Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Open Forum
  • Published:

p53 alterations in human leukemia–lymphoma cell lines: in vitroartifact or prerequisite for cell immortalization?

Abstract

Alteration of the p53 gene is one of the most frequent events in human tumorigenesis. The inactivation of p53 tumor suppressor function can be caused by chromosome deletion, gene deletion, or mainly by point mutations. p53 mutations occur moderately often in hematopoietic malignancies. A significantly higher frequency of p53 alterations in cell lines vs primary samples has been observed for all types of malignant hematopoietic cell lines. It has been postulated that p53 gene abnormalities arise in cell lines during in vitro establishment of the culture or prolonged culture; but it is also conceivable that those cases that carry p53 mutations may be more suitable for in vitro establishment as permanent cell lines. We analyzed data on the p53 gene status in a panel of matched primary hematopoietic tumor cells and the respective cell lines derived from this original material. In 85% (53/62) of the pairs of matched primary cells and cell lines, the in vivo and in vitro data were identical (both with p53 wild-type or both with the same p53 mutation). In some instances, serial clinical samples (eg at presentation and relapse) and serial sister cell lines were available. These cases showed that a clinical sample at presentation often had a p53 wild-type configuration whereas the derived cell line and a relapse specimen carried an identical p53 point mutation. These findings suggest that a minor clone, at first undetectable by standard analysis, represents a reservoir for the outgrowth of resistant cells in vivo and also a pool of cells with a growth advantage in vitro, providing a significantly higher chance of immortalization in culture. This was further supported by studies employing mutant allele-specific gene amplifications, a technique which is significantly more sensitive (100- to 1000-fold) than the commonly applied SSCP assay with a sensitivity threshold of about 10% mutated cells within a pool of wild-type cells. Taken together, this analysis confirms the usefulness of human hematopoietic cell lines as in vitro model systems for the study of the biology of hematopoietic malignancies. It further underlines the notion that p53 gene alterations confer a survival advantage to, at least some, malignant cells in vitro and presumably also in vivo; however, it is highly unlikely that a p53 mutation alone would suffice for the immortalization of a cell line in vitro or tumor development in vivo.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. Deppert W . The yin and yang of p53 in cellular proliferation Semin Cancer Biol 1994 5: 187–202

    CAS  PubMed  Google Scholar 

  2. Prokocimer M, Rotter V . Structure and function of p53 in normal cells and their aberrations in cancer cells: projection on the hematologic cell lineages Blood 1994 84: 2391–2411

    CAS  PubMed  Google Scholar 

  3. Vogelstein B, Kinzler KW . p53 function and dysfunction Cell 1992 70: 523–526

    Article  CAS  Google Scholar 

  4. Prokocimer M, Shaklai M, Ben Bassat H, Wolf D, Goldfinger N, Rotter V . Expression of p53 in human leukemia and lymphoma Blood 1986 68: 113–118

    CAS  PubMed  Google Scholar 

  5. Hollstein M, Sridansky D, Vogelstein B, Harris CC . p53 mutations in human cancers Science 1991 253: 49–53

    Article  CAS  Google Scholar 

  6. Levine AJ, Momand J, Finlay CA . The p53 tumour suppressor gene Nature 1991 351: 453–456

    Article  CAS  Google Scholar 

  7. Newcomb EW . P53 gene mutations in lymphoid diseases and their possible relevance to drug resistance Leuk Lymphoma 1995 17: 211–221

    Article  CAS  Google Scholar 

  8. Hartwell L . Defects in a cell cycle checkpoint may be responsible for the genomic instability of cancer cells Cell 1992 71: 543–546

    Article  CAS  Google Scholar 

  9. Livingstone LR, White A, Sprouse J, Livanos E, Jacks T, Tlsty TD . Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53 Cell 1992 70: 923–935

    Article  CAS  Google Scholar 

  10. Guinn BA, Mills KI . p53 mutations, methylation and genomic instability in the progression of chronic myeloid leukaemia Leuk Lymphoma 1997 26: 211–226

    Article  CAS  Google Scholar 

  11. Orita M, Suzuki Y, Sekiya T, Hayashi K . Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction Genomics 1989 5: 874–879

    Article  CAS  Google Scholar 

  12. Suzuki Y, Sekiya T, Hayashi K . Allele-specific polymerase chain reaction: a method for amplification and sequence determination of a single component among a mixture of sequence variants Anal Biochem 1991 192: 82–84

    Article  CAS  Google Scholar 

  13. Willems PMW, Kuypers AWHM, Meijerink JPP, Holdrinet RSG, Mensink EJBM . Sporadic mutations of the p53 gene in multiple myeloma and no evidence for germline mutations in three familial multiple myeloma pedigrees Leukemia 1993 7: 986–991

    CAS  PubMed  Google Scholar 

  14. Wu JK, Ye Z, Darras BT . Sensitivity of single-strand conformation polymorphism (SSCP) analysis in detecting p53 point mutation in tumors with mixed cell population Am J Hum Genet 1993 52: 1273–1275

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Harris CC, Hollstein M . Clinical implications of the p53 tumor-suppressor gene New Engl J Med 1993 329: 1318–1327

    Article  CAS  Google Scholar 

  16. Hainaut P, Hernandez T, Robinson A, Rodriguez-Tome P, Flores T, Hollstein M, Harris CC, Montesano R . IARC Database of p53 gene mutations in human tumors and cell lines: updated compilation, revised formats and new visualisation tools Nucleic Acids Res 1998 26: 205–213

    Article  CAS  Google Scholar 

  17. Imamura J, Miyoshi I, Koeffler HP . p53 in hematologic malignancies Blood 1994 84: 2412–2421

    CAS  Google Scholar 

  18. Koeffler HP, Miller C, Nicolson MA, Ranyard J, Bosselman RA . Increased expression of p53 protein in human leukemia cells Proc Natl Acad Sci USA 1986 83: 4035–4039

    Article  CAS  Google Scholar 

  19. Wolf D, Rotter V . Major deletions in the gene encoding the p53 tumor antigen cause lack of p53 expression in HL-60 cells Proc Natl Acad Sci USA 1985 82: 790–794

    Article  CAS  Google Scholar 

  20. Sugimoto K, Toyoshima H, Sakai R, Miyagawa K, Hagiwara K, Ishikawa F, Takaku F, Yazaki Y, Hirai H . Frequent mutations in the p53 gene in human myeloid leukemia cell lines Blood 1992 79: 2378–2383

    CAS  PubMed  Google Scholar 

  21. Sutcliffe T, Fu L, Abraham J, Vaziri H, Benchimol S . A functional wild-type p53 gene is expressed in human acute myeloid leukemia cell lines Blood 1998 92: 2977–2979

    CAS  PubMed  Google Scholar 

  22. Zheng A, Castren K, Säily M, Savolainen ER, Kostinen P, Vähäkangas K . p53 status of newly established acute myeloid leukaemia cell lines Br J Cancer 1999 79: 407–415

    Article  CAS  Google Scholar 

  23. Cheng J, Haas M . Frequent mutations in the p53 tumor suppressor gene in human leukemia T-cell lines Mol Cell Biol 1990 10: 5502–5509

    Article  CAS  Google Scholar 

  24. Kawamura M, Ohnishi H, Guo SX, Sheng XM, Minegishi M, Hanada R, Horibe K, Hongo T, Kaneko Y, Bessho F, Yanagisawa M, Sekiya T, Hayashi Y . Alterations of the p53, p21, p16, p15 and RAS genes in childhood T-cell acute lymphoblastic leukemia Leukemia Res 1999 23: 115–126

    Article  CAS  Google Scholar 

  25. Zhou M, Yeager AM, Smith SD, Findley HW . Overexpression of the MDM2 gene by childhood acute lymphoblastic leukemia cells expressing the wild-type p53 gene Blood 1995 85: 1608–1614

    CAS  Google Scholar 

  26. Zhou M, Gu L, Yeager AM, Findley HW . Sensitivity to Fas-mediated apoptosis in pediatric acute lymphoblastic leukemia is associated with a mutant p53 phenotype and absence of Bcl-2 expression Leukemia 1998 12: 1756–1763

    Article  CAS  Google Scholar 

  27. Farrugia MM, Duan LJ, Reis MD, Ngan BY, Berinstein NL . Alterations of the p53 tumor suppressor gene in diffuse large cell lymphomas with translocations of the c-myc and bcl-2 proto-oncogenes Blood 1994 83: 191–198

    CAS  PubMed  Google Scholar 

  28. Li CC, O'Donnell CD, Beckwith N, Longo DL . Detection of p53 mutations in B cell non-Hodgkin's lymphoma cell lines Leukemia 1995 9: 650–655

    CAS  PubMed  Google Scholar 

  29. Drexler HG, Uphoff CC, Gaidano G, Carbone A . Lymphoma cell lines: in vitro models for the study of HHV-8+ primary effusion lymphomas (body cavity-based lymphomas) Leukemia 1998 12: 1507–1517

    Article  CAS  Google Scholar 

  30. Farrell PJ, Allan GJ, Shanahan F, Vousden KH, Crook T . p53 is frequently mutated in Burkitt's lymphoma cell lines EMBO J 1991 10: 2879–2887

    Article  CAS  Google Scholar 

  31. Gaidano G, Ballerini P, Gong JZ, Inghirami G, Neri A, Newcomb EW, Magrath IT, Knowles DM, Dalla-Favera R . p53 mutations in human lymphoid malignancies: association with Burkitt lymphoma and chronic lymphocytic leukemia Proc Natl Acad Sci USA 1991 88: 5413–5417

    Article  CAS  Google Scholar 

  32. Mazars GR, Portier M, Zhang XG, Jourdan M, Bataille R, Theillet C, Klein B . Mutations of the p53 gene in human myeloma cell lines Oncogene 1992 7: 1015–1018

    CAS  PubMed  Google Scholar 

  33. Egle A, Villunger A, Marschitz I, Kos M, Hittmair A, Lukas P, Grünewald K, Greil R . Expression of Apo-1/Fas (CD95), Bcl-2, Bax and Bcl-x in myeloma cell lines: relationship between responsiveness to anti-Fas mab and p53 functional status Br J Haematol 1997 97: 418–428

    Article  CAS  Google Scholar 

  34. Komuro H, Hayashi Y, Kawamura M, Hayashi K, Kaneko Y, Kamoshita S, Hanada R, Yamamoto K, Hongo T, Yamada M, Tsuchida Y . Mutations of the p53 gene are involved in Ewing's sarcoma but not in neuroblastomas Cancer Res 1993 53: 5284–5288

    CAS  PubMed  Google Scholar 

  35. Mitsudomi T, Steinberg SM, Nau MM, Carbone DD, D'Amico D, Bodner S, Oie HK, Linnoila I, Mulshine JS, Minna JD, Gazdar AF . p53 gene mutations in non-small cell lung cancer cell lines and their correlation with the presence of ras mutations and clinical features Oncogene 1992 7: 171–180

    CAS  PubMed  Google Scholar 

  36. Sen S, Zhou H, Andersson BS, Cork A, Freireich EJ, Stass SA . p53 gene mutations with chromosome 17 abnormalities in chronic myelogenous leukemia blast crisis patients persist in long-term cell lines but may be acquired in acute myeloid leukemia cells in vitro Cancer Genet Cytogenet 1995 82: 35–40

    Article  CAS  Google Scholar 

  37. Ollikainen H, Syrjanen S, Koskela K, Pelliniemi TT, Pulkki K . p53 gene mutations are rare in patients but common in patient-originating cell lines in multiple myeloma Scand J Clin Lab Invest 1997 57: 281–289

    Article  CAS  Google Scholar 

  38. Felix CA, Megonigal MD, Chervinsky DS, Leonhard DGB, Tsuchida N, Kakati S, Block AMW, Fisher J, Grossi M, Salhany KI, Jani-Sait SN, Aplan PD . Association of germline p53 mutation with MLL segmental jumping translocation in treatment-related leukemia Blood 1998 91: 4451–4456

    CAS  PubMed  Google Scholar 

  39. Carbone A, Cilia AM, Gloghini A, Canzonieri V, Pastore C, Todesco M, Cozzi M, Perin T, Volpe R, Pinto A, Gaidano G . Establishment of HHV-8-positive and HHV-8-negative lymphoma cell lines from primary lymphomatous effusions Int J Cancer 1997 73: 562–569

    Article  CAS  Google Scholar 

  40. Carbone A, Cilia AM, Gloghini A, Capello D, Todesco M, Quattrone S, Volpe R, Gaidano G . Establishment and characterization of EBV-positive and EBV-negative primary effusion lymphoma cell lines harbouring human herpesvirus type-8 Br J Haematol 1998 102: 1081–1089

    Article  CAS  Google Scholar 

  41. Miura N, Sato T, Fuse A, Okimoto Y, Kinugawa N, Horie H, Ota S, Kakuda H, Yokoe H, Miya T, Suzuki N, Niimi H . Establishment of a new human megakaryoblastic cell line, CMY, with chromosome 17p abnormalities Int J Mol Med 1998 1: 559–563

    CAS  PubMed  Google Scholar 

  42. Del Mistro A, Leszl A, Bertorelle R, Calabro ML, Panozzo M, Menin C, D'Andrea E, Chieco-Bianchi L . A CD30-positive T cell line established from an aggressive anaplastic large cell lymphoma, originally diagnosed as Hodgkin's disease Leukemia 1994 8: 1214–1219

    CAS  PubMed  Google Scholar 

  43. Yeargin J, Cheng J, Yu AL, Gjerset R, Bogart M, Haas M . P53 mutation in acute T cell lymphoblastic leukemia is of somatic origin and is stable during establishment of T cell acute lymphoblastic leukemia cell lines J Clin Invest 1993 91: 2111–2117

    Article  CAS  Google Scholar 

  44. Gaidano G, Parsa NP, Tassi V, Della-Latta P, Chaganti RSK, Knowles DM, Dalla-Favera R . In vitro establishment of AIDS-related lymphoma cell lines: phenotypic characterization, oncogene and tumor suppressor gene lesions, and heterogeneity in Epstein–Barr virus infection Leukemia 1993 7: 1621–1629

    CAS  PubMed  Google Scholar 

  45. Gaidano G, Cechova K, Chang Y, Moore PS, Knowles DM, Dalla-Favera R . Establishment of AIDS-related lymphoma cell lines from lymphomatous effusions Leukemia 1996 10: 1237–1240

    CAS  PubMed  Google Scholar 

  46. Abo J, Inokuchi K, Dan K, Nomura T . p53 and N-ras mutations in two new leukemia cell lines established from a patient with multilineage CD7-positive acute leukemia Blood 1993 82: 2829–2836

    CAS  PubMed  Google Scholar 

  47. Sotomatsu M, Hayashi Y, Kawamura M, Yugami SI, Shitara T . Establishment of a new human pre-B acute lymphoblastic leukemia cell line (KMO-90) with 1;19 translocation carrying p53 gene alterations Leukemia 1993 7: 1615–1620

    CAS  PubMed  Google Scholar 

  48. Wada H, Asada M, Nakazawa S, Itoh H, Kobayashi Y, Inoue T, Fukumuro K, Chan LC, Sugita K, Hanada R, Akuta N, Kobayashi N, Mizutani S . Clonal expansion of p53 mutant cells in leukemia progression in vitro Leukemia 1994 8: 53–59

    CAS  PubMed  Google Scholar 

  49. Okabe M, Kunieda Y, Nakane S, Kurosawa M, Itaya T, Vogler WR, Shoji M, Miyazaki T . Establishment and characterization of a new Ph1-positive chronic myeloid leukemia cell line MC3 with trilineage phenotype and an altered p53 gene Leuk Lymphoma 1995 16: 493–503

    Article  CAS  Google Scholar 

  50. Yufu Y, Goto T, Choi I, Uike N, Kozuru M, Ohshima K, Taniguchi T, Motokura T, Yatabe Y, Nakamura S . A new multiple myeloma cell line, MEF-1, possesses cyclin D1 overexpression and the p53 mutation Cancer 1999 85: 1750–1757

    Article  CAS  Google Scholar 

  51. Chang H, Blondal JA, Benchimol S, Minden MD, Messner HA . p53 mutations, c-myc and bcl-2 rearrangements in human non-Hodgkin's lymphoma cell lines Leuk Lymphoma 1995 19: 165–171

    Article  CAS  Google Scholar 

  52. Nagai M, Fujita M, Ikeda T, Ohmori M, Kuwabara H, Yamaoka G, Tanaka K, Kamada N, Taniwaki M, Inoue T, Irino S, Takahara J . Alterations of p53 and Rb genes in a novel human GM-CSF-dependent myeloid cell line (OHN-GM) established from therapy-related leukaemia Br J Haematol 1997 98: 392–398

    Article  CAS  Google Scholar 

  53. Nagai M, Fujita M, Ohmori M, Matsubara S, Taniwaki M, Horiike S, Tasaka T, Koeffler HP, Takahara J . Establishment of a novel human B-cell line (OZ) with t(14;18)(q32;q21) and aberrant p53 expression was associated with the homozygous deletions of p15(INK4B) and p16(INK4A) genes Hematol Oncol 1997 15: 109–119

    Article  CAS  Google Scholar 

  54. Kawamura M, Kikuchi A, Kobayashi S, Hanada R, Yamamoto K, Horibe K, Shikano T, Ueda K, Hayashi K, Sekiya T, Hayashi Y . Mutations of the p53 and ras genes in childhood t(1;19)-acute lymphoblastic leukemia Blood 1995 85: 2546–2552

    CAS  PubMed  Google Scholar 

  55. Matozaki S, Nakagawa T, Kawaguchi R, Aozaki R, Tsutsumi M, Murayama T, Koizumi T, Isobe RNT, Chihara K . Establishment of a myeloid leukaemic cell line (SKNO-1) from a patient with t(8;21) who acquired monosomy 17 during disease progression Br J Haematol 1995 89: 805–811

    Article  CAS  Google Scholar 

  56. Feinstein E, Cimino G, Gale RP, Alimena G, Berthier R, Kishi K, Goldman J, Zaccaria A, Berrebi A, Canaani E . p53 in chronic myelogenous leukemia in acute phase Proc Natl Acad Sci USA 1991 88: 6293–6297

    Article  CAS  Google Scholar 

  57. Bi S, Hughes T, Bungey J, Chase A, de Fabritiis P, Goldman JM . p53 in chronic myeloid leukemia cell lines Leukemia 1992 6: 839–842

    CAS  PubMed  Google Scholar 

  58. Malkin D, Li FP, Strong LC, Fraumeni JF Jr, Neslon CE, Kim DH, Kassel J, Gryka MA, Bischoff FZ, Tainsky MA, Friend SH . Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms Science 1990 250: 1233–1238

    Article  CAS  Google Scholar 

  59. Drexler HG, Matsuo Y . Guidelines for the characterization and publication of human malignant hematopoietic cell lines Leukemia 1999 13: 835–842

    Article  CAS  Google Scholar 

  60. Drexler HG, Dirks WG, MacLeod RAF . False human hematopoietic cell lines: cross-contaminations and misinterpretations Leukemia (in press)

  61. Chang H, Benchimol S, Minden MD, Messner HA . Alterations of p53 and c-myc in the clonal evolution of malignant lymphoma Blood 1994 83: 452–459

    CAS  PubMed  Google Scholar 

  62. Drexler HG . Review of alterations of the cyclin-dependent kinase inhibitor INK4 family genes p15, p16, p18 and p19 in human leukemia–lymphoma cells Leukemia 1998 12: 845–859

    Article  CAS  Google Scholar 

Download references

Acknowledgements

SF was supported by the ‘Office Franco-Allemand de la Jeunesse’ (OFAJ).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drexler, H., Fombonne, S., Matsuo, Y. et al. p53 alterations in human leukemia–lymphoma cell lines: in vitroartifact or prerequisite for cell immortalization?. Leukemia 14, 198–206 (2000). https://doi.org/10.1038/sj.leu.2401604

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2401604

Keywords

This article is cited by

Search

Quick links