  CAS  PubMed  Google Scholar 

  17. Ciudad J, Orfao A, Vidriales B, Macedo A, Martinez A, Gonzalez M, Lopez-Berges MC, Valverde B, San Miguel JF . Immunophenotypic analysis of CD19+ precursors in normal human adult bone marrow: implications for minimal residual disease detection Haematologica 1998 83: 1069–1075

    CAS  PubMed  Google Scholar 

  18. Farahat N, Lens D, Zomas A, Morilla R, Matutes E, Catovsky D . Quantitative flow cytometry can distinguish between normaland leukaemic B-cell precursors Br J Haematol 1995 91: 640–646

    Article  CAS  PubMed  Google Scholar 

  19. Lucio P, Parreira A, van den Beemd MW, van Lochem EG, van Wering ER, Baars E, Porwit-MacDonald A, Bjorklund E, Gaipa G, Biondi A, Orfao A, Janossy G, van Dongen JJ, San Miguel JF . Flow cytometric analysis of normal B cell differentiation: a frame of reference for the detection of minimal residual disease in precursor-B-ALL Leukemia 1999 13: 419–427

    Article  CAS  PubMed  Google Scholar 

  20. Lavabre-Bertrand T, Janossy G, Ivory K, Peters R, Secker-Walker L, Porwit-MacDonald A . Leukemia-associated changes identified by quantitative flow cytometry: I. CD10 expression Cytometry 1994 18: 209–217

    Article  CAS  PubMed  Google Scholar 

  21. Porwit-MacDonald A, Björklund E, Lucio P, Van Lochem EG, Mazur J, Parreira A, Van den Beemd MWM, Van Wering ER, Baars E, Gaipa G, Biondi A, Ciudad J, Van Dongen JJM, San Miguel JF, Orfao A . BIOMED-1 Concerted Action report: Flow cytometric characterization of CD7+ cell subsets in normal bone marrow as a basis for the diagnosis and follow-up of T cell acute lymphoblastic leukemia (T-ALL) Leukemia 2000 14: 816–825

    Article  CAS  PubMed  Google Scholar 

  22. Weir EG, Cowan K, LeBeau P, Borowitz MJ . A limited antibody panel can distinguish B-precursor acute lymphoblastic leukemia from normal B precursors with four color flow cytometry: implications for residual disease detection Leukemia 1999 13: 558–567

    Article  CAS  PubMed  Google Scholar 

  23. Coustan-Smith E, Behm FG, Sanchez J, Boyett JM, Hancock ML, Raimondi SC, Rubnitz JE, Rivera GK, Sandlund JT, Pui CH, Campana D . Immunological detection of minimal residual disease in children with acute lymphoblastic leukaemia Lancet 1998 351: 550–554

    Article  CAS  PubMed  Google Scholar 

  24. Campana D, Yokota S, Coustan-Smith E, Hansen-Hagge TE, Janossy G . Bartram CR. The detection of residual acutelymphoblastic leukemia cells with immunologic methods andpolymerase chain reaction: a comparative study Leukemia 1990 4: 609–614

    CAS  PubMed  Google Scholar 

  25. Vervoordeldonk SF, Merle PA, Behrendt H, Steenbergen EJ, Van Leeuwen EF, Van den Berg H, Von dem Borne AE, van der Schoot CE, Slaper-Cortenbach IC . Triple immunofluorescence staining for prediction of relapse in childhood precursor B acute lymphoblastic leukaemia Br J Haematol 1996 92: 922–928

    Article  CAS  PubMed  Google Scholar 

  26. Neale GA, Coustan-Smith E, Pan Q, Chen X, Gruhn B, Stow P, Behm FG, Pui CH, Campana D . Tandem application of flow cytometry and polymerase chain reaction for comprehensive detection of minimal residual disease in childhood acute lymphoblastic leukemia Leukemia 1999 13: 1221–1226

    Article  CAS  PubMed  Google Scholar 

  27. Szczepanski T, Beishuizen A, Pongers-Willemse MJ, Hahlen K, van Wering ER, Wijkhuijs AJ, Tibbe GJ, De Bruijn MA, van Dongen JJ . Cross-lineage T cell receptor gene rearrangements occur in more than ninety percent of childhood precursor-B acute lymphoblastic leukemias: alternative PCR targets for detection of minimal residual disease Leukemia 1999 13: 196–205

    Article  CAS  PubMed  Google Scholar 

  28. van Dongen JJ, Adriaansen HJ . Immunobiology of Leukemia. In: Henderson ES, Lister TA, Greaves MF (eds) Leukemia, 6th edn WB Saunders: Philadelphia 1996 83–130

    Google Scholar 

  29. Gustafsson G, Kreuger A, Clausen N, Garwicz S, Kristinsson J, Lie SO, Moe PJ, Perkkio M, Yssing M, Saarinen-Pihkala UM . Intensified treatment of acute childhood lymphoblastic leukaemia has improved prognosis, especially in non-high-risk patients: the Nordic experience of 2648 patients diagnosed between 1981 and 1996. Nordic Society of Paediatric Haematology andOncology (NOPHO) Acta Paediatr 1998 87: 1151–1161

    Article  CAS  PubMed  Google Scholar 

  30. Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA . Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase Science 1988 239: 487–491

    Article  CAS  PubMed  Google Scholar 

  31. Bottaro M, Berti E, Biondi A, Migone N, Crosti L . Heteroduplex analysis of T-cell receptor gamma gene rearrangements for diagnosis and monitoring of cutaneous T-cell lymphomas Blood 1994 83: 3271–3278

    CAS  PubMed  Google Scholar 

  32. Langerak AW, Szczepanski T, van der Burg M, Wolvers-Tettero IL, van Dongen JJ . Heteroduplex PCR analysis of rearranged T cell receptor genes for clonality assessment in suspect T cell proliferations Leukemia 1997 11: 2192–2199

    Article  CAS  PubMed  Google Scholar 

  33. Altman DG . Inter-rater agreement In: Practical Statistics forMedical Research Chapman and Hall: London 1991 pp 403–409

    Google Scholar 

  34. Seriu T, Yokota S, Nakao M, Misawa S, Takaue Y, Koizumi S, Kawai S, Fujimoto T . Prospective monitoring of minimal residual disease during the course of chemotherapy in patients with acute lymphoblastic leukemia, and detection of contaminating tumor cells in peripheral blood stem cells for autotransplantation Leukemia 1995 9: 615–623

    CAS  PubMed  Google Scholar 

  35. Foroni L, Coyle LA, Papaioannou M, Yaxley JC, Sinclair MF, Chim JS, Cannell P, Secker-Walker LM, Mehta AB, Prentice HG, Hoffbrand AV . Molecular detection of minimal residual diseasein adult and childhood acute lymphoblastic leukaemia revealsdifferences in treatment response Leukemia 1997 11: 1732–1741

    Article  CAS  PubMed  Google Scholar 

  36. Goulden NJ, Knechtli CJ, Garland RJ, Langlands K, Hancock JP, Potter MN, Steward CG, Oakhill A . Minimal residualdisease analysis for the prediction of relapse in children with standard-risk acute lymphoblastic leukaemia Br J Haematol 1998 100: 235–244

    Article  CAS  PubMed  Google Scholar 

  37. Foroni L, Harrison CJ, Hoffbrand AV, Potter MN . Investigation of minimal residual disease in childhood and adult acute lymphoblastic leukaemia by molecular analysis Br J Haematol 1999 105: 7–24

    CAS  PubMed  Google Scholar 

  38. Pongers-Willemse MJ, Verhagen OJ, Tibbe GJ, Wijkhuijs AJ, de Haas V, Roovers E, van der Schoot CE, van Dongen JJ . Real-time quantitative PCR for the detection of minimal residual disease in acute lymphoblastic leukemia using junctional region specific TaqMan probes Leukemia 1998 12: 2006–2014

    Article  CAS  PubMed  Google Scholar 

  39. Ciudad J, San Miguel JF, Lopez-Berges MC, Vidriales B, Valverde B, Ocqueteau M, Mateos G, Caballero MD, Hernandez J, Moro MJ, Mateos MV, Orfao A . Prognostic value of immunophenotypic detection of minimal residual disease in acute lymphoblastic leukemia J Clin Oncol 1998 16: 3774–3781

    Article  CAS  PubMed  Google Scholar 

  40. Lucio P, Gaipa G, van Lochem EG, van Wering ER, Porwit-MacDonald A, Faria T, Bjorklund E, Biondi A, van den Beemd MWM, Baars E, Vidriales B, Parreira A, van Dongen JJM, San Miguel JF, Orfao A . BIOMED-I Concerted Action Report: Flow Cytometric Immunophenotyping of Precursor B-ALL with Standardized Triple Stainings. Submitted Presented at the Symposium on MRD, Salamanca November 1997

Download references

Acknowledgements

This study was supported by grants from Swedish Cancer Society (Cancerfonden), Swedish Childhood Cancer Society (Barncancerfonden) and Stockholm County Council. PP is a Research Fellow of the Swedish Medical Research Council. The excellent technical assistance of Ms Inger Bodin, Yrsa Bringensparr, Marianne Lagnefeldt, Britt Lundh, Shalah Tarahumi, and Margareta Waern is gratefully acknowledged. We thank Mr Lewis Edgel for the linguistic consultation. Cytogenetic studies were performed at Dept of Clinical Genetics, Karolinska Hospital.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malec, M., Björklund, E., Söderhäll, S. et al. Flow cytometry and allele-specific oligonucleotide PCR are equally effective in detection of minimal residual disease in ALL. Leukemia 15, 716–727 (2001). https://doi.org/10.1038/sj.leu.2402091

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402091

Keywords

This article is cited by

Search

Quick links