Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Spotlight Review
  • Published:

Review

Using death to one's advantage: HIV modulation of apoptosis

Abstract

Infection by human immunodeficiency virus (HIV) is associated with an early immune dysfunction and progressive destruction of CD4+ T lymphocytes. This progressive disappearance of T cells leads to a lack of immune control of HIV replication and to the development of immune deficiency resulting in the increased occurrence of opportunistic infections associated with acquired immune deficiency syndrome (AIDS). The HIV-induced, premature destruction of lymphocytes is associated with the continuous production of HIV viral proteins that modulate apoptotic pathways. The viral proteins, such as Tat, Env, and Nef, are associated with chronic immune activation and the continuous induction of apoptotic factors. Viral protein expression predisposes lymphocytes, particularly CD4+ T cells, CD8+ T cells, and antigen-presenting cells, to evolve into effectors of apoptosis and as a result, to lead to the destruction of healthy, non-infected T cells. Tat and Nef, along with Vpu, can also protect HIV-infected cells from apoptosis by increasing anti-apoptotic proteins and down-regulating cell surface receptors recognized by immune system cells. This review will discuss the validity of the apoptosis hypothesis in HIV disease and the potential mechanism(s) that HIV proteins perform in the progressive T cell depletion observed in AIDS pathogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. http://www.us.unaids.org. United Nations AIDS Program 1999

  2. Maddon PJ, McDougal JS, Clapham PR, Dalgleish AG, Jamal S, Weiss RA, Axel R . HIV infection does not require endocytosis of its receptor, CD4 Cell 1988 54: 865–874

    Article  CAS  PubMed  Google Scholar 

  3. Ward SG, Bacon K, Westwick J . Immunity 1998 9: 1–11

  4. Ross TM, Bieniasz PD, Cullen BR . Role of chemokine receptors in HIV-1 infection and pathogenesis Adv Vir Res 1999 52: 233–267

    Article  CAS  Google Scholar 

  5. Feng YBC, Kennedy PE, Berger EA . HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor Science 1996 272: 872–877

    Article  CAS  PubMed  Google Scholar 

  6. Deng H, Liu R, Ellmeier W, Choe S, Unutmaz D, Burkhart M, Di Marzio P, Marmon S, Sutton RE, Hill CM, Davis CB, Peiper SC, Schall TJ, Littman DR, Landau NR . Identification of a major co-receptor for primary isolates of HIV-1 Nature 1996 381: 661–666

    Article  CAS  PubMed  Google Scholar 

  7. Choe H, Farzan M, Sun Y, Sullivan N, Rollins B, Ponath PD, Wu L, Mackay CR, LaRosa G, Newman W, Gerard N, Gerard C, Sodroski J . The β-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates Cell 1996 85: 1135–1148

    Article  CAS  PubMed  Google Scholar 

  8. Alkhatib G, Combadiere C, Broder CC, Feng Y, Kennedy PE, Murphy PM, Berger EA . CC CKR5: A RANTES, MIP-1a, MIP-1b receptor as a fusion cofactor for macrophage-tropic HIV-1 Science 1996 272: 1955–1958

    Article  CAS  PubMed  Google Scholar 

  9. Alkhatib G, Ahuja SS, Light D, Mummidi S, Berger EA, Ahuja SK . CC Chemokine receptor 5-mediated signaling and HIV-1 co-receptor activity share common structural determinants J Biol Chem 1997 272: 19771–19776

    Article  CAS  PubMed  Google Scholar 

  10. Hazenberg MD, Hamann D, Schuitemaker H, Miedema F . T cell depletion in HIV-1 infection: how CD4+ T cells go out of stock Nat Immunol 2000 1: 285–289

    Article  CAS  PubMed  Google Scholar 

  11. Alderson M, Tough T, Davis-Smith T, Braddy S, Falk B, Schooley K, Goodwin R, Smith C, Ramsdell F, Lynch D . Fas ligand mediates activation-induced cell death in human T lymphocytes J Exp Med 1995 181: 71–77

    Article  CAS  PubMed  Google Scholar 

  12. Brunner T, Mogiol R, Laface D, Yoo N, Mahboubi A, Echeverri F, Martin S, Force W, Lynch DL, Ware C, Green D . Cell autonomous Fas/Fas ligand interaction mediates activation-induced apoptosis in T-cell hybridomas Nature 1995 373: 441–444

    Article  CAS  PubMed  Google Scholar 

  13. Dhein J, Walczak H, Baumler C, Debatin K, Krammer P . Autocrine T-cell suicide mediated by APO-1 (Fas/CD95) Nature 1995 373: 438–441

    Article  CAS  PubMed  Google Scholar 

  14. Ju S-T, Panka D, Cui H, Ettinger R, el-Khatib M, Sherr D, Stanger B, Marshak-Rothstein A . Fas/FasL interactions required for programmed cell death after T-cell activation Nature 1995 373: 444–448

    Article  CAS  PubMed  Google Scholar 

  15. Estaquirer J, Tanaka M, Suda T, Nagata S, Goldstein P, Amiesen J . Fas-mediated apoptosis of CD4+ and CD8+ T cells from HIV-1 infected persons: differential in vitro preventive effect of cytokines and protease antagonists Blood 1996 87: 4959–4966

    Google Scholar 

  16. Baumler C, Bohler T, Herr I, Benner A, Krammer P, Debatin K . Activation of the CD95 (APO-1/Fas) system in T cells from HIV-1 infected children Blood 1996 88: 1741–1746

    CAS  PubMed  Google Scholar 

  17. Sieg S, Smith D, Yildirim Z, Kaplan D . Fas ligand deficiency in HIV disease Proc Natl Acad Sci USA 1997 94: 5860–5865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gehri R, Hahn S, Rothen M, Steuerwald M, Nuesch R, Erb P . The Fas receptor in HIV infection: expression of peripheral blood lymphocytes and role in the depletion of T cells AIDS 1996 10: 9–16

    Article  CAS  PubMed  Google Scholar 

  19. Badley A, Meclbinny J, Leibson P, Lynch D, Alderson M, Paya C . Upregulation of Fas ligand expression by HIV in human macrophages mediates apoptosis of uninfected T lymphocytes J Virol 1996 70: 199–206

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Katsikis PD, Garcia-Ojeda ME, Terres-Roca JF, Tijoe IM, Smith CA, Herzenberg LA, Herzenberg LA . Interleukin-1B converting enzyme-like protease involvement in Fas-induced and activation indiced peripheral blood T cell aopotosis in HIV-1 infection. TNF-related apoptosis-inducing ligand can mediate activation-induced T cell death in HIV-1 infection J Exp Med 1997 186: 1365–1372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Katsikis PD, Garcia-Ojeda ME, Wunderlich ES, Smith C, Yagita H, Okumura K, Kayagaki N, Alderson M, Herzenberg LA, Herzenberg LA . Activation-induced poeripheral blood T cell apoptosis is Fas independent in HIV-1 infected individuals Int Immunol 1996 8: 1311–1317

    Article  CAS  PubMed  Google Scholar 

  22. Ameisen JC . Setting death in motion Nature 1998 395: 117–119

    Article  CAS  PubMed  Google Scholar 

  23. Terai C, Kornbluth RS, Panza CD, Richman DD, Carson DA . Apoptosis as a mechanism of cell death in culture T lymphoblasts acutely infected with HIV-1 J Clin Invest 1991 87: 1710–1715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rapaport E, Casella CR, Ikle D, Mustafa F, Isaak D, Finkel TH . Mapping of HIV-1 determinants of apoptosis in infected T cells Virology 1998 252: 407–417

    Article  CAS  PubMed  Google Scholar 

  25. Laurent-Crawford AG, Krust B, Muller S, Riviere Y, Rey-Cuille MA, Bechet J-M, Montagnier L, Hovanessian AG . The cytopathic effect of HIV is associated with apoptosis Virology 1991 185: 829–839

    Article  CAS  PubMed  Google Scholar 

  26. Ameisen JC, Capron A . Cell dysfunction and depletion in AIDS: the programmed cell death hypothesis Immunol Today 1991 12: 71–77

    Article  Google Scholar 

  27. Wyllie AH, Arends MJ, Morris RG, Walker SW, Evan G . The apoptosis endonuclease and its regulation Semin Immunol 1992 4: 389–397

    CAS  PubMed  Google Scholar 

  28. Miller DK . The role of the caspase family of cysteine proteases in apoptosis Semin Immunol 1997 9: 982–988

    Article  Google Scholar 

  29. Cryns V, Yuan J . The cutting edge: caspases in apoptosis and disease. In: Zakeri Z, Lockshin R (eds) When Cells Die: a Comprehensive Evaluation of Apoptosis and Programmed Cell Death Vol. 1: John Wiley: New York 1998 pp 177–210

    Google Scholar 

  30. Cryns V, Yuan J . Proteases to die for Genes Dev 1998 12: 1551–1570

    Article  CAS  PubMed  Google Scholar 

  31. Allen RT, Cluck MW, Agrawal DK . Mechanisms controlling cellular suicide: role of Bcl-2 and caspases Cell Mol Life Sci 1998 54: 427–445

    Article  CAS  PubMed  Google Scholar 

  32. Wilson KP, Black J-AF, Thompson JA, Kim EE, Griffith JP, Navia MA, Murcko MA, Chambers SP, Aldape RA, Raybuck SA, Livingston DJ . Structure and mechanisms of inteluekin-1b converting enzyme Nature 1994 370: 270–275

    Article  CAS  PubMed  Google Scholar 

  33. Black RA, Kronheim SR, Merriam JF, March CJ, Hopp TP . A pre-aspartate specific protease from human leukocytes that cleaves pro-interleukin-1b J Biol Chem 1989 264: 5323–5326

    CAS  PubMed  Google Scholar 

  34. Wang S, Miurya M, Zhu Y-K, Li E, Yuan J . Murine caspase-11, and ICE-interacting protease, is essential for the activation of ICE Cell 1998 92: 501–509

    Article  CAS  PubMed  Google Scholar 

  35. Alnemri ES, Livingston DJ, Nicholson DW, Salveseri G, Thornberry NA, Wong WW, Yuan J . Human ICE/CED-3 protease nomenclature Cell 1996 87: 171

    Article  CAS  PubMed  Google Scholar 

  36. Croal DE, DeMartino GN . Calcium-activated neutral protease (calpain) system: structure, function, and regulation Physiol Rev 1991 71: 813–847

    Article  Google Scholar 

  37. Teodoro JG, Branton PE . Regulation of apoptosis by viral gene products J Virol 1997 71: 1739–1746

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Chinnaiyan AM, Hanna WL, Orth K, Duan H, Poirier GG, Froelich CJ, Dixit VM . Cytotoxic T cell derived granzyme B activate the apoptosis protease ICE-LAP3 Curr Biol 1996 6: 897–899

    Article  CAS  PubMed  Google Scholar 

  39. Darmon AJ, Nicholson DW, Bleackley RC . Activation of the apoptotic protease CPP32 by cytotoxic T-cell derived granzyme B Nature 1995 377: 446–448

    Article  CAS  PubMed  Google Scholar 

  40. Quan LT, Tewari M, O'Rouke K, Dixit V, Smipas SJ, Poirier GG, Ray C, Pickup DJ, Salvesen GS . Proteolytic activation of the cell death protease Yama/CPP32 by granzyme B Proc Natl Acad Sci USA 1996 93: 1972–1976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hacker G, Vaux DL . A sticky business. Apoptosis Curr Biol 1995 5: 622–624

    Article  CAS  PubMed  Google Scholar 

  42. Kelekar A, Thompson CB . Bcl-2 family proteins: the role of the BH3 domain in apoptosis Trends Cell Biol 1998 8: 324–330

    Article  CAS  PubMed  Google Scholar 

  43. Conradt B, Horvitz HR . C. Elegans protein EGL-1 is required for programmed cell death and interacts with the Bcl-2 like protein CED-9 Cell 1998 93: 519–529

    Article  CAS  PubMed  Google Scholar 

  44. Adams JM, Cory S . The Bcl-2 protein family; arbiters of cell survival Science 1988 281: 1322–1326

    Article  Google Scholar 

  45. Reed JC, Zha H, Aime-Sempe C, Takayama S, Wang HG . Structure-function analysis of Bcl-2 family protein: regulators of programmed cell death Adv Exp Med Biol 1996 406: 99–112

    Article  CAS  PubMed  Google Scholar 

  46. Hengartner MG, Horvitz HR . C. elegans cell survival gene ced-9 encodes a functional homologue of the mammalian proto-oncogene bcl-2 Cell 1994 67: 665–676

    Article  Google Scholar 

  47. Pan G, O'Rourke K, Dixit VM . Caspase-9, Bcl-x, and Apaf-1 form a ternary complex J Biol Chem 1998 273: 5841–5845

    Article  CAS  PubMed  Google Scholar 

  48. Hu Y, Benedict MA, Wu D, Inohara N, Nunez G . Bcl-SL interacts with Apaf-1 and inhibits Apaf-1 dependent caspase-9 activation Proc Natl Acad Sci USA 1988 95: 4386–4391

    Article  Google Scholar 

  49. Ray CA, Black RA, Kronheim SR, Greenstreet TA, Sleath RR, Salvesen GS, Pickup DJ . Viral inhibition of inflammation: cowpox virus encodes an inhibitor of the inteleukin-1b-convertng enzyme Cell 1992 69: 597–604

    Article  CAS  PubMed  Google Scholar 

  50. Clem RJ, Miller LK . Control of programmed cell death by the baculovirus genes p35 and Iap Mol Cell Biol 1994 14: 5212–5222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bertin J, Mendrysa JM, LaCount DJ, Gaur S, Krebs IF, Armstrong RC, Tomaselli KJ, Friesen PD . Apoptotic suppression by baculovirus p35 involves cleavage by and inhibition of a virus-induced CED-3/ICE-like protease J Virol 1996 70: 6251–6259

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Xue D, Horvitz HR . Inhibition of the Caenorhabditis elegans cell death protease CED-3 by a CED-3 cleavage site in baculovirus p35 protein Nature 1995 377: 248–251

    Article  CAS  PubMed  Google Scholar 

  53. Kolensnitchenko V, King L, Rivo A, Tani Y, Korsmeyer SJ, Cohen DI . A major human immunodeficiency virus type 1-initiated killing pathway distinct from apoptosis J Virol 1997 71: 9253–9263

    Google Scholar 

  54. Sandstrom PA, Pardi D, Goldsmith CS, Chengying D, Diamond AM, Folks TM . bc1–2 expression facilitates human immunodeficiency virus type-1 mediated cytopathic effects during acute spreading infections J Virol 1996 70: 4617–4622

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Finkel TH, Tudor-Williams G, Banda NK, Cotten MF, Curiel T, Monks C, Baba TW, Ruprecht RM, Kupfer A . Apoptosis occurs predominately in bystander cells and not unproductively infected cells on HIV and SIV-infected lymphocytes Nature Med 1995 1: 129–134

    Article  CAS  PubMed  Google Scholar 

  56. Meyaard L, Otto SA, Keet IPM, Roughs MRL, Meiden F . Programmed cell death of T cells in human immunodeficiency virus infection, no correlation with progression to disease J Clin Invest 1994 93: 982–988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jones KA . Tat and the HIV-1 promoter Curr Opin Cell Biol 1993 5: 461–468

    Article  CAS  PubMed  Google Scholar 

  58. Cullen BR . Human immunodeficiency virus as a prototypic complex retrovirus J Virol 1991 65: 1053–1056

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Zagury D, Lachgar A, Chams V, Fall LS, Bernard J, Zagury J-F, Bizzini B, Gringeri A, Santagositno E, Rappaport J, Feldman M, Burny A, Gallo RC . Interferon α and Tat involvement in the immunosuppression of uninfected T cells and C-C chemokine decline in AIDS Proc Natl Acad Sci USA 1998 95: 3851–3856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ensoli B, Bounaguro L, Barillari G, Fiorelli V, Gendelman R, Morgan RA, Wingfeild P, Gallo RC . Release, uptake, and effects of extracellular HIV-1 Tat protein on cell growth and viral transactivation J Virol 1993 67: 277–287

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Chirmule N, Kahn S, Than S, Phawa S . HIV tat induces functional unresponsiveness in T cells J Virol 1995 69: 492–498

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Westendorp M, Shatrov V, Schulze-Osthoff K, Frank R, Kraft M, Los M, Krammer P, Droge W, Lehmann V . HIV-1 tat potentiates TNF-induced NF-kB activation and cytotoxicity by altering the cellular redox state EMBO J 1995 14: 546–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Viscidi RP, Mayu K, Lederman HM, Frankel AD . Inhibition of antigen-specific lymphocyte proliferation by tat protein of HIV-1 Science 1989 246: 1606–1608

    Article  CAS  PubMed  Google Scholar 

  64. Li DJ, Friedman DJ, Wang C, Metelev V, Pardee AB . Induction of apoptosis in uninfected lymphocytes by HIV-1 Tat protein Science 1995 268: 429–431

    Article  CAS  PubMed  Google Scholar 

  65. Purvis SF, Jacobberger JW, Sramkoski RM, Patki AH, Lederman MM . HIV-1 tat protein induces apoptosis and death in Jurkat T-cells AIDS Res Hum Retroviruses 1995 11: 443–450

    Article  CAS  PubMed  Google Scholar 

  66. Ho D, Neumann AU, Perlson AS, Chen W, Leonard JM, Markovitz M . Rapid turnover of plasma visions and CD4 lymphocytes in HIV-1 infection Nature 1995 373: 123–126

    Article  CAS  PubMed  Google Scholar 

  67. Guntheil WMS, Flentke GR, Sanford DG, Munoz E, Huber BT, Bachovchin WW . HIV-1 Tat binds to dipeptidyl aminopeptidase IV (CD26): a possible mechanism for Tat's immunosuppressive activity Proc Natl Acad Sci USA 1994 91: 6594–6598

    Article  Google Scholar 

  68. Shasty K, Marin MC, Nehete PN, McConnel K, El-Naggar AK, McDonnell TJ . Expression of HIV-1 tat results in down-regulation of bcl-2 and induction of apoptosis in hematopoietic cells Oncogene 1996 13: 487–493

    Google Scholar 

  69. Zauli G, Previati M, Caramelli E, Bassinin A, Falcieri E, Givellini D, Berolaso L, Bosco D, Robot L, Capitani S . Exogenous HIV-1 Tat protein selectively stimulates a phosphoinositide-specific phospholipase C nuclear pathway in the Jurkat T cell line Eur J Immunol 1995 25: 2695–2700

    Article  CAS  PubMed  Google Scholar 

  70. Reinhold D, Wrenger S, Bank U, Buhling F, Hoffmann T, Neubert K, Kraft M, Frank R, Ansorge S . CD26 mediates the action of HIV-1 Tat protein on DNA synthesis and cytokine production in U937 cells Immunobiology 1996 195: 119–128

    Article  CAS  PubMed  Google Scholar 

  71. Wang Z, Morris GF, Reed JC, Kelly GD, Morris CB . Activation of Bcl-2 promoter-directed gene expression by the human immunodeficiency virus type-1 Tat protein Virology 1999 257: 502–510

    Article  CAS  PubMed  Google Scholar 

  72. Zagury JF, Chams V, Lachgar A, Caragno M, Rappaport J, Bizzini B, Burny A . Cell Pharmacol AIDS Sci 1996 3: 123–128

  73. Zagury D . A naturally unbalanced combat Nature Med 1997 3: 156–157

    Article  CAS  PubMed  Google Scholar 

  74. Wu MX, Scholossman SF . Decreased ability of HIV-1 Tat protein-treated accessory cells to organize cellular clusters is associated with partial activation of T cells Proc Natl Acad Sci USA 1997 94: 13832–13837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Cafaro A, Caputo A, Fracasso C, Maggiorella MT, Goletti D, Baroncelli S, Pace M, Sernicola L, Koanga-Mogtomo ML, Betti M, Borsetti A, Belli R, Akerblom L, Corrias F, Butto S, Heeney J, Verani P, Titti F, Ensoli B . Control of SHIV-89.6P-infection of cynomolgus monkeys by HIV-1 Tat protein vaccine Nature Med 1999 5: 643–650

    Article  CAS  PubMed  Google Scholar 

  76. Osterhaus AD, van Baalen CA, Gruters RA, Shcutten M, Siebelink CH, Hulskotte E, Tijhaar EJ, Randall RE, van Amerongen G, Fluechause A . Vaccination with Rev and Tat against AIDS Vaccine 1999 17: 2713–2714

    Article  CAS  PubMed  Google Scholar 

  77. Robinson HL, Montefiori DC, Johnson RP, Manson KH, Kalish ML, Lifson JD, Rizvi TA, Lu S, Hu S-L, Mazzara GP, Panicali DL, Herndon JG, Glickman R, Candido MA, Lydy SL, Wyand MS, McClure HM . Immunodeficiency virus vaccine: neutralizing antibody-independent containment of serial challenges by subunit immunization Nature Med 1999 5: 526–534

    Article  CAS  PubMed  Google Scholar 

  78. Gundlach BR, Lewis MG, Sopper S, Schnell T, Sodroski J, Stahl-Hennig C, Uberla K . Related evidence for recombination of live, attenuated immunodeficiency virus vaccine with challenge virus to a more virulent strain J Virol 2000 74: 3537–3542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sawai ET, Hamza MS, Ye M, Shaw KE, Luciw PA . Pathogenic conversion of live attenuated simian immunodeficiency virus vaccines is associated with expression of truncated Nef J Virol 2000 74: 2038–2045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ui M, Kuwata T, Igarashi T, Miyazaki Y, Tamaru K, Shimada T, Nakamura M, Uesaka H, Yamamoto H, Hayami M . Protective immunity of gene-deleted SHIVs having an HIV-1 Env against challenge infection with a gene-intact SHIV J Med Primatol 1999 28: 242–248

    Article  CAS  PubMed  Google Scholar 

  81. Nixon DF, Donahoe SM, Kakimoto WM, Samuel RV, Metzner KJ, Gettie A, Hanke T, Marx PA, Connor RI . Simian immunodeficiency virus-specific cytotoxic T lymphocytes and protection against challenge in rhesus macaques immunized with a live attenuated simian immunodeficiency virus vaccine Virology 2000 266: 203–210

    Article  CAS  PubMed  Google Scholar 

  82. Gauduin MC, Glickman RL, Ahmad S, Yilma T, Johnson RP . Immunization with live attenuated simian immunodeficiency virus induces strong type 1 T helper responses and beta-chemokine production Proc Natl Acad Sci USA 1999 96: 14031–14036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wyand MS, Manson K, Montefiori DC, Lifson JD, Johnson RP, Desrosiers RC . Protection by live, attenuated simian immunodeficiency virus against heterologous challenge J Virol 1999 73: 8356–8363

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Kraiselburd EN, Torres JV . Properties of virus-like particles produced by SIV-chronically infected human cell clones Cell Mol Biol 1995 41: (Suppl. 1) S41–52

    CAS  PubMed  Google Scholar 

  85. Cicala C, Arthos J, Rubbert A, Selig S, Wildt K, Cohen OJ, Fauci AS . HIV-1 envelope induces activation of caspase-3 and cleavage of focal adhesion kinase in primary human CD4(+) T cells Proc Natl Acad Sci USA 2000 97: 1178–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Cohen SS, Li C, Ding L, Cao Y, Pardee AB, Shevach EM, Cohen DI . Pronounced acute immunosuppression in vivo mediated by HIV Tat challenge Proc Natl Acad Sci USA 1999 96: 10842–10847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Cohen EA, Terwilliger EF, Jalinoos Y, Proulx J, Sodroski JG, Haseltine WA . Identification of HIV-1 Vpr product and function J Acquir Immune Defic Syndr 1990 1: 11–18

    Google Scholar 

  88. Ogawa K, Shibata R, Kiyomasu T, Higuchi I, Kishida Y, Ishimoto A, Adachi A . Mutational analysis of the human immunodeficiency virus vpr open reading frame J Virol 1989 63: 4110–4114

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Balliet JW, Kolson DL, Eiger G, Kim FM, McGann KA, Srinivasan A, Collman R . Distinct effects in primary macrophages and lymphocytes of the human immunodeficiency virus type 1 accessory genes vpr, vpu, and nef: mutational analysis of a primary HIV-1 isolate Virology 1994 200: 623–631

    Article  CAS  PubMed  Google Scholar 

  90. Lu YL, Bennett RP, Wills JW, Gorelick R, Ratner L . A leucine triplet repeat sequence (LXX)4 in p6gag is important for vpr incorporation into human immunodeficiency virus type 1 particles J Virol 1995 69: 6873–6879

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Mahalingam S, MacDonald B, Ugen KE, Ayyavoo V, Agadjanyan MG, Williams WV, Weiner DB . In vitro and in vivo tumor growth suppression by HIV-1 Vpr DNA Cell Biol 1997 16: 137–143

    Article  CAS  PubMed  Google Scholar 

  92. Yao X-J, Subbramanian RA, Rougeau N, Boisvert F . Bergeron D, Cohen EA. Mutagenic analysis of human immunodeficiency virus type 1 Vpr: role of a predicted N-terminal alpha-helical structure in vpr nuclear localization and virion incorporation J Virol 1995 69: 7032–7044

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Paxton W, Connor RI, Landau NR . Incorporation of Vpr into human immunodeficiency virus type I virions: requirement for the p6 region of gag and mutational analysis J Virol 1993 67: 7229–7237

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Vodicka MA, Koepp DM, Silver PA, Emerman M . HIV-1 Vpr interacts with the nuclear transport pathway to promote macrophage infection Genes Dev 1998 12: 175–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Gallay P, Hope T, Chin D, Trono D . HIV-1 infection of nondividing cells throughout the recognition of integrase by the importin/karyopherin pathway Proc Natl Acad Sci USA 1997 94: 9825–9830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. DiMarzio, P, Choe S, Ebright M, Knoblacuh R, Landau NR . Mutational analysis of cell cycle arrest, nuclear localization, and virion packaging of human immunodeficiency virus type 1 Vpr J Virol 1995 69: 7909–7916

    CAS  Google Scholar 

  97. Heinzinger NK, Bukrinsky MI, Haggerty SA, Ragland AM, Kewalramani V, Lee M-A, Gendelman HE, Ratner L, Stevenson M, Emerman M . The Vpr protein of human immunodeficiency virus type 1 influences nuclear localization of viral nucleic acids in nondividing host cells Proc Natl Acad Sci USA 1994 91: 7311–7315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wang L, Mukherjee S, Jia F, Narayan O, Zhao LJ . Interaction of virion protein Vpr of human immunodeficiency virus type 1 with cellular transcription factor Sp1 and trans-activation of viral long terminal repeat J Biol Chem 1995 270: 25564–25569

    Article  CAS  PubMed  Google Scholar 

  99. Connor RI, Chen BK, Choe S, Landau NR . 1995; Vpr is required for efficient replication of human immunodeficiency virus type-1 in mononuclear phagocytes Virology 1995 206: 935–944

    Article  CAS  PubMed  Google Scholar 

  100. Agostini I, Navarro JM, Rey F, Bouhamdan M, Spire B, Vigne R, Sire J . The human immunodeficiency virus type 1 Vpr transactivator: cooperation with promoter-bound activator domains and binding to TFIIB J Mol Biol 1996 261: 599–606

    Article  CAS  PubMed  Google Scholar 

  101. Stivahtis GL, Soares MA, Vodicka MA, Hahn BH, Emerman M . Conservation and host specificity of Vpr-mediated cell cycle arrest suggest a fundamental role in primate lentivirus evolution and biology J Virol 1997 71: 4331–4338

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Re F, Braaten D, Franke EK, Luban J . Human immunodeficiency virus type 1 Vpr arrests the cell cycle in G2 by inhibiting the activation of p34cdc2-cyclin B J Virol 1995 69: 6859–6864

    CAS  PubMed  PubMed Central  Google Scholar 

  103. He J, Choe S, Walker R, Di Marzio P, Morgan DO, Landau NR . Human immunodeficiency virus type 1 viral protein R (Vpr) arrests cells in the G2 phase of the cell cycle by inhibiting p34cdc2 activity J Virol 1995 69: 6705–6711

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Bartz SR, Rogel ME, Emerman M . Human immunodeficiency virus type 1 cell cycle control: Vpr is cytostatic and mediates G2 accumulation by a mechanism which differs from DNA damage checkpoint control J Virol 1996 70: 2324–2331

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Hattori N, Michaels F, Fargnoli K, Marcon L, Gallo RC, Franchini G . The human immunodeficiency virus type 2 vpr gene is essential for productive infection of human macrophages Proc Natl Acad Sci USA 1990 87: 8080–8084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Stewart SA, Poon B, Jowett JBM, Chen IS . Human immunodeficiency virus type 1 Vpr induces apoptosis following cell cycle arrest J Virol 1997 71: 5579–5592

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Jowett JBM, Planeles V, Poon B, Shah NP, Chen ML, Chen ISY . The human immunodeficiency virus type 1 vpr gene arrests infected T-cells in the G2+M phase of the cell cycle J Virol 1995 69: 6304–6313

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Levy DN, Fernandes LS, Williams WV, Weiner DB . Induction of cell differentiation by human immunodeficiency virus 1 vpr Cell 1993 72: 541–550

    Article  CAS  PubMed  Google Scholar 

  109. Rogel ME, Wu LI, Emerman M . The human immunodeficiency virus type 1 vpr gene prevents cell proliferation during chronic infection J Virol 1995 69: 882–888

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Mansky LM, Preveral S, Selig L, Benarous R, Benichou S . The interaction of vpr with uracil DNA glycosylase modulates the human immunodeficiency virus type 1 in vivo mutation rate J Virol 2000 74: 7039–7047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Selig L, Benichou S, Rogel ME, Wu LI, Vodicka MA, Sire J, Benarous R, Emerman M . Uracil DNA glycosylase specifically interacts with Vpr of both human immunodeficiency virus type 1 and simian immunodeficiency virus of sooty mangabeys, but binding does not correlate with cell cycle arrest J Virol 1997 71: 4842–4846

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Bouhamdan M, Benichou S, Rey F, Navarro JM, Agostini I, Spire B, Camonis J, Slupphaug G, Vigne R, Benarous R, Sire J . Human immunodeficiency virus type 1 Vpr protein binds to the uracil DNA glycosylase DNA repair enzyme J Virol 1996 70: 697–704

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Cocchi F, DeVico AL, Garzino-Demo A, Arya SK, Gallo RC, Lusso P . Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells Science 1995 270: 1811–1815

    Article  CAS  PubMed  Google Scholar 

  114. Savill J . Apoptosis. Phagocytic docking without shocking Nature 1998 392: 442–443

    Article  CAS  PubMed  Google Scholar 

  115. Kinter A, Catanzaro A, Monaco J, Ruiz M, Justement J, Moir S, Arthos J, Oliva A, Ehler L, Mizell S, Jackson R, Ostrowski M, Hoxie J, Offord R, Fauci AS . CC-chemokines enhance the replication of T-tropic strains of HIV-1 in CD4+ T cells: role of signal transduction Proc Natl Acad Sci USA 1998 95: 11880–11885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Herbein G, Mahlknecht U, Batliwalla F, Gregersen P, Pappas T, Butler J, O'Brien WA, Verdin E . Apoptosis of CD8+ T cells is mediated by macrophages through interaction of HIV gp120 with chemokine receptor CXCR4 Nature 1998 10: 189–194

    Article  CAS  Google Scholar 

  117. Herbein G, Van Lint C, Lovett JL, Verdin E . Distinct mechanisms trigger apoptosis in human immunodeficiency virus type 1-infected and in uninfected bystander T lymphocytes J Virol 1998 72: 660–670

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Hesselgesser J, Taub D, Baskar P, Greenberg M, Hoxie J, Kolson DL, Horuk R . Neuronal apoptosis induced by HIV-1 gp120 and the chemokine SDF-1 alpha is mediated by the chemokine receptor CXCR4 Curr Biol 1998 8: 595–598

    Article  CAS  PubMed  Google Scholar 

  119. Algeciras A, Cockrell D, Lynch D, Paya C . CD4 regulates susceptibility to Fas ligand- and tumor necrosis factor-mediated apoptosis J Exp Med 1998 187: 711–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Zheng L, Fisher G, Miller RE, Peschon J, Lynch DH, Lenardo MJ . Induction of apoptosis in mature T cells by tumour necrosis factor Nature 1995 377: 348–351

    Article  CAS  PubMed  Google Scholar 

  121. Rosok JE . Correlates of apoptosis of CD4+ and CD8+ T cells in tonsillar tissue in HIV type 1 infection AIDS Res Human Retro 1998 14: 1635–1643

    Article  CAS  Google Scholar 

  122. Cicala C, Arthos J, Ruiz M, Vaccarezza M, Rubbert A, Riva A, Wildt K, Cohen O, Fauci AS . Induction of phosphorylation and intracellular association of CC chemokine receptor 5 and focal adhesion kinase in primary human CD4+ T cells by macrophage-tropic HIV envelope J Immunol 1999 163: 420–426

    CAS  PubMed  Google Scholar 

  123. Collins KL, Chen BK, Kalams SA, Walker BD, Baltimore D . HIV-1 Nef protein protects infected primary cells against killing by cytotoxic T-lymphocytes Nature 1998 391: 397–401

    Article  CAS  PubMed  Google Scholar 

  124. Lu X, Yu H, Liu S, Brodsky FM, Peterlin M . Interactions between HIV-1 Nef and vascular ATPase facilitate the internalization of CD4 Immunity 1998 8: 647–656

    Article  CAS  PubMed  Google Scholar 

  125. Lama J, Mangasarian A, Trono D . Cell-surface expression of CD4 reduces HIV-1 infectivity by blocking Env incorporation in a Nef- and Vpu-inhibitable manner Cur Biol 1999 9: 622–631

    Article  CAS  Google Scholar 

  126. Ross TM, Oran AE, Cullen BR . Inhibition of HIV-1 progeny virion release by cell-surface CD4 is relieved by expression of the viral Nef protein Curr Biol 1999 9: 613–621

    Article  CAS  PubMed  Google Scholar 

  127. Aiken C, Konner J, Landau NR, Lenburg ME, Trono D . Nef induces CD4 endocytosis: requirement for a critical dileucine motif in the membrane-proxmial CD4 cytoplasmic domain Cell 1994 76: 853–864

    Article  CAS  PubMed  Google Scholar 

  128. Alexander L, Du Z, Rosenzweig M, Jung JU, Desrosiers RC . A role for natural simian immunodeficiency virus and human immunodeficiency virus type 1 nef alleles in lymphocyte activation J Virol 1997 71: 6094–6099

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Hua J, Blair W, Truant R, Cullen BR . Identification of regions in HIV-1 Nef required for efficient downregulation of cell surface CD4 Virology 1997 231: 231–238

    Article  CAS  PubMed  Google Scholar 

  130. Garcia JV, Miller AD . Serine phosphorylation-independent downregulation of cell-surface CD4 by Nef Nature 1991 350: 1561–1568

    Article  Google Scholar 

  131. Murphy KM, Sweet RT, Ross IL, Hume DA . Effects of the tat and nef gene products of human immunodeficiency virus type 1 (HIV-1) on transcription controlled by the HIV-1 LTR and on cell growth in macrophages J Virol 1993 67: 6959–6964

    Google Scholar 

  132. Baur AS, Sawai ET, Dazin P, Fantl WJ, Cheng-Mayer C . HIV-1 Nef leads to inhibition or activation of T cells depending on its intracellular localization Immunity 1994 1: 373–384

    Article  CAS  PubMed  Google Scholar 

  133. Okada H, Morikawa S, Tashiro M . HIV-1 Nef binding protein expressed on the surface of murine blood cells Med Microbiol Immunol 1998 186: 201–207

    Article  CAS  PubMed  Google Scholar 

  134. Xu X-N, Laffert B, Screaton GR, Kraft M, Wolf D, Kolanus W, Mongkolsapay J, McMichael AJ, Baur AS . Induction of Fas ligand expression by HIV involves the interaction of Nef with T cell receptor z chain J Exp Med 1999 189: 1489–1496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Hodge S, Novembre FJ, Whetter L, Gelbard HA, Dewhurst S . Induction of fas ligand expression by an acutely lethal simian immunodeficiency virus, SIVsmmPBj14 Virology 1998 252: 354–363

    Article  CAS  PubMed  Google Scholar 

  136. Collette Y, Duartre H, Benziane A, Ramosmorales F, Benarous R, Harris M, Olive D . Physical and functional interaction of Nef with lck-HIV-1 Nef-induced T-cell signaling defects J Biol Chem 1996 271: 6333–6341

    Article  CAS  PubMed  Google Scholar 

  137. Greeway A, Azad A, McPhee D . Human immunodeficiency virus type 1 Nef protein inhibits activation pathways in peripheral blood mononuclear cells and T-cell lines J Virol 1995 69: 1842–1850

    Google Scholar 

  138. Sawai ET, Baur A, Struble H, Peterlin BM, Levy JA, Cheng-Mayer C . Human immunodeficiency virus type 1 Nef associates with cellular serine kinase in T lymphocytes Proc Natl Acad Sci USA 1994 91: 1539–1543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Anel A, Buferne M, Boyer C, Schitt VA, Golstein P . T cell receptor-induced Fas ligand expression in cytotoxic T lymphocyte clones is blocked by protein tyrosine kinase inhibitors and cyclosporin A Eur J Immunol 1994 24: 2469–2474

    Article  CAS  PubMed  Google Scholar 

  140. Hodge DR, Dunn KJ, Pei GK, Chakrabarty MK, Heidecker G, Lautenberger JA, Samuel KP . Binding of c-Raf1 kinase to a conserved acidic sequence within the carboxyl-terminal region of the HIV-1 Nef protein J Biol Chem 1998 273: 15727–15733

    Article  CAS  PubMed  Google Scholar 

  141. Van AL, D'Souza SC . Rho GTPases and signaling networks Genes Dev 1997 11: 2295–2322

    Article  Google Scholar 

  142. Margottin F, Bour SP, Durand H, Selig L, Benichou S, Richard V . A novel human WD protein, hBrCP, that interact with HIV-1 Vpu connects CD4 to the ER degradation pathway throughout an F-box motif Mol Cell 1998 1: 565–574

    Article  CAS  PubMed  Google Scholar 

  143. Bour S, Strebel K . The human immunodeficiency virus (HIV) type 2 envelope protein is a functional complement to HIV type 1 Vpu that enhances particle release of heterologous retroviruses J Virol 1996 70: 8285–8300

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Strebel K, Kimball T, Maldarelli F, Martin MA . A novel gene of HIV-1 vpu, and its 16 kilodalton product Science 1988 241: 1221–1223

    Article  CAS  PubMed  Google Scholar 

  145. Edwart GD, Sutherland T, Gage PW, Cox GB . The Vpu protein of human immunodeficiency virus type 1 forms ion cation-selective ion channels J Virol 1996 70: 7108–7115

    Google Scholar 

  146. Schubert U, Ferer-Montiel AV, Oblatt-Montal M, Henklien P, Strebel K, Montal M . Identification of an ion channel activity of the Vpu transmembrane domain and its involvement in the regulation of virus release from HIV-1 infected cells FEBS Lett 1996 398: 12–18

    Article  CAS  PubMed  Google Scholar 

  147. Bortner CD, Hughers FM, Cidlowski JA . A primary role for K+ and Na+ efflux in the activation of apoptosis J Biol Chem 1997 272: 32436–32442

    Article  CAS  PubMed  Google Scholar 

  148. D'Mello SR, Aglieco R, Roberts MR, Brodezt K, Haycock JW . A DEVD-inhibited caspase other than CPP32 is involved in the commitment of cerebellar granule neurons to apoptosis induced by K+ deprivation J Neurosci 1998 70: 1809–1818

    CAS  Google Scholar 

  149. Szabo I, Bulbins E, Apfel H, Zhang X, Barth P, Busch AE, Schlottman K, Pongs O, Lang F . Tyrosine phosphorylation-dependent suppression of a voltage-gated K+ channel in T-lymphocytes upon Fas stimulation J Biol Chem 1996 271: 20465–20469

    Article  CAS  PubMed  Google Scholar 

  150. Minn AJ, Velez SL, Schendel SL, Linag H, Muchmore SW, Feisk SW, Fill M, Thmposon CB . Bcl-XL forms an ion channel in synthetic lipid membranes Nature 1997 385: 353–357

    Article  CAS  PubMed  Google Scholar 

  151. Schendel S, Xie Z, Montal MO, Matsuyman S, Montal M, Reed JC . Channel formation by antiapoptotic protein Bcl-2 Proc Natl Acad Sci USA 1997 94: 5113–5118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Antonasson R, Conti F, Clavatta A, Montessuit S, Lewis S, Marinou I, Barnasconi I, Bernard A, Mermod J-J, Mazzei G, Maundrell K, Gambale F, Sadoui R, Martinou J-C . Inhibition of Bax channel-forming activity by Bcl-2 Science 1997 277: 370–372

    Article  Google Scholar 

  153. Stephens EB, Mukherjee S, Sahni M, Zhuge W, Raghavan R, Singh DK, Leung K, Atkinson B, Li A, Joag SV, Liu ZQ, Narayan O . A cell-free stock of simian-human immunodeficiency virus that causes AIDS in pig-tailed macaques has limited number of amino acid substitutions in both SIVmac and HIV-1 regions of the genome and has altered cytotropism Virology 1997 231: 313–321

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported in part by a grant (R21 AI44325) to TMR from the National Institute of Allergy and Infectious Diseases. I thank Jim Smith and Stephanie Oberhaus for helpful discussion and insightful comments.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ross, T. Using death to one's advantage: HIV modulation of apoptosis. Leukemia 15, 332–341 (2001). https://doi.org/10.1038/sj.leu.2402028

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402028

Keywords

This article is cited by

Search

Quick links