Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Lymphomas

Percentage of activated cytotoxic T-lymphocytes in anaplastic large cell lymphoma and Hodgkin's disease: an independent biological prognostic marker

Abstract

Recently, we demonstrated that the presence of high percentages of activated cytotoxic T-lymphocytes (CTLs) in biopsy specimens of both Hodgkin's disease (HD) and ALK negative anaplastic large cell lymphoma (ALCL) is associated with a poor prognosis. To test whether this biological prognostic factor is more important in predicting clinical outcome than histological diagnosis or clinical factors, we compared the prognostic value of these parameters in an expanded group of classical HD and ALK negative ALCL. Tumor biopsies of classical HD (n = 83) and ALK negative systemic nodal ALCL (n = 43) were investigated for the presence of activated CTLs by immunohistochemistry, using a monoclonal antibody directed against granzyme B. Percentages of activated CTLs were quantified using Q-PRODIT, and their prognostic value was compared to that of histological diagnosis and clinical parameters, including age and stage. Both in classical HD and ALK negative ALCL, a high percentage of activated CTLs (ie 15%) identified a group of patients with poor overall and progression-free survival time, even when adjusted for stage. In multivariate analysis, percentage of activated CTLs remained a strong independent prognostic marker, and was more sensitive than histological diagnosis or clinical factors in predicting overall survival time. We conclude that a high percentage of activated CTLs in the reactive infiltrate of ALK negative ALCL and classical HD is a strong indicator for an unfavorable clinical outcome, regardless of histological diagnosis or clinical parameters. As such, this biological parameter may be an especially helpful tool to determine therapeutic strategies in cases in which the differentiation between ALK negative ALCL and HD remains difficult.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Harris NL, Jaffe ES, Stein H, Banks PM, Chan JKC, Cleary ML, Delsol G, De Wolf-Peeters C, Falini B, Gatter KC, Grogan TM, Isaacson PG, Knowles DM, Mason DY, Muller-Hermelink HC, Pileri SA, Piris MA, Ralfkiaer E, Warnke RA . A revised European–American classification of lymphoid neoplasms: a proposal from the International Lymphoma Study Group Blood 1994 84: 1361–1392

    CAS  Google Scholar 

  2. Morris SW, Kirstein MN, Valentine MB, Dittmer KG, Shapiro DN, Saltman DL, Look AT . Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma Science 1994 263: 1281–1284

    Article  CAS  Google Scholar 

  3. Shiota M, Nakamura S, Ichinoshama R, Abe M, Akagi T, Takeshita M, Mori N, Fujimoto J, Miyauchi J, Mikata A, Nanba K, Takami T, Yamabe H, Takano Y, Izumo T, Mohri N, Nasu K, Satoh H, Katano H, Fujimoto J, Yamamoto T, Mori S . Anaplastic large cell lymphomas expressing the novel chimeric protein p80 NPM/ALK: a distinct clinicopathologic entity Blood 1995 86: 1954–1960

    CAS  PubMed  Google Scholar 

  4. ten Berge RL, Dukers DF, Oudejans JJ, Pulford K, Ossenkoppele GJ, de Jong D, Miseré JFMM, Meijer CJLM . Adverse effects of activated cytotoxic T-lymphocytes on the clinical outcome of nodal anaplastic large cell lymphoma Blood 1999 93: 2688–2696

    CAS  PubMed  Google Scholar 

  5. Falini B, Pileri S, Zinzani PL, Carbone A, Zagonel V, de Wolf-Peeters C, Verhoef G, Menestrina F, Todeschini G, Paulli M, Lazzarino M, Giardini R, Aiello A, Foss HD, Araujo I, Fizzotti M, Pelicci PG, Flenghi L, Maretlli MF, Santucci A . ALK-positive lymphoma: clinicopathological findings and outcome Blood 1999 93: 2697–2706

    CAS  PubMed  Google Scholar 

  6. Gascoyne RD, Aoun P, Wu D, Chanabhai M, Skinnider BF, Greiner TC, Morris SW, Connors JM, Vose JM, Viswanatha DS, Coldman A, Weisenburger DD . Prognostic significance of anaplastic lymphoma kinase (ALK) protein expression in adults with anaplastic large cell lymphoma Blood 1999 93: 3913–3921

    CAS  PubMed  Google Scholar 

  7. ten Berge RL, Oudejans JJ, Ossenkoppele GJ, Pulford K, Willemze R, Falini B, Chott A, Meijer CJLM . ALK expression in extranodal anaplastic large cell lymphoma favours systemic disease with (primary) nodal involvement and a good prognosis and occurs before dissemination J Clin Pathol 2000 53: 445–450

    Article  CAS  Google Scholar 

  8. Pulford K, Lamant L, Morris SW, Butler LH, Wood KM, Stroud D, Delsol G, Mason DY . Detection of anaplastic lymphoma kinase (ALK) and nucleolar protein nucleophosmin (NPM)-ALK proteins in normal and neoplastic cells with the monoclonal antibody ALK1 Blood 1997 89: 1394–1404

    CAS  PubMed  Google Scholar 

  9. Lamant L, Meggetto F, Al Saati T, Brugieres L, Bressac de Paillerets B, Dastugue N, Bernheim A, Terrier-Lacombe MJ, Robert A, Brousset P, Rigal F, Schlaifer D, Shiota M, Delsol G . High incidence of the t(2;5)(p23;q35) translocation in anaplastic large cell lymphoma and its lack of detection in Hodgkin's disease: comparison of cytogenetic analysis, reverse transcriptase-polymerase chain reaction, and p80 immunostaining Blood 1996 87: 284–291

    CAS  PubMed  Google Scholar 

  10. Sarris AH, Luthra R, Papadimitracopoulo V, Waasdorp M, Dimopoulos MA, McBride JA, Cabanillas F, Duvic M, Deisseroth A, Morris SW, Pugh WC . Amplification of genomic DNA demonstrates the presence of the t(2;5)(p23;q35) in anaplastic large cell lymphoma, but not in other non-Hodgkin's lymphomas, Hodgkin's disease, or lymphomatoid papulosis Blood 1996 88: 1771–1779

    CAS  PubMed  Google Scholar 

  11. Wood GS, Hardman DL, Boni R, Dummer R, Kim YH, Smoller BR, Takeshita M, Kikuchi M, Burg G . Lack of the t(2;5) or other mutations resulting in expression of anaplastic lymphoma kinase catalytic domain in CD30+ primary cutaneous lymphoproliferative disorders and Hodgkin's disease Blood 1996 88: 1765–1770

    CAS  PubMed  Google Scholar 

  12. Ladanyi M, Cavalchire G, Morris SW, Downing J, Filippa DA . Reverse transcriptase polymerase chain reaction for the Ki-1 anaplastic large cell lymphoma-associated t(2;5) translocation in Hodgkin's disease Am J Pathol 1994 145: 1296–1300

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Rosenberg SA, Canellos GP . Hodgkin's disease. In: Canellos GP, Lister TA, Sklar JL (eds) The Lymphomas WB Saunders: Philadelphia 1998 pp 305–331

    Google Scholar 

  14. Wilson WH, Chabner BA . Principles of chemotherapy for lymphomas. In: Canellos GP, Lister TA, Sklar JL (eds) The Lymphomas WB Saunders: Philadelphia 1998 235–245

    Google Scholar 

  15. The International Non-Hodgkin's Lymphoma Prognostic Factors Project . A predictive model for aggressive non-Hodgkin's lymphoma N Engl J Med 1993 329: 987–994

    Article  Google Scholar 

  16. Oudejans JJ, Jiwa NM, Kummer JA, Ossenkoppele GJ, van Heerde P, Baars JW, Kluin PhM, Kluin-Nelemans JC, van Diest PJ, Middeldorp JM, Meijer CJLM . Activated cytotoxic T cells as prognostic marker in Hodgkin's disease Blood 1997 89: 1376–1382

    CAS  PubMed  Google Scholar 

  17. Harris NL, Jaffe ES, Diebold J, Flandrin G, Muller-Hermelink HK, Vardiman J, Lister TA, Bloomfield CD . World Health Organization of neoplastic diseases of the hematopoietic and lymphoid tissues: report of the Clinical Advisory Committee meeting-Airlie House, Virginia, November 1997 J Clin Oncol 1999 17: 3835–3849

    Article  CAS  Google Scholar 

  18. Falini B, Bigerna B, Fizzotti M, Pulford K, Pileri SA, Delsol G, Carbone A, Paulli M, Magrini U, Menestrina F, Giardini R, Pilotti S, Mezzelani A, Ugolini B, Billi M, Pucciarini A, Pacini R, Pelicci PG, Flenghi L . ALK expression defines a distinct group of T/Null lymphomas (‘ALK lymphomas’) with a wide morphological spectrum Am J Pathol 1998 153: 875–886

    Article  CAS  Google Scholar 

  19. Benharroch D, Meguerian-Bedoyan Z, Lamant L, Amin C, Brugières L, Terrier-Lacombe MJ, Haralambieva E, Pulford K, Pileri S, Morris SW, Mason DY, Delsol G . ALK-positive lymphoma: a single disease with a broad spectrum of morphology Blood 1998 91: 2076–2084

    CAS  PubMed  Google Scholar 

  20. Kummer JA, Kamp AM, van Katwijk M, Brakenhoff JPJ, Radosevic K, van Leeuwen AM, Borst J, Verweij CL, Hack CE . Production and characterization of monoclonal antibodies raised against recombinant human granzymes A and B and showing cross reactions with the natural proteins J Immunol Meth 1993 163: 77–83

    Article  CAS  Google Scholar 

  21. Kummer JA, Kamp AM, Tadema TM, Vos W, Meijer CJLM, Hack E . Localization and identification of granzymes A and B expressing cells in normal human lymphoid tissue and peripheral blood Clin Exp Immunol 1995 100: 164–172

    Article  CAS  Google Scholar 

  22. Küppers R, Rajewsky K, Zhao M, Simons G, Laumann R, Fischer R, Hansmann ML . Hodgkin disease: Hodgkin and Reed–Sternberg cells picked from histological sections show clonal immunoglobulin rearrangements and appear to be derived from B cells at various stages of development Proc Natl Acad Sci USA 1994 91: 10962–10966

    Article  Google Scholar 

  23. Hummel M, Ziemann K, Lammert H, Pileri S, Sabattini E, Stein H . Hodgkin's disease with monoclonal and polyclonal populations of Reed–Sternberg cells N Engl J Med 1995 333: 901–906

    Article  CAS  Google Scholar 

  24. Küppers R, Rajewsky K . The origin of Hodgkin and Reed–Sternberg cells in Hodgkin's disease Ann Rev Immunol 1998 16: 471–493

    Article  Google Scholar 

  25. Foss HD, Anagnostopoulos I, Araujo I, Assaf C, Demel G, Kummer JA, Hummel M, Stein H . Anaplastic large cell lymphomas of T-cell and null-cell phenotype express cytotoxic molecules Blood 1996 88: 4005–4011

    CAS  Google Scholar 

  26. O'Connor NTJ, Stein H, Gatter KC, Wainscoat JS, Crick J, Al Saati T, Falini B, Delsol G, Mason DY . Genotypic analysis of large-cell lymphomas which express the Ki-1 antigen Histopathology 1987 1: 733–740

    Article  Google Scholar 

  27. Herbst H, Tippelman G, Anagnostopoulos I, Gerdes J, Schwarting R, Boehm T, Pileri S, Jones DB, Stein H . Immunoglobulin and T-cell receptor gene rearrangements in Hodgkin's disease and Ki-1 positive anaplastic large cell lymphoma: dissociation between phenotype and genotype Leuk Res 1989 13: 103–116

    Article  CAS  Google Scholar 

  28. Müschen M, Rajewsky K, Bräuninger A, Baur AS, Oudejans JJ, Roers A, Hansmann ML, Küppers R . Rare occurrence of classical Hodgkin's disease as a T cell lymphoma J Exp Med 2000 191: 387–394

    Article  Google Scholar 

  29. Hummel M, Marafioti T, Anagnostopoulos I, Assaf C, Stein H . Detection of clonal T-cell receptor gamma-chain gene rearrangements in Reed–Sternberg cells of classic Hodgkin disease Blood 2000 95: 3020–3024

    PubMed  Google Scholar 

  30. Delsol G, Al Saati T, Gatter KC, Gerdes J, Schwarting R, Caveriviere P, Rigal-Huguet F, Robert A, Stein H, Mason DY . Coexpression of epithelial membrane antigen (EMA), Ki-1, and interleukin-2 receptor by anaplastic large cell lymphomas. Diagnostic value in so-called malignant histiocytosis Am J Pathol 1988 130: 59–70

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Leoncini L, Del Vecchio MT, Kraft R, Megha T, Barbini P, Cevenini G, Poggi S, Pileri S, Tosi P, Cottier H . Hodgkin's disease and CD30-positive anaplastic large cell lymphomas – a continuous spectrum of malignant disorders: a quantitative morphometric and immunologic study Am J Pathol 1990 137: 1047–1057

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hugh J, Poppema S . Immunophenotype of Reed–Sternberg cells Int Rev Exp Pathol 1992 33: 81–114

    Article  CAS  Google Scholar 

  33. Pileri S, Bocchia M, Baroni CD, Martelli M, Falini B, Sabattini E, Gherlinzoni F, Amadori S, Poggi S, Mazza P . Anaplastic large cell lymphoma (CD30+/Ki-1+): results of a prospective clinicopathologic study of 69 cases Br J Haematol 1994 86: 513–523

    Article  CAS  Google Scholar 

  34. Delsol G, Gatter KC, Stein H, Erber WN, Pulford KA, Zinne K, Mason DY . Human lymphoid cells express epithelial membrane antigen. Implications for the diagnosis of human neoplasms Lancet 1984 2: 1124–1129

    Article  CAS  Google Scholar 

  35. Chittal SM, Caveriviere P, Schwarting R, Gerdes J, Al Saati T, Rigal-Huguet F, Stein H, Delsol G . Monoclonal antibodies in the diagnosis of Hodgkin's disease: the search for a rational panel Am J Surg Path 1988 12: 9–21

    Article  CAS  Google Scholar 

  36. Chittal S, Al Saati T, Delsol G . Epithelial membrane antigen in hematolymphoid neoplasms: a review Appl Immunohistochem 1997 5: 203–215

    Article  Google Scholar 

  37. Nakamura S, Shiota M, Nakagawa A, Yatabe Y, Kojima M, Motoori T, Suzuki R, Kagami Y, Ogura M, Morishima Y, Mizoguchi Y, Okamoto M, Seto M, Koshikawa T, Mori S, Suchi T . Anaplastic large cell lymphoma – a distinct molecular pathologic entity: a reappraisal with special reference to p80 (NPM/ALK) expression Am J Surg Path 1997 21: 1420–1432

    Article  CAS  Google Scholar 

  38. Nakagawa A, Nakamura S, Ito M, Shiota M, Mori S, Suchi T . CD30-positive anaplastic large cell lymphoma in childhood – expression of p80 (NPM/ALK) and absence of Epstein–Barr virus Mod Pathol 1997 10: 210–215

    CAS  PubMed  Google Scholar 

  39. Felgar RE, Salhany KE, Macon WR, Pietra GG, Kinney MC . The expression of TIA-1+ cytolytic-type granules and other cytolytic lymphocyte-associated markers in CD30+ anaplastic large cell lymphomas (ALCL): correlation with morphology, immunophenotype, ultrastructure, and clinical features Hum Pathol 1999 30: 228–236

    Article  CAS  Google Scholar 

  40. Dukers DF, ten Berge RL, Oudejans JJ, Pulford K, Hayes D, Miseré JFMM, Ossenkoppele GJ, Japsars LH, Willemze R, Meijer CJLM . A cytotoxic phenotype does not predict clinical outcome in anaplastic large cell lymphoma J Clin Pathol 1999 52: 129–136

    Article  CAS  Google Scholar 

  41. Krenacs L, Wellmann A, Sorbara L, Himmelmann AW, Bagdi E, Jaffe ES, Raffeld M . Cytotoxic cell antigen expression in anaplastic large cell lymphomas of T- and null-cell type and Hodgkin's disease: evidence for a distinct cellular origin Blood 1997 89: 980–989

    CAS  Google Scholar 

  42. Oudejans JJ, Kummer JA, Jiwa NM, van der Valk P, Ossenkoppele GJ, Kluin PM, Kluin-Nelemans JC, Meijer CJLM . Granzyme B expression in Reed–Sternberg cells of Hodgkin's disease Am J Pathol 1996 148: 233–240

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Herbst H, Niedobitek G . Epstein–Barr virus in Hodgkin's disease Epstein–Barr Virus Rep 1994 1: 31–35

    Google Scholar 

  44. Anagnostopoulos I, Herbst H, Niedobitek G, Stein H . Demonstration of monoclonal EBV genomes in Hodgkin's disease and Ki-1 positive anaplastic large cell lymphoma by combined Southern blot and in situ hybridization Blood 1989 74: 810–816

    CAS  PubMed  Google Scholar 

  45. Herbst H . Dallenbach F, Hummel M, Niedobitek G, Finn T, Young LS, Rowe M, Muller-Lantzsch N, Stein H. Epstein–Barr virus DNA and latent gene products in Ki-1 (CD30) positive anaplastic large cell lymphomas Blood 1991 78: 2666–2673

    CAS  PubMed  Google Scholar 

  46. Brousset P, Rochaix P, Chittal S, Rubie H, Robert A, Delsol G . High incidence of Epstein–Barr virus detection in Hodgkin's disease and absence of detection in anaplastic large cell lymphoma in children Histopathology 1993 23: 189–191

    Article  CAS  Google Scholar 

  47. Kanavaros P, Jiwa NM, de Bruin PC, van der Valk P, Noorduyn LA, van Heerde P, Gordijn R, Horstman A, Mullink R, Walboomers JM, Meijer CJLM . High incidence of EBV genome in CD30-positive non-Hodgkin's lymphomas J Pathol 1992 168: 307–315

    Article  CAS  Google Scholar 

  48. Brink AATP, ten Berge RL, van den Brule AJC, Willemze R, Chott A, Meijer CJLM . Epstein–Barr virus is present in neoplastic cytotoxic T cells in extranodal, and predominantly in B cells in nodal T non-Hodgkin lymphomas J Pathol 2000 191: 400–406

    Article  CAS  Google Scholar 

  49. Frisan T, Sjoberg J, Dolcetti R, Boiocchi M, Dere V, Carbone A, Brautbar C, Battat S, Biberfeld P, Eckman M, Ost O, Christensson B, Sundstrom C, Bjorkholm M, Pisa P, Masucci MG . Local suppression of Epstein–Barr virus (EBV)-specific cytotoxicity in biopsies of EBV(+) Hodgkin's disease Blood 1995 86: 1493–1501

    CAS  PubMed  Google Scholar 

  50. Lee SP, Constandinou CM, Thomas WA, Croom-Carter D, Blake NW, Murray PG, Crocker J, Rickinson AB . Antigen presenting phenotype of Hodgkin Reed–Sternberg cells: analysis of the HLA class I processing pathway and the effects of interleukin-10 on Epstein–Barr virus-specific cytotoxic T-cell recognition Blood 1998 92: 1020–1030

    CAS  PubMed  Google Scholar 

  51. Chao DT, Korsmeyer SJ . Bcl-2 family. Regulators of cell death Annu Rev Immunol 1998 16: 395–419

    Article  CAS  Google Scholar 

  52. Yang E, Korsmeyer S . Molecular thanatopsis: a discourse on the bcl2 family and cell death Blood 1996 88: 386–401

    CAS  PubMed  Google Scholar 

  53. Schröter M, Lowin B, Borner C, Tschopp J . Regulation of Fas (APO-1/CD95)- and perforin-mediated lytic pathways of primary cytotoxic T lymphocytes by the protooncogene bcl-2 Eur J Immunol 1995 25: 3509–3513

    Article  Google Scholar 

  54. C, Herr I, Krammer PH, Debatin KM . Involvement of the CD95 (APO/FAS) receptor/ligand system in drug-induced apoptosis in leukemia cells Nature Med 1996 2: 574–577

    Article  Google Scholar 

  55. Brink AATP, Oudejans JJ, van den Brule AJC, Kluin PM, Horstman A, Ossenkoppele GJ, van Heerde P, Jiwa NM, Meijer CJLM . Low p53 and high bcl-2 expression in Reed–Sternberg cells predicts poor clinical outcome of Hodgkin's disease: involvement of apoptosis resistance Mod Pathol 1998 11: 376–383

    CAS  PubMed  Google Scholar 

  56. Taga K, Tosato G . IL-10 inhibits human T-cell proliferation and IL-2 production J Immunol 1992 148: 1143–1148

    CAS  PubMed  Google Scholar 

  57. Matsuda M, Salazar F, Petersson M, Masucci G, Hansson J, Pisa P, Zhang QJ, Masucci MG, Kiessling R . Interleukin 10 treatment protects target cells from tumour- and allospecific cytotoxic T-cells and downregulates HLA class I expression J Exp Med 1994 180: 2371–2376

    Article  CAS  Google Scholar 

  58. Dukers DF, Jaspars LH, Vos W, Oudejans JJ, Hayes D, Cillessen S, Middeldorp JM, Meijer CJLM . Quantitative immunohistochemical analysis of cytokine profiles in Epstein–Barr virus positive and negative cases of Hodgkin's disease J Pathol 2000 190: 143–149

    Article  CAS  Google Scholar 

  59. Ohshima K, Suzumiya J, Akamatu M, Takeshita M, Kikuch M . Human and viral interleukin-10 in Hodgkin's disease, and its influence on CD4+ and CD8+ T lymphocytes Int J Cancer 1995 62: 5–10

    Article  CAS  Google Scholar 

  60. Boulland ML, Meignin V, Leroy-Viard K, Copie-Bergman C, Briere J, Touitou R, Kanavaros P, Gaulard P . Human interleukin-10 expression in T/natural killer-cell lymphomas. Association with anaplastic large cell lymphomas and nasal natural killer-cell lymphomas Am J Pathol 1998 153: 1229–1237

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the following pathologists for their help in contributing paraffin material: Dr PC de Bruin, Dr N Hofstee, and Dr A Rijlaarsdam. We thank the following hematologists for their help in collecting clinical data: Dr E Balk, Dr J van de Berg, Dr J Mol, Dr SC Riemens, and Dr F De Vries.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

ten Berge, R., Oudejans, J., Dukers, D. et al. Percentage of activated cytotoxic T-lymphocytes in anaplastic large cell lymphoma and Hodgkin's disease: an independent biological prognostic marker. Leukemia 15, 458–464 (2001). https://doi.org/10.1038/sj.leu.2402045

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402045

Keywords

This article is cited by

Search

Quick links