Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Molecular Cytogenetics

The interaction between EEN and Abi-1, two MLLfusion partners, and synaptojanin and dynamin: implications for leukaemogenesis

Abstract

The mixed lineage leukaemia gene, MLL (also called HRX, ALL-1) in acute leukaemia is fused to at least 16 identified partner genes that display diverse structural and biochemical properties. Using GST pull down and the yeast two hybrid system, we show that two different MLL fusion partners with SH3 domains, EEN and Abi-1, interact with dynamin and synaptojanin, both of which are involved in endocytosis. Synaptojanin, a member of the inositol phosphatase family that has recently been shown to regulate cell proliferation and survival, is also known to bind to Eps15, the mouse homologue of AF1p, another fusion partner of MLL. Expression studies show that synaptojanin is strongly expressed in bone marrow and immature leukaemic cell lines, very weakly in peripheral blood leukocytes and absent in Raji, a mature B cell line. We found that the SH3 domains of EEN and Abi-1 interact with different proline-rich domains of synaptojanin while the EH domains of Eps15 interact with the NPF motifs of synaptojanin. In vitro competitive binding assays demonstrate that EEN displays stronger binding affinity than Abi-1 and may compete with it for synaptojanin. These findings suggest a potential link between MLLfusion-mediated leukaemogenesis and the inositol-signalling pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Ziemin-van der PS, McCabe NR, Gill HJ, Espinosa R III, Patel Y, Harden A, Rubinelli P, Smith SO, LeBeau MM, Rowley JD, Diaz MO . Identification of a gene, MLL, that spans the breakpoint in 11q23 translocations associated with human leukaemias Proc Natl Acad Sci USA 1991 88: 10735–10739

    Article  Google Scholar 

  2. Djabali M, Selleri L, Parry P, Bower M, Young BD, Evans GA . A trithorax-like gene is interrupted by chromosome 11q23 translocations in acute leukaemias Nat Genet 1992 2: 113–118

    Article  CAS  Google Scholar 

  3. Gu Y, Nakamura T, Alder H, Prasad R, Canaani O, Cimino G, Croce CM, Canaani E . The t(4;11) chromosome translocation of human acute leukaemias fuses the ALL-1 gene, related to Drosophila trithorax, to the AF-4 gene Cell 1992 71: 701–708

    Article  CAS  Google Scholar 

  4. Tkachuk DC, Kohler S, Cleary ML . Involvement of a homolog of Drosophila trithorax by 11q23 chromosomal translocations in acute leukaemias Cell 1992 71: 691–700

    Article  CAS  Google Scholar 

  5. Bernard OA, Berger R . Molecular basis of 11q23 rearrangements in hematopoietic malignant proliferations Genes Chromosom Cancer 1995 13: 75–85

    Article  CAS  Google Scholar 

  6. Saha V, Chaplin T, Gregorini A, Ayton P, Young BD . The leukaemia-associated protein (LAP) domain, a cysteine-rich motif, is present in a wide range of proteins, including MLL, AF10, and MLLT6 proteins Proc Natl Acad Sci USA 1995 92: 9737–9741

    Article  CAS  Google Scholar 

  7. Aasland R, Gibson TJ, Stewart AF . The PHD finger: implications for chromatin-mediated transcriptional regulation Trends Biochem Sci 1995 20: 56–59

    Article  CAS  Google Scholar 

  8. Caldas C, Kim M-H, MacGregor A, Cain D, Aparicio S, Wiedemann LM . Isolation and characterization of a pufferfish MLL (mixed lineage leukaemia)-like gene (fMLL) reveals evolutionary conservation in vertebrate genes related to Drosophila trithorax Oncogene 1998 16: 3233–3241

    Article  CAS  Google Scholar 

  9. Hess JL, Yu BD, Li B, Hanson R, Korsmeyer SJ . Defects in yolk sac hematopoiesis in MLL-null embryos Blood 1997 90: 1799–1806

    CAS  PubMed  Google Scholar 

  10. Yu BD, Hess JL, Horning SE, Brown GAJ, Korsmeyer SJ . Altered Hox expression and segmental identity in MLL-mutant mice Nature 1995 378: 505–508

    Article  CAS  Google Scholar 

  11. Kersey JH . Fifty years of studies of the biology and therapy of childhood leukaemia Blood 1997 90: 4243–4251

    CAS  PubMed  Google Scholar 

  12. Lavau C, Szilvassy SJ, Slany R, Cleary ML . Immortalization and leukemic transformation of a myelomonocytic precursor by retrovirally transduced HRX-ENL EMBO J 1997 16: 4226–4237

    Article  CAS  Google Scholar 

  13. Slany RK, Lavau C, Cleary ML . The oncogenic capacity of HRX-ENL requires the transcriptional transactivation activity of ENL and the DNA binding motifs of HRX Mol Cell Biol 1998 18: 122–129

    Article  CAS  Google Scholar 

  14. Corral J, Lavenir I, Impey H, Warren AJ, Forster A, Larso TA, Bell S, McKenzie AN, King G, Rabbitts TH . An MLL-AF9 fusion gene made by homologous recombination causes acute leukaemia in chimeric mice: a method to create fusion oncogenes Cell 1996 85: 853–861

    Article  CAS  Google Scholar 

  15. Thirman MJ, Levitan DA, Kobayashi H, Simon MC, Rowley JD . Cloning of ELL, a gene that fuses to MLL in a t(11;19)(q23;p13.1) in acute myeloid leukaemia Proc Natl Acad Sci USA 1994 91: 12110–12114

    Article  CAS  Google Scholar 

  16. Mitani K, Kanda Y, Ogawa S, Tanaka T, Inazawa J, Yazaki Y, Hirai H . Cloning of several species of MLL/MEN chimeric cDNAs in myeloid leukaemia with t(11;19)(q23;p13.1) translocation Blood 1995 85: 2017–2024

    CAS  PubMed  Google Scholar 

  17. Shilatifard A, Lane WS, Jackson KW, Conaway RC, Conaway JW . An RNA polymerase II elongation factor encoded by the human ELL gene Science 1996 271: 1873–1876

    Article  CAS  Google Scholar 

  18. Sobulo OM, Borrow J, Tomek R, Reshmi S, Harden A, Schlegelberger B, Housman D, Doggett NA, Rowley JD, Zeleznik-Le NJ . MLL is fused to CBP, a histone acetyltransferase, in therapy-related acute myeloid leukaemia with a t(11;16)(q23;p13.3) Proc Natl Acad Sci USA 1997 94: 8732–8737

    Article  CAS  Google Scholar 

  19. Ida K, Kitabayashi I, Taki T, Taniwaki M, Noro K, Yamamoto M, Ohki M, Hayashi Y . Adenoviral E1A-associated protein p300 is involved in acute myeloid leukaemia with t(11;22)(q23;q13) Blood 1997 90: 4699–4704

    CAS  PubMed  Google Scholar 

  20. Morrissey J, Tkachuk DC, Milatovich A, Francke U, Link M, Cleary ML . A serine/proline-rich protein is fused to HRX in t(4;11) acute leukaemias Blood 1993 81: 1124–1131

    CAS  PubMed  Google Scholar 

  21. Bernard OA, Hillion J, LeConiat M, Berger R . A new case of translocation t(6;11)(q21;q23) in a therapy-related acute myeloid leukaemia resulting in an MLL-AF6q21 fusion Genes Chromosom Cancer 1998 22: 221–224

    Article  CAS  Google Scholar 

  22. Nakamura T, Alder H, Gu Y, Prasad R, Canaani O, Kamada N, Gale RP, Lange B, Crist WM, Nowell PC, Croce CM, Canaani E . Genes on chromosomes 4, 9, and 19 involved in 11q23 abnormalities in acute leukaemia share sequence homology and/or common motifs Proc Natl Acad Sci USA 1993 90: 4631–4635

    Article  CAS  Google Scholar 

  23. Chaplin T, Ayton P, Bernard OA, Saha V, Della Valle V, Hillion J, Gregorini A, Lillington D, Berger R, Young BD . A novel class of zinc finger/leucine zipper genes identified from the molecular cloning of the t(10;11) translocation in acute leukaemia Blood 1995 85: 1435–1441

    CAS  PubMed  Google Scholar 

  24. Prasad R, Leshkowitz D, Gu Y, Alder H, Nakamura T, Saito H, Huebner K, Berger R, Croce CM, Canaani E . Leucine-zipper dimerization motif encoded by the AF17 gene fused to ALL-1 (MLL) in acute leukaemia Proc Natl Acad Sci USA 1994 91: 8107–8111

    Article  CAS  Google Scholar 

  25. Rubnitz JE, Morrissey J, Savage PA, Cleary ML . ENL, the gene fused with HRX in t(11;19) leukaemias, encodes a nuclear protein with transcriptional activation potential in lymphoid and myeloid cells Blood 1994 84: 1747–1752

    CAS  PubMed  Google Scholar 

  26. Borkhardt A, Repp R, Haas OA, Leis T, Harbott J, Kreuder J, Hammermann J, Henn T, Lampert F . Cloning and characterization of AFX, the gene that fuses to MLL in acute leukaemias with a t(X;11)(q13;q23) Oncogene 1997 14: 195–202

    Article  CAS  Google Scholar 

  27. Prasad R, Gu Y, Alder H, Nakamura T, Canaani O, Saito H, Huebner K, Gale RP, Nowell PC, Kuriyama K, Miyazaki Y, Croce CM, Canaani E . Cloning of the ALL-1 fusion partner, the AF-6 gene, involved in acute myeloid leukaemias with the t(6;11) chromosome translocation Cancer Res 1993 53: 5624–5628

    CAS  PubMed  Google Scholar 

  28. Bernard OA, Mauchauffe M, Mecucci C, Van Den Berghe H, Berger R . A novel gene, AF-1p, fused to HRX in t(1;11)(p32;q23), is not related to AF-4, AF-9 nor ENL Oncogene 1994 9: 1039–1045

    CAS  PubMed  Google Scholar 

  29. So CW, Caldas C, Liu M-M, Chen S-J, Huang Q-H, Gu L-J, Sham MH, Wiedemann LM, Chan LC . EEN encodes for a member of a new family of proteins containing an Src homology 3 domain and is the third gene located on chromosome 19p13 that fuses to MLL in human leukaemia Proc Natl Acad Sci USA 1997 94: 2563–2568

    Article  CAS  Google Scholar 

  30. Taki T, Shibuya N, Taniwaki M, Hanada R, Morishita K, Bessho F, Yanagisawa M, Hayashi Y . ABI-1, a human homolog to mouse Ab1-interactor 1, fuses the MLL gene in acute myeloid leukaemia with t(10;11)(p11.2;q23) Blood 1998 92: 1125–1130

    CAS  PubMed  Google Scholar 

  31. Giachino C, Lantelme E, Lanzetti L, Saccone S, Bella-Valle G, Migone N . A novel SH3-containing human gene family preferentially expressed in the central nervous system Genomics 1997 41: 427–434

    Article  CAS  Google Scholar 

  32. Sparks AB, Hoffman NG, McConnell SJ, Fowlkes DMF, Kay BK . Cloning of ligand targets: systematic isolation of SH3 domain-containing proteins Nat Biotechnol 1996 14: 741–744

    Article  CAS  Google Scholar 

  33. Ringstad N, Nemoto Y, De Camilli P . The SH3p4/SH3p8/SH3p13 protein family: binding partners for synaptojanin and dynamin via a GrB2-like Src homology 3 domain Proc Natl Acad Sci USA 1997 94: 8569–8574

    Article  CAS  Google Scholar 

  34. Lowenstein EJ, Daly RJ, Batzer AG, Li W, Margolis B, Lammers R, Ullrich A, Skolnik EY, Bar-Sagi D, Schlessinger J . The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to ras signaling Cell 1992 70: 431–442

    Article  CAS  Google Scholar 

  35. Clark SG, Stern MJ, Horvitz HR . C. elegans cell-signalling gene sem-5 encodes a protein with SH2 and SH3 domains Nature 1992 356: 340–344

    Article  CAS  Google Scholar 

  36. Perkins LA, Larsen I, Perrimon N . Corkscrew encodes a putative protein tyrosine phosphatase that functions to transduce the terminal signal from the receptor tyrosine kinase torso Cell 1992 70: 225–236

    Article  CAS  Google Scholar 

  37. Pawson T . Protein modules and signalling networks Nature 1995 373: 573–580

    Article  CAS  Google Scholar 

  38. McPherson PS, Czernik AJ, Chilcote TJ, Onofri F, Benfenati F, Greengard P, Schlessinger J, de Camilli P . Interaction of GrB2 via its Src homology 3 domains with synaptic proteins including synapsin I Proc Natl Acad Sci USA 1994 91: 6486–6490

    Article  CAS  Google Scholar 

  39. McPherson PS, Takei K, Schmid SL, De Camilli P . p145, a major GrB2-binding protein in brain, is co-localized with dynamin in nerve terminals where it undergoes activity-dependent dephosphorylation J Biol Chem 1994 269: 30132–30139

    CAS  PubMed  Google Scholar 

  40. McPherson PS, Garcia EP, Slepnev VI, David C, Zhang X, Grabs D, Sossin WS, Bauerfeind R, Nemoto Y, De-Camilli P . A presynaptic inositol-5-phosphatase Nature 1996 379: 353–357

    Article  CAS  Google Scholar 

  41. Herskovits JS, Shpetner HS, Burgess CC, Vallee RB . Microtubules and Src homology 3 domains stimulate the dynamin GTPase via its C-terminal domain Proc Natl Acad Sci USA 1993 90: 11468–11472

    Article  CAS  Google Scholar 

  42. Urrutia R, Henley JR, Cook T, McNiven MA . The dynamins: redundnat or distinct functions for an expanding family of related GTPases? Proc Natl Acad Sci USA 1997 94: 377–384

    Article  CAS  Google Scholar 

  43. Obar RA, Collins CA, Hammarback JA, Shpetner HS, Vallee RB . Molecular cloning of the microtubule-associated mechanochemical enzyme dynamin reveals homology with a new family of GTP-binding proteins Nature 1990 347: 256–261

    Article  CAS  Google Scholar 

  44. Chen MS, Obar RA, Schroeder CC, Austin TW, Poodry CA, Wadsworth SC, Vallee RB . Multiple forms of dynamin are encoded by shibire, a Drosophila gene involved in endocytosis Nature 1991 351: 583–586

    Article  CAS  Google Scholar 

  45. Ramjaun AR, McPherson PS . Tissue-specific alternative splicing generates two synaptojanin isoforms with differential membrane binding properties J Biol Chem 1996 271: 24856–24861

    Article  CAS  Google Scholar 

  46. Haffner C, Takei K, Chen H, Ringstad N, Hudson A, Butler MH, Salcini AE, Di Fiore PP, De Camilli P . Synaptojanin 1: localization on coated endocytic intermediates in nerve terminals and interaction of its 170 kDa isoform with Eps15 FEBS Lett 1997 419: 175–180

    Article  CAS  Google Scholar 

  47. Ausubel FM, Brent R, Kingston R, Moore DD, Seidman JG, Smith JA, Struhl K . Current protocols in molecular biology, 3rd edn John Wiley & Sons Inc: New York, USA 1997

    Google Scholar 

  48. Mayer BJ, Eck MJ . SH3 domains. Minding your p's and q's Curr Biol 1995 5: 364–367

    Article  CAS  Google Scholar 

  49. Feng S, Chen JK, Yu H, Simon JA, Schreiber SL . Two binding orientations for peptides to the Src SH3 domain: development of a general model for SH3-ligand interactions Science 1994 266: 1241–1247

    Article  CAS  Google Scholar 

  50. Desbois C, Rousset R, Bantignies F, Jalinot P . Exclusion of Int-6 from PML nuclear bodies by binding to the HTLV-I Tax oncoprotein Science 1996 273: 951–953

    Article  CAS  Google Scholar 

  51. Jin DY, Jeang KT . HTLV-I Tax self-association in optimal trans-activation function Nucleic Acids Res 1997 25: 379–387

    Article  CAS  Google Scholar 

  52. Gout I, Dhand R, Hiles ID, Fry MJ, Panayotou G, Das P, Truong O, Totty NF, Hsuan J, Booker GW, Campbell ID, Waterfield MD . The GTPase dynamin binds to and is activated by a subset of SH3 domains Cell 1993 75: 25–36

    Article  CAS  Google Scholar 

  53. Erneux C, Govaerts C, Communi D, Pesesse X . The diversity and possible functions of the inositol polyphosphate 5-phosphatases Biochim Biophys Acta 1998 1436: 185–199

    Article  CAS  Google Scholar 

  54. Floyd S, De Camilli P . Endocytosis proteins and cancer: a potential link? Trends Cell Biol 1998 8: 299–301

    Article  CAS  Google Scholar 

  55. Ringerike T, Stang E, Johannessen LE, Sandnes D, Levy FO, Madshus IH . High-affinity binding of epidermal growth factor (EGF) to EGF receptor is disrupted by overexpression of mutant dynamin (K44A) J Biol Chem 1998 27: 16639–16642

    Article  Google Scholar 

  56. Damen JE, Liu L, Rosten P, Humphries RK, Jefferson AB, Majerus PW, Krystal G . The 145-kDa protein induced to associate with Shc by multiple cytokines is an inositol tetraphosphate and phosphatidylinositol 3,4,5-triphosphate 5-phosphatase Proc Natl Acad Sci USA 1996 93: 1689–1693

    Article  CAS  Google Scholar 

  57. Lioubin MN, Algate PA, Tsai S, Carlberg K, Aebersold R, Rohrschneider LR . p150, Ship, a signal transduction molecule with inositol polyphosphate-5-phosphatase activity Genes Dev 1996 10: 1084–1095

    Article  CAS  Google Scholar 

  58. Woscholski R, Finan PM, Radley E, Totty NF, Sterling AE, Hsuan JJ, Waterfield MD, Parker PJ . Synaptojanin is the major constitutively active phosphatidylinositol-3,4,5-trisphosphate 5-phosphatase in rodent brain J Biol Chem 1997 272: 9625–9628

    Article  CAS  Google Scholar 

  59. Stephens LR, Jackson TR, Hawkins PT . Agonist-stimulated synthesis of phosphatidylinositol (3,4,5)-trisphosphate: a new intracellular signalling system? Biochim Biophys Acta 1993 1179: 27–75

    Article  CAS  Google Scholar 

  60. Downward J . Lipid-regulated kinases: some common themes at last Science 1998 279: 673–674

    Article  CAS  Google Scholar 

  61. Helgason CD, Damen JE, Rosten P, Grewal R, Sorensen P, Chappel SM, Borowski A, Jirik F, Krystal G, Humphries RK . Targeted disruption of SHIP leads to hemopoietic perturbations, lung pathology, and a shortened life span Genes Dev 1998 12: 1610–1620

    Article  CAS  Google Scholar 

  62. Liu L, Damen JE, Hughes MR, Babic I, Jirik FR, Krystal G . The Src homology 2 (SH2) domain of SH2-containing inositol phosphatase (SHIP) is essential for tyrosine phosphorylation of SHIP, its association with Shc, and its induction of apoptosis J Biol Chem 1997 272: 8983–8988

    Article  CAS  Google Scholar 

  63. Yao R, Cooper GM . Requirement for phosphatidylinositol-3 kinase in the prevention of apoptosis by nerve growth factor Science 1995 267: 2003–2006

    Article  CAS  Google Scholar 

  64. Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, Puc J, Miliaresis C, Rodgers L, McCombie R, Bigner SH, Giovanella BC, Ittmann M, Tycko B, Hibshoosh H, Wigler MH, Parsons R . PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer Science 1997 275: 1943–1947

    Article  CAS  Google Scholar 

  65. Furnari FB, Huang HJ, Cavenee WK . The phosphoinositol phosphatase activity of PTEN mediates a serum-sensitive G1 growth arrest in glioma cells Cancer Res 1998 58: 5002–5008

    CAS  PubMed  Google Scholar 

  66. Furnari FB, Lin H, Huang HS, Cavenee WK . Growth suppression of glioma cells by PTEN requires a functional phosphatase catalytic domain Proc Natl Acad Sci USA 1997 94: 12479–12484

    Article  CAS  Google Scholar 

  67. Maehama T, Dixon JE . The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate J Biol Chem 1998 273: 13375–13378

    Article  CAS  Google Scholar 

  68. Myers MP, Pass I, Batty IH, Van der Kaay J, Stolarov JP, Hemmings BA, Wigler MH, Downes CP, Tonks NK . The lipid phosphatase activity of PTEN is critical for its tumor supressor function Proc Natl Acad Sci USA 1998 95: 13513–13518

    Article  CAS  Google Scholar 

  69. Rogaia D, Grignani F, Carbone R, Riganelli D, LoCoco F, Nakamura T, Croce CM, Di Fiore PP, Pelicci PG . The localization of the HRX/ALL1 protein to specific nuclear subdomains is altered by fusion with its Eps15 translocation partner Cancer Res 1997 57: 799–802

    CAS  PubMed  Google Scholar 

  70. Shi Y, Alin K, Goff SP . Ab1-interactor-1, a novel SH3 protein binding to the carboxy-terminal portion of the Ab1 protein, suppresses v-abl transforming activity Genes Dev 1995 9: 2583–2597

    Article  CAS  Google Scholar 

  71. Biesova Z, Piccoli C, Wong WT . Isolation and characterization of e3B1, an eps8 binding protein that regulates cell growth Oncogene 1997 14: 233–241

    Article  CAS  Google Scholar 

  72. Kops GJ, de Ruiter ND, De Vries-Smits AM, Powell DR, Bos JL . Burgering BM. Direct control of the Forkhead transcription factor AFX by protein kinase B Nature 1999 398: 630–634

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Professor P De Camilli for dynamin and synaptojanin constructs, Professor SP Goff for mouse Abi-1 cDNA, Dr DY Jin for providing the control constructs of human Int-6 protein and HTLV-1 Tax and technical advice on yeast two hybrid studies, Stanley Ko for excellent technical support, Professor Mel Greaves and Dr Leanne Wiedemann for critical review of the manuscript. This work is supported by HKU RGC grant 338/046/0009.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

So, C., So, C., Cheung, N. et al. The interaction between EEN and Abi-1, two MLLfusion partners, and synaptojanin and dynamin: implications for leukaemogenesis. Leukemia 14, 594–601 (2000). https://doi.org/10.1038/sj.leu.2401692

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2401692

Keywords

This article is cited by

Search

Quick links