Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

NUP98 gene fusions in hematologic malignancies

Abstract

Acute leukemia is associated with a wide spectrum of recurrent, non-random chromosomal translocations. Molecular analysis of the genes involved in these translocations has led to a better understanding of both the causes of chromosomal rearrangements as well as the mechanisms of leukemic transformation. Recently, a number of laboratories have cloned translocations involving the NUP98 gene on chromosome 11p15.5, from patients with acute myelogenous leukemia (AML), myelodysplastic syndrome (MDS), chronic myelogenous leukemia (CML), and T cell acute lymphoblastic leukemia (T-ALL). To date, at least eight different chromosomal rearrangements involving NUP98 have been identified. The resultant chimeric transcripts encode fusion proteins that juxtapose the N-terminal GLFG repeats of NUP98 to the C-terminus of the partner gene. Of note, several of these translocations have been found in patients with therapy-related acute myelogenous leukemia (t-AML) or myelodysplastic syndrome (t-MDS), suggesting that genotoxic chemotherapeutic agents may play an important role in generating chromosomal rearrangements involving NUP98.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Rabbitts TH . Translocations, master genes, and differences between the origins of acute and chronic leukemias Cell 1991 67: 641–644

    CAS  PubMed  Google Scholar 

  2. Rabbitts TH . Chromosomal translocations in human cancer Nature 1994 372: 143–149

    Article  CAS  PubMed  Google Scholar 

  3. Cline MJ . The molecular basis of leukemia N Engl J Med 1994 330: 328–336

    CAS  PubMed  Google Scholar 

  4. Thandla S, Aplan PD . Molecular biology of acute lymphocytic leukemia Semin Oncol 1997 24: 45–56

    CAS  PubMed  Google Scholar 

  5. Look AT . Oncogenic transcription factors in the human acute leukemias Science 1997 278: 1059–1064

    CAS  PubMed  Google Scholar 

  6. Rowley JD . The critical role of chromosome translocations in human leukemias Annu Rev Genet 1998 32: 495–519

    CAS  PubMed  Google Scholar 

  7. Tomiyasu T, Sasaki M, Kondo K, Okada M . Chromosome banding studies in 106 cases of chronic myelogenous leukemia Jinrui Idengaku Zasshi 1982 27: 243–258

    CAS  PubMed  Google Scholar 

  8. Nakamura T, Largaespada DA, Lee MP, Johnson LA, Ohyashiki K, Toyama K, Chen SJ, Willman CL, Chen IM, Feinberg AP, Jenkins NA, Copeland NG, Shaughnessy JD . Fusion of the nucleoporin gene NUP98 to HOXA9 by the chromosome translocation t(7;11)(p15;p15) in human myeloid leukaemia Nat Genet 1996 12: 154–158

    CAS  PubMed  Google Scholar 

  9. Borrow J, Shearman AM, Stanton VP, Becher R, Collins T, Williams AJ, Dube I, Katz F, Kwong YL, Morris C, Ohyashiki K, Toyama K, Rowley J, Housman DE . The t(7;11)(p15;p15) translocation in acute myeloid leukaemia fuses the genes for nucleoporin NUP98 and class I homeoprotein HOXA9 Nat Genet 1996 12: 159–167

    CAS  PubMed  Google Scholar 

  10. Arai Y, Hosoda F, Kobayashi H, Arai K, Hayashi Y, Kamada N, Kaneko Y, Ohki M . The inv(11)(p15q22) chromosome translocation of de novo and therapy-related myeloid malignancies results in fusion of the nucleoporin gene, NUP98, with the putative RNA helicase gene, DDX10 Blood 1997 89: 3936–3944

    CAS  PubMed  Google Scholar 

  11. Raza-Egilmez SZ, Jani-Sait SN, Grossi M, Higgins MJ, Shows TB, Aplan PD . NUP98-HOXD13 gene fusion in therapy-related acute myelogenous leukemia Cancer Res 1998 58: 4269–4273

    CAS  PubMed  Google Scholar 

  12. Nakamura T, Yamazaki Y, Hatano Y, Miura I . NUP98 is fused to PMX1 homeobox gene in human acute myelogenous leukemia with chromosome translocation t(1;11)(q23;p15) Blood 1999 94: 741–747

    CAS  PubMed  Google Scholar 

  13. Hussey DJ, Nicola M, Moore S, Peters GB, Dobrovic A . The (4;11)(q21;p15) translocation fuses the NUP98 and RAP1GDS1 genes and is recurrent in T-cell acute lymphocytic leukemia Blood 1999 94: 2072–2079

    CAS  PubMed  Google Scholar 

  14. Ahuja HG, Felix CA, Aplan PD . The t(11;20)(p15;q11) chromosomal translocation associated with therapy-related myelodysplastic syndrome results in an NUP98-TOP1 fusion Blood 1999 94: 3258–3261

    CAS  PubMed  Google Scholar 

  15. Ahuja HG, Hong J, Aplan PD, Tcheurekdjian L, Forman SJ, Slovak ML . t(9;11)(p22;p15) in acute myeloid leukemia results in a fusion between NUP98 and the gene encoding transcriptional coactivators p52 and p75-lens epithelium-derived growth factor (LEDGF) Cancer Res 2000 60: 6227–6229

    CAS  PubMed  Google Scholar 

  16. Jaju RJ, Fidler C, Haas OA, Strickson AJ, Watkins F, Clark K, Aplan PD, Kearney L, Boultwood J, Wainscoat JS . A novel gene is fused to NUP98 in the t(5;11)(q35;p15.5) in de novo childhood AML Blood 2000 96 (Suppl. A): 692a

    Google Scholar 

  17. Radu A, Blobel G, Moore MS . Identification of a protein complex that is required for nuclear protein import and mediates docking of import substrate to distinct nucleoporins Proc Natl Acad Sci USA 1995 92: 1769–1773

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Radu A, Moore MS, Blobel G . The peptide repeat domain of nucleoporin Nup98 functions as a docking site in transport across the nuclear pore complex Cell 1995 81: 215–222

    CAS  PubMed  Google Scholar 

  19. Powers MA, Forbes DJ, Dahlberg JE, Lund E . The vertebrate GLFG nucleoporin, Nup98, is an essential component of multiple RNA export pathways J Cell Biol 1997 136: 241–250

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Fontoura BM, Blobel G, Matunis MJ . A conserved biogenesis pathway for nucleoporins: proteolytic processing of a 186-kilodalton precursor generates Nup98 and the novel nucleoporin, Nup96 J Cell Biol 1999 144: 1097–1112

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Fontoura BM, Blobel G, Yaseen NR . The nucleoporin nup98 is a site for GDP/GTP exchange on ran and termination of karyopherin beta 2-mediated nuclear import J Biol Chem 2000 275: 31289–31296

    CAS  PubMed  Google Scholar 

  22. Wu X, Kasper LH, Mantcheva RT, Mantchev GT, Springett MJ, van Deursen JM . Disruption of the FG nucleoporin NUP98 causes selective changes in nuclear pore complex stoichiometry and function Proc Natl Acad Sci USA 2001 98: 3191–3196

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Rout MP, Aitchison JD, Suprapto A, Hjertaas K, Zhao Y, Chait BT . The yeast nuclear pore complex: composition, architecture, and transport mechanism J Cell Biol 2000 148: 635–651

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Gorlich D, Kutay U . Transport between the cell nucleus and the cytoplasm Annu Rev Cell Dev Biol 1999 15: 607–660

    CAS  PubMed  Google Scholar 

  25. Fontoura BM, Dales S, Blobel G, Zhong H . The nucleoporin Nup98 associates with the intranuclear filamentous protein network of TPR Proc Natl Acad Sci USA 2001 98: 3208–3213

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Moroianu J, Hijikata M, Blobel G, Radu A . Mammalian karyopherin alpha 1 beta and alpha 2 beta heterodimers: alpha 1 or alpha 2 subunit binds nuclear localization signal and beta subunit interacts with peptide repeat-containing nucleoporins Proc Natl Acad Sci USA 1995 92: 6532–6536

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Moroianu J, Blobel G, Radu A . RanGTP-mediated nuclear export of karyopherin alpha involves its interaction with the nucleoporin Nup153 Proc Natl Acad Sci USA 1997 94: 9699–9704

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Bonifaci N, Moroianu J, Radu A, Blobel G . Karyopherin beta2 mediates nuclear import of a mRNA binding protein Proc Natl Acad Sci USA 1997 94: 5055–5060

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Powers MA, Macaulay C, Masiarz FR, Forbes DJ . Reconstituted nuclei depleted of a vertebrate GLFG nuclear pore protein, p97, import but are defective in nuclear growth and replication J Cell Biol 1995 128: 721–736

    CAS  PubMed  Google Scholar 

  30. Gruter P, Tabernero C, von Kobbe C, Schmitt C, Saavedra C, Bachi A, Wilm M, Felber BK, Izaurralde E . TAP, the human homolog of Mex67p, mediates CTE-dependent RNA export from the nucleus Mol Cell 1998 1: 649–659

    CAS  PubMed  Google Scholar 

  31. Bachi A, Braun IC, Rodrigues JP, Pante N, Ribbeck K, von Kobbe C, Kutay U, Wilm M, Gorlich D, Carmo-Fonseca M, Izaurralde E . The C-terminal domain of TAP interacts with the nuclear pore complex and promotes export of specific CTE-bearing RNA substrates RNA 2000 6: 136–158

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Tan W, Zolotukhin AS, Bear J, Patenaude DJ, Felber BK . The mRNA export in Caenorhabditis elegans is mediated by Ce-NXF-1, an ortholog of human TAP/NXF and Saccharomyces cerevisiae Mex67p RNA 2000 6: 1762–1772

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Pritchard CE, Fornerod M, Kasper LH, van Deursen JM . RAE1 is a shuttling mRNA export factor that binds to a GLEBS-like NUP98 motif at the nuclear pore complex through multiple domains J Cell Biol 1999 145: 237–254

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Joyce JA, Schofield PN . Genomic imprinting and cancer Mol Pathol 1998 51: 185–190

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ahuja HG, Felix CA, Aplan PD . Potential role for DNA topoisomerase II poisons in the generation of t(11;20)(p15;q11) translocations Genes Chromosomes Cancer 2000 29: 96–105

    CAS  PubMed  Google Scholar 

  36. Kasper LH, Brindle PK, Schnabel CA, Pritchard CE, Cleary ML, van Deursen JM . CREB binding protein interacts with nucleoporin-specific FG repeats that activate transcription and mediate NUP98-HOXA9 oncogenicity Mol Cell Biol 1999 19: 764–776

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Arai Y, Kyo T, Miwa H, Arai K, Kamada N, Kita K, Ohki M . Heterogenous fusion transcripts involving the NUP98 gene and HOXD13 gene activation in a case of acute myeloid leukemia with the t(2;11)(q31;p15) translocation Leukemia 2000 14: 1621–1629

    CAS  PubMed  Google Scholar 

  38. Hatano Y, Miura I, Nakamura T, Yamazaki Y, Takahashi N, Miura AB . Molecular heterogeneity of the NUP98/HOXA9 fusion transcript in myelodysplastic syndromes associated with t(7;11)(p15;p15) Br J Haematol 1999 107: 600–604

    CAS  PubMed  Google Scholar 

  39. Rosenblum JS, Blobel G . Autoproteolysis in nucleoporin biogenesis Proc Natl Acad Sci USA 1999 96: 11370–11375

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wente SR, Rout MP, Blobel G . A new family of yeast nuclear pore complex proteins J Cell Biol 1992 119: 705–723

    CAS  PubMed  Google Scholar 

  41. Wimmer C, Doye V, Grandi P, Nehrbass U, Hurt EC . A new subclass of nucleoporins that functionally interact with nuclear pore protein NSP1 EMBO J 1992 11: 5051–5061

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Krumlauf R . Hox genes in vertebrate development Cell 1994 78: 191–201

    CAS  PubMed  Google Scholar 

  43. Maconochie M, Nonchev S, Morrison A, Krumlauf R . Paralogous Hox genes: function and regulation Annu Rev Genet 1996 30: 529–556

    CAS  PubMed  Google Scholar 

  44. Scott MP . Vertebrate homeobox gene nomenclature (letter) Cell 1992 71: 551–553

    CAS  PubMed  Google Scholar 

  45. Scott MP . A rational nomenclature for vertebrate homeobox (HOX) genes Nucleic Acids Res 1993 21: 1687–1688

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Thorsteinsdottir U, Sauvageau G, Humphries RK . Hox homeobox genes as regulators of normal and leukemic hematopoiesis Hematol Oncol Clin North Am 1997 11: 1221–1237

    CAS  PubMed  Google Scholar 

  47. Lawrence HJ, Sauvageau G, Humphries RK, Largman C . The role of HOX homeobox genes in normal and leukemic hematopoiesis Stem Cells 1996 14: 281–291

    CAS  PubMed  Google Scholar 

  48. Lawrence HJ, Stage KM, Mathews CH, Detmer K, Scibienski R, MacKenzie M, Migliaccio E, Boncinelli E, Largman C . Expression of HOX C homeobox genes in lymphoid cells Cell Growth Differ 1993 4: 665–669

    CAS  PubMed  Google Scholar 

  49. Mathews CH, Detmer K, Boncinelli E, Lawrence HJ, Largman C . Erythroid-restricted expression of homeobox genes of the human HOX 2 locus Blood 1991 78: 2248–2252

    CAS  PubMed  Google Scholar 

  50. Vieille-Grosjean I, Roullot V, Courtois G . Lineage and stage specific expression of HOX 1 genes in the human hematopoietic system Biochem Biophys Res Commun 1992 183: 1124–1130

    CAS  PubMed  Google Scholar 

  51. Sauvageau G, Lansdrop PM, Eaves CJ, Hogge DE, Dragowska WH, Reid DS, Largman C, Lawrence HJ, Humphries RK . Differential expression of homeobox genes in functionally distinct CD34+ subpopulations of human bone marrow cells Proc Natl Acad Sci USA 1994 91: 12223–12227

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Zakany J, Duboule D . Synpolydactyly in mice with a targeted deficiency in the HoxD complex Nature 1996 384: 69–71

    CAS  PubMed  Google Scholar 

  53. Lawrence HJ, Sauvageau G, Ahmadi N, Lopez AR, LeBeau MM, Link M, Humphries K, Largman C . Stage-and lineage-specific expression of the HOXA10 homeobox gene in normal and leukemic hematopoietic cells Exp Hematol 1995 23: 1160–1166

    CAS  PubMed  Google Scholar 

  54. Nakamura T, Largaespada DA, Shaughnessy JD Jr, Jenkins NA, Copeland NG . Cooperative activation of Hoxa and Pbx1-related genes in murine myeloid leukaemias (see comments) Nat Genet 1996 12: 149–153

    CAS  PubMed  Google Scholar 

  55. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA, Bloomfield CD, Lander ES . Molecular classification of cancer: class discovery and class prediction by gene expression monitoring Science 1999 286: 531–537

    CAS  PubMed  Google Scholar 

  56. Monica K, LeBrun DP, Dedera DA, Brown R, Cleary ML . Transformation properties of the E2a-Pbx1 chimeric oncoprotein: fusion with E2a is essential, but the Pbx1 homeodomain is dispensable Mol Cell Biol 1994 14: 8304–8314

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Hatano M, Roberts CW, Minden M, Crist WM, Korsmeyer SJ . Deregulation of a homeobox gene, HOX11, by the t(10;14) in T cell leukemia Science 1991 253: 79–82

    CAS  PubMed  Google Scholar 

  58. Kamps MP, Murre C, Sun XH, Baltimore D . A new homeobox gene contributes the DNA binding domain of the t(1;19) translocation protein in pre-B ALL Cell 1990 60: 547–555

    CAS  PubMed  Google Scholar 

  59. Huang SY, Tang JL, Liang YJ, Wang CH, Chen YC, Tien HF . Clinical, haematological and molecular studies in patients with chromosome translocation t(7;11): a study of four Chinese patients in Taiwan Br J Haematol 1997 96: 682–687

    CAS  PubMed  Google Scholar 

  60. Wong KF, So CC, Kwong YL . Chronic myelomonocytic leukemia with t(7;11)(p15;p15) and NUP98/HOXA9 fusion Cancer Genet Cytogenet 1999 115: 70–72

    CAS  PubMed  Google Scholar 

  61. Kwong YL, Pang A . Low frequency of rearrangements of the homeobox gene HOXA9/t(7;11) in adult acute myeloid leukemia Genes Chromosomes Cancer 1999 25: 70–74

    CAS  PubMed  Google Scholar 

  62. Nishiyama M, Arai Y, Tsunematsu Y, Kobayashi H, Asami K, Yabe M, Kato S, Oda M, Eguchi H, Ohki M, Kaneko Y . 11p15 translocations involving the NUP98 gene in childhood therapy-related acute myeloid leukemia/myelodysplastic syndrome Genes Chromosomes Cancer 1999 26: 215–220

    CAS  PubMed  Google Scholar 

  63. Yamamoto K, Nakamura Y, Saito K, Furusawa S . Expression of the NUP98/HOXA9 fusion transcript in the blast crisis of Philadelphia chromosome-positive chronic myelogenous leukaemia with t(7;11)(p15;p15) Br J Haematol 2000 109: 423–426

    CAS  PubMed  Google Scholar 

  64. Ohnishi H, Taki T, Tabuchi K, Kobayashi M, Bessho F, Hayashi Y . Down's syndrome with myelodysplastic syndrome showing t(7;11)(p13;p14) Am J Hematol 2000 65: 62–65

    CAS  PubMed  Google Scholar 

  65. Shimada H, Arai Y, Sekiguchi S, Ishii T, Tanitsu S, Sasaki M . Generation of the NUP98-HOXD13 fusion transcript by a rare translocation, t(2;11)(q31;p15), in a case of infant leukaemia Br J Haematol 2000 110: 210–213

    CAS  PubMed  Google Scholar 

  66. Hatano Y, Miura I, Kume M, Miura AB . Translocation (1;11)(q23;p15), a novel simple variant of translocation (7;11)(p15;p15), in a patient with AML (M2) accompanied by non-Hodgkin lymphoma and gastric cancer Cancer Genet Cytogenet 2000 117: 19–23

    CAS  PubMed  Google Scholar 

  67. Ikeda T, Ikeda K, Sasaki K, Kawakami K, Takahara J . The inv(11)(p15q22) chromosome translocation of therapy-related myelodysplasia with NUP98-DDX10 and DDX10-NUP98 fusion transcripts Int J Hematol 1999 69: 160–164

    CAS  PubMed  Google Scholar 

  68. Nakao K, Nishino M, Takeuchi K, Iwata M, Kawano A, Arai Y, Ohki M . Fusion of the nucleoporin gene, NUP98, and the putative RNA helicase gene, DDX10, by inversion 11 (p15q22) chromosome translocation in a patient with etoposide-related myelodysplastic syndrome Intern Med 2000 39: 412–415

    CAS  PubMed  Google Scholar 

  69. Singh DP, Kimura A, Chylack LT Jr, Shinohara T . Lens epithelium-derived growth factor (LEDGF/p75) and p52 are derived from a single gene by alternative splicing Gene 2000 242: 265–273

    CAS  PubMed  Google Scholar 

  70. Ge H, Si Y, Roeder RG . Isolation of cDNAs encoding novel transcription coactivators p52 and p75 reveals an alternate regulatory mechanism of transcriptional activation EMBO J 1998 17: 6723–6729

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Mecucci C, La Starza R, Negrini M, Sabbioni S, Crescenzi B, Leoni P, Di Raimondo F, Krampera M, Cimino G, Tafuri A, Cuneo A, Vitale A, Foa R . t(4;11)(q21;p15) translocation involving NUP98 and RAP1GDS1 genes: characterization of a new subset of T acute lymphoblastic leukaemia Br J Haematol 2000 109: 788–793

    CAS  PubMed  Google Scholar 

  72. Hussey DJ, Albanese NO, Dobrovic A . Nuclear and cytoplasmic localisation of the leukemia associated NUP98-RAP1GDS1 fusion protein Blood 2000 96 (Suppl. A): 85a

    Google Scholar 

  73. von Lindern M, van Baal S, Wiegant J, Raap A, Hagemeijer A, Grosveld G . Can, a putative oncogene associated with myeloid leukemogenesis, be activated by fusion of its 3′ half to different genes: characterization of the set gene Mol Cell Biol 1992 12: 3346–3355

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Kraemer D, Wozniak RW, Blobel G, Radu A . The human CAN protein, a putative oncogene product associated with myeloid leukemogenesis, is a nuclear pore complex protein that faces the cytoplasm Proc Natl Acad Sci USA 1994 91: 1519–1523

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Stark B, Jeison M, Shohat M, Goshen Y, Vogel R, Cohen IJ, Yaniv I, Kaplinsky C, Zaizov R . Involvement of 11p15 and 3q21q26 in therapy-related myeloid leukemia (t-ML) in children. Case reports and review of the literature Cancer Genet Cytogenet 1994 75: 11–22

    CAS  PubMed  Google Scholar 

  76. Zhou RH, Wang P, Zou Y, Jackson-Cook CK, Povirk LF . A precise interchromosomal reciprocal exchange between hot spots for cleavable complex formation by topoisomerase II in amsacrine-treated Chinese hamster ovary cells Cancer Res 1997 57: 4699–4702

    CAS  PubMed  Google Scholar 

  77. Ripley LS . Deletion and duplication sequences induced in CHO cells by teniposide (VM-26), a topoisomerase II targeting drug, can be explained by the processing of DNA nicks produced by the drug-topoisomerase interaction Mutat Res 1994 312: 67–78

    CAS  PubMed  Google Scholar 

  78. Kroon E, Thorsteinsdottir U, Mayotte N, Nakamura T, Sauvageau G . NUP98-HOXA9 expression in hemopoietic stem cells induces chronic and acute myeloid leukemias in mice EMBO J 2001 20: 350–361

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Pineault N, Buske C, Faulkes S, Helgason CD, Aplan PD, Humphries RK . The AML associated fusion gene NUP98-HOXD13 leads to increased myeloproliferation and decreased erythropoieisis in differentiating embryonic stem cells Blood 2000 96: (Suppl. A): 458a

    Google Scholar 

  80. Buske C, Pineault N, Feuring-Buske M, Aplan P, Humphries RK . Collaboration of MEIS1 with the human leukemia-specific fusion gene NUP98-HOXD13 causes acute myeloid leukemia (AML) in mice: a model of NUP98-associated human leukemia Blood 2000 96 (Suppl. A): 573a

    Google Scholar 

  81. Fornerod M, Boer J, van Baal S, Jaegle M, von Lindern M, Murti KG, Davis D, Bonten J, Buijs A, Grosveld G . Relocation of the carboxyterminal part of CAN from the nuclear envelope to the nucleus as a result of leukemia-specific chromosome rearrangements Oncogene 1995 10: 1739–1748

    CAS  PubMed  Google Scholar 

  82. Dobson CL, Warren AJ, Pannell R, Forster A, Rabbitts TH . Tumorigenesis in mice with a fusion of the leukaemia oncogene Mll and the bacterial lacZ gene EMBO J 2000 19: 843–851

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lam, D., Aplan, P. NUP98 gene fusions in hematologic malignancies. Leukemia 15, 1689–1695 (2001). https://doi.org/10.1038/sj.leu.2402269

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402269

Keywords

This article is cited by

Search

Quick links