Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Molecular Cytogenetics

BP1, a new homeobox gene, is frequently expressed in acute leukemias

Abstract

Aberrant expression of homeobox genes has been described in primary leukemia blasts. We recently cloned a new cDNA, BP1, which is a member of the homeobox gene family. BP1 expression was investigated in bone marrow samples from acute myeloid leukemia (AML), acute T cell lymphocytic leukemia (ALL) and pre-B cell ALL. Expression levels of two apparent isoforms of BP1, DLX7 and DLX4, were measured in the same samples. They are weakly if at all detectable in normal bone marrow, PHA-stimulated T cells or B cells. BP1 RNA was highly expressed in 63% of AML cases, including 81% of the pediatric and 47% of the adult cases, and in 32% of T-ALL cases, but was not found in any of the pre-B ALL cases. Co-expression of BP1, DLX7 and DLX4 occurred in a significant number of leukemias. Our data, including co-expression of BP1 with c-myb and GATA-1, markers of early progenitors, suggest that BP1 expression occurs in primitive cells in AML. Analysis of CD34+ and CD34 normal bone marrow cells revealed BP1 is expressed in CD34 cells and virtually extinguished in CD34+ cells. Ectopic expression of BP1 in the leukemia cell line K562 increased clonogenicity, consistent with a role for BP1 in leukemogenesis. The presence of BP1 RNA in leukemic blasts may therefore be a molecular marker for primitive cells and/or may indicate that BP1 is an important upstream factor in an oncogenic pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Chase MB, Haga S, Fu S, Davenport G, Morgan D, Mah A, Berg PE . BP1, a novel homeobox gene with repressor activity, down-regulates erythroid differentiation (submitted)

  2. Levine M, Hoey T . Homeobox proteins as sequence-specific transcription factors Cell 1988 55: 537–540

    Article  CAS  PubMed  Google Scholar 

  3. Lawrence HJ, Sauvageau G, Humphries RK, Largman C . The role of HOX homeobox genes in normal and leukemic hematopoiesis Stem Cells 1996 14: 281–291

    Article  CAS  PubMed  Google Scholar 

  4. van Oostveen JW, Biji JJ, Raaphorst FM, Walbooners JJM, Meijer CJLM . The role of homeobox genes in normal hematopoiesis and hematological malignancies Leukemia 1999 13: 1675–1690

    Article  CAS  PubMed  Google Scholar 

  5. Look AT . Oncogenic transcription factors in the human acute leukemias Science 1997 278: 1059–1064

    CAS  PubMed  Google Scholar 

  6. Lu Q, Wright DD, Kamps MP . Fusion with E2A converts the Pbx1 homeodomain protein into a constitutive transcriptional activator in human leukemias carrying the t(1;19) translocation Mol Cell Biol 1994 14: 3938–3948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Borrow J, Shearman AM, Stanton VP Jr, Becher R, Collins T, Williams AJ, Dube I, Katz F, Kwong YL, Morris C, Ohyashiki K, Toyama K, Rowley J, Housman DE . The t(7;11)(p15;p15) translocation in acute myeloid leukaemia fuses the genes for nucleoporin NUP98 and class I homeoprotein HOXA9 Nat Genet 1996 12: 159–167

    Article  CAS  PubMed  Google Scholar 

  8. Nakamura T, Yamazaki Y, Hatano Y, Miura I . NUP98 is fused to PMX1 homeobox gene in human acute myelogenous leukemia with chromosome translocation t(1;11)(q23;p15) Blood 1999 94: 741–747

    CAS  PubMed  Google Scholar 

  9. Petrini M, Quaranta MT, Testa U, Samoggia P, Tritarelli E, Care A, Cianetti L, Valtieri M, Barletta C, Peschle C . Expression of selected human HOX genes in B/T acute lymphoid leukemia and interleukin-2/interleukin-1 b-stimulated natural killer lymphocytes Blood 1992 80: 185–193

    CAS  PubMed  Google Scholar 

  10. Hawley RG, Fong AZC, Reis MD Zhang N, Lu M, Hawley TS . Transforming function of the HOX11/TCL3 homeobox gene Cancer Res 1997 57: 337–345

    CAS  PubMed  Google Scholar 

  11. Thorsteinsdottir U, Sauvageau G, Hough MR, Dragowska W, Lansdorp PM, Lawrence HJ, Largman C, Humphries RK . Overexpression of HOXA10 in murine hematopoietic cells perturbs both myeloid and lymphoid diffferentiation and leads to acute myeloid leukemia Mol Cell Biol 1997 17: 495–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nakamura S, Stock DW, Wydner KL, Bollekens JA, Takeshita K, Nagai BM, Chiba, Kitamura T, Freeland TM, Zhao Z, Minowada J, Lawrence JB, Weiss KB, Ruddle FH . Genomic analysis of a new mammalian Distal-less gene: Dlx-7 Genomics 1996 38: 314–324

    Article  CAS  PubMed  Google Scholar 

  13. Quinn LM, Johnson BV, Nicholl J, Sutherland GR, Kalionis B . Isolation and identification of homeobox genes from human placenta including a novel member of the Distal-less family, DLX4 Gene 1997 187: 55–61

    Article  CAS  PubMed  Google Scholar 

  14. Price JA, Bowden DW, Wright JT, Pettenati MJ, Hart TC . Identification of a mutation in DLX3 associated with tricho-dento-osseous (TDO) Hum Mol Gen 1998 7: 563–569

    Article  CAS  PubMed  Google Scholar 

  15. Fu S, Strovel JW, Haga SB, Stamberg J, Berg PE . Mapping of a new homeobox gene, BP1, near its isoform DLX7 and characterization of their roles in repression of the beta globin gene Am J Hum Gen 1998 63: A181

    Article  Google Scholar 

  16. Pui C-H . Childhood leukemias New Engl J Med 1995 332: 1618–1630

    Article  CAS  PubMed  Google Scholar 

  17. Karp JE . Acute leukemia: mechanisms of cell survival as targets for therapy Int J Oncol 1997 11: 657–674

    CAS  PubMed  Google Scholar 

  18. Copelan EA, McGuire EA . The biology and treatment of acute lymphoblastic leukemia in adults Blood 1995 85: 1151–1168

    CAS  PubMed  Google Scholar 

  19. Tenen DG, Hromas R, Licht JD, Zhang D-E . Transcription factors, normal myeloid development and leukemia Blood 1997 90: 489–491

    CAS  PubMed  Google Scholar 

  20. Gewirtz AM, Calabretta B . A c-myb antisense oligodeoxynucleotide inhibits normal human hematopoiesis in vitro Science 1988 242: 1303–1306

    Article  CAS  PubMed  Google Scholar 

  21. Guerrasio A, Saglio G, Rosso C, Alfarano A, Camaschella C, Lo Coco F, Biondi A, Ranbaldi A, Nicolis S, Ottolenghi S . Expression of GATA-1 mRNA in human myeloid leukemic cells Leukemia 1994 8: 1034–1038

    CAS  PubMed  Google Scholar 

  22. Crotta S, Nicolis S, Ronchi A, Ottolenghi S, Ruzzi L, Shimada Y, Migliaccio AR . Progressive inactivation of the expression of an erythroid transcriptional factor in GM- and G-CSF-dependent myeloid cell lines Nucleic Acids Res 1990 18: 6863–6869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gonda T, Metcalf D . Expression of myb, myc and fos proto-oncogenes during the differentiation of a murine myeloid leukemia Nature 1984 310: 249–251

    Article  CAS  PubMed  Google Scholar 

  24. Luscher B, Eisenman RN . New light on Myc and Myb. Part II. Myb Genes Dev 1990 4: 2235–2241

    Article  CAS  PubMed  Google Scholar 

  25. Raff T, van der Giet M, Endemann D, Wiederholt T, Paul M . Design and testing of β-actin primers for RT-PCR that do not co-amplify processed pseudogenes BioTechniques 1997 23: 456–460

    Article  CAS  PubMed  Google Scholar 

  26. Majello B, Kenyon LC, Dalla-Favera R . Human c-myb protooncogene: nucleotide sequence of cDNA and organization of the genomic locus Proc Natl Acad Sci USA 1986 83: 9636–9640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shimamoto T, Nakamura S, Bollekens J, Ruddle FH, Takeshita K . Inhibition of Dlx-7 homeobox gene causes decreased expression of GATA-1 and c-myc genes and apoptosis Proc Natl Acad Sci USA 1997 94: 3245–3249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tsai SF, Martin DIK, Zon LI, D'Andrea AD, Wong GG, Orkin SH . Cloning of the cDNA for the major DNA-binding protein of the erythroid lineage through expression in mammalian cells Nature 1989 339: 446–451

    Article  CAS  PubMed  Google Scholar 

  29. Chen Q, Cheng J-T, Tsai L-H, Schneider N, Buchanan G, Carroll A, Crist W, Ozanne B, Siciliano MJ, Baer R . The tal gene undergoes chromosome translocation in T cell leukemia and potentially encodes a helix–loop–helix protein EMBO J 1990 9: 415–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DAG, Gralnick HR, Sultan C . Proposed revised criteria for the classification of the French–American–British Cooperative Group Ann Intern Med 1985 103: 620–625

    Article  CAS  PubMed  Google Scholar 

  31. Baer MR, Stewart CC, Lawrence D, Arthur DC, Mrozek K, Strout MP, Davey FR, Schiffer CA, Bloomfield CD . Acute myeloid leukemia with 11q23 translocations: myelomonocytic immunophenotype by multiparameter flow cytometry Leukemia 1998 12: 317–325

    Article  CAS  PubMed  Google Scholar 

  32. Taki T, Ohnishi H, Shinohara K, Sako M, Bessho F, Yanagisawa M, Hayashi Y . AF17q25, a putative septin family gene, fuses the MLL gene in acute myeloid leukemia with t(11;17)(q23;q25) Cancer Res 1999 59: 4261–4265

    CAS  PubMed  Google Scholar 

  33. Osaka M, Rowley JD, Zeleznik-Le NJ . MSF (MLL septin-like fusion), a fusion partner gene of MLL, in a therapy-related acute myeloid leukemia with a t(11;17)(q23;q25) Proc Natl Acad Sci USA 1999 96: 6428–6433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yu BD, Hess JL, Horning SE, Brown GAJ, Korsmeyer S . Altered Hox expression and segmental identity in Mll-mutant mice Nature 1995 378: 505–508

    Article  CAS  PubMed  Google Scholar 

  35. Wolff L, Koller R, Bies J, Nazarov V, Hoffman B, Amanullah A, Krall M, Mock B . Retroviral insertional mutagenesis in murine promonocytic leukemias: c-myb and Mml1 Curr Top Microbiol Immunol 1996 211: 191–199

    CAS  PubMed  Google Scholar 

  36. Simeone A, Acampora D, Pannese M, D'Esposito M, Stornaiuolo A, Gulisano M, Mallamaci A, Kastury K, Druck T, Huebner K . Cloning and characterization of two members of the vertebrate Dlx gene family Proc Natl Acad Sci USA 1994 91: 2250–2254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shen W-F, Largman C, Lowney P, Corral JC, Detmer K, Hauser CA, Simonitch TA, Hack FM, Lawrence HJ . Lineage-restricted expression of homeobox-containing genes in human hematopoetic cell lines Proc Natl Acad Sci USA 1989 86: 8536–8540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Magli CM, Barba, P, Celetti A, De Vita G, Cillo, C, Boncinelli E . Coordinate regulation of HOX genes in human hematopoietic cells Proc Natl Acad Sci USA 1991 88: 6348–6352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mathews CHE, Detmer K, Boncinelli E, Lawrence HJ, Largman C . Erythroid-restricted expression of homeobox genes of the human HOX2 locus Blood 1991 78: 2248–2252

    CAS  PubMed  Google Scholar 

  40. Celetti A, Barba P, Cillo C, Rotoli B, Boncinelli E, Magli MC . Characteristic patterns of HOX gene expression in different types of human leukemia Int J Cancer 1993 53: 237–244

    Article  CAS  PubMed  Google Scholar 

  41. Lawrence HJ, Sauvageau G, Ahmadi N, Lopez AR, LeBeau MM, Link M, Humphries K, Largman C . Stage- and lineage-specific expression of the HOXA10 homeobox gene in normal and leukemic hematopoietic cells Exp Hematol 1995 23: 1160–1166

    CAS  PubMed  Google Scholar 

  42. Biji JJ, van Oostveen JW, Walboomers JMM, Brink ATP, Vos W, Ossenkoppele GJ, Meijer CJLM . Differentiation and cell-type-restricted expression of HOXC4, HOXC5 and HOXC6 in myeloid leukemias and normal myeloid cells Leukemia 1998 12: 1724–1732

    Article  Google Scholar 

  43. Kawagoe H, Humphries RK, Blair A, Sutherland HJ, Hogge DE . Expression of HOX genes, HOX cofactors, and MLL in phenotypically and functionally defined subpopulations of leukemic and normal human hematopoietic cells Leukemia 1999 13: 687–698

    Article  CAS  PubMed  Google Scholar 

  44. Salvati PD, Ranford PR, Ford J, Kees UR . HOX11 expression in pediatric acute lymphoblastic leukemia is associated with T cell phenotype Oncogene 1995 11: 1333–1338

    CAS  PubMed  Google Scholar 

  45. Cuneo A, Mecucci C, Kerim S, Vandenberghe E, Dal Cin P, Van Orshoven A, Rodhain J, Bosly A, Michaux JL, Martiat P, Boogaerts M, Carli MG, Castoldi G, Van Den Berghe H . Multipotent stem cell involvement in megakaryoblastic leukemia: cytologic and cytogenetic evidence in 15 patients Blood 1989 74: 1781–1790

    CAS  PubMed  Google Scholar 

  46. Bonnet D, Dick JE . Human acute leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell Nature Med 1997 3: 730–737

    Article  CAS  PubMed  Google Scholar 

  47. Venditti A, Del Poeta G, Buccisano F, Tamburini A, Cox MC, Stasi R, Bruno A, Aronica G, Maffei L, Suppo G, Simone MD, Forte L, Cordero V, Postorino M, Tufilli V, Isacchi G, Masi M, Papa G, Amadori S . Minimally differentiated acute myeloid leukemia (AML-M0): comparison of 25 cases with other French–American–British subtypes Blood 1997 89: 621–629

    CAS  PubMed  Google Scholar 

  48. Sauvageau G, Lansdorp PM, Eaves CJ, Hogge DE, Dragowska WH, Reid DS, Largman C, Lawreence J, Humphries RK . Differential expression of homeobox genes in functionally distinct CD34+ subpopulations of human bone marrow cells Proc Natl Acad Sci USA 1994 91: 12223–12227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bhatia M, Bonnet D, Murdoch B, Gan OI, Dick JE . A newly discovered class of human hematopoietic cells with SCID-repopulating activity Nature Med 1998 4: 1038–1045

    Article  CAS  PubMed  Google Scholar 

  50. Goodell MA . CD34+ or CD34-: does it really matter? Blood 1999 94: 2545–2547

    CAS  PubMed  Google Scholar 

  51. Sato T, Laver JH, Ogawa M . Reversible expression of CD34 by murine hematopoietic stem cells Blood 1999 94: 2548–2554

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Valerie Hu for helpful comments on the manuscript. This work was supported in part by grants from the Elsa U Pardee Foundation (PEB), National Institutes of Health Grant R01 DK53533 (PEB), NIH CA-21765 (FB and SCR), and by the American Lebanese Syrian Associated Charities (ALSAC) (FB and SCR). Procurement and processing of some leukemia samples was supported by National Institutes of Health Grant 5P30CA06973 (BDS).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haga, S., Fu, S., Karp, J. et al. BP1, a new homeobox gene, is frequently expressed in acute leukemias. Leukemia 14, 1867–1875 (2000). https://doi.org/10.1038/sj.leu.2401912

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2401912

Keywords

This article is cited by

Search

Quick links