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The prognostic significance of tumor-infiltrating lymphocytes (TILs) has been a longstanding topic of debate. In
cases where TILs have improved patient outcome, T lymphocytes are recognized as the main effectors of
antitumor immune responses. However, recent studies have revealed that a subset of CD4þ T cells, referred to
as CD4þCD25þ regulatory T cells (Treg), may accumulate in the tumor environment and suppress tumor-
specific T-cell responses, thereby hindering tumor rejection. Hence, predicting tumor behavior on the basis of
an indiscriminate evaluation of tumor-infiltrating T cells may result in inconsistent prognostic accuracy. The
presence of infiltrating CD4þCD25þ Treg may be detrimental to the host defense against the tumor, while the
presence of effector T lymphocytes, including CD8þ T cells and nonregulatory CD4þ helper T cells may be
beneficial. Enhanced recruitment of antitumor effector T lymphocytes to tumor tissue in addition to inhibition of
local Treg, may therefore be an ideal target for improving cancer immunotherapy. This article reviews the
antitumor functions of T-lymphocytes, with special attention given to CD4þ regulatory T-cells within the tumor
environment.
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Ever since the notion of tumor antigenicity emerged
as an irrevocable concept,1–7 the failure of immuno-
competent hosts to reject antigenic cancers has been
a longstanding conundrum in the tumor immuno-
logy field.8–11 Despite the troubling failure of the
host to reject antigenic tumors, evidence of an
antigen-specific immune response is undeniable.12,13

Lymphocytes infiltrate many murine and human
tumors, yet to the consternation of many immuno-
logists, spontaneous regression rarely occurs. Even
the significance of inflammatory cells within or
surrounding solid tumors has been the subject of
conflicting reports.14–17

Several studies have demonstrated that elevated
levels of tumor-infiltrating lymphocytes (TILs) are
associated with better prognosis.14,15,17 However, a
sweeping assumption that the influx of lymphocytes
to the tumor site is invariably beneficial to the
patient may be inappropriate. Recent studies suggest
that the type, not the quantity, of tumor-infiltrating
cells may be a more critical determinant for the

prognosis.16 For example, infiltrating regulatory
CD4þ cells can be more detrimental than favor-
able.16 Specifically, this subpopulation of TILs may
impair the host’s ability to defend against malignant
cells.18–29 Likewise, antitumor lymphocytes migrat-
ing to the tumor site may become compromised once
within the tumor milieu, or may adversely adapt to
the suppressive environment to promote growth
instead of regression. This review will rigorously
examine the subtypes of T lymphocytes that behave
either as friends or as foes in antitumor immunity. A
detailed understanding of the functional peculia-
rities of individual T lymphocyte subtypes may
explain the paradox that the presence of TILs does
not always correlate with improved prognosis
and may also allow the development of targeted
approaches that specifically augment antitumor
immune responses.17,30–38

Antitumor functions of T lymphocytes

The mature T-cell population is composed of ab T
cells expressing CD4 or CD8, and the CD4�/CD8� gd
T-cell receptor (TCR)-expressing cells. The unique
function of CD4þ and CD8þ T cells is dictated by the
expression of these coreceptors, CD4 or CD8,
for which the ligand is the b2 domain of the
major histocompatibility complex (MHC) class II
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molecule39 and the a3 domain of MHC class I
molecules,40 respectively. Due to these specificities,
the ab TCR of CD8þ T cells is restricted to the
recognition of antigens presented by MHC class I
molecules and the ab TCR of CD4þ T cells to
antigens presented by MHC class II molecules.
However, relatively little is known about the func-
tion of gdT in antitumor immunity so far; thus, this
review will mainly focus on the ab T cells.

The important role of T cells as effectors in
antitumor immunity was first shown in numerous
murine models. For instance, UV light-induced
tumors are rejected regularly by normal mice, but
grow progressively in the absence of T cells.41–43 In
human melanoma patients, a brisk TIL response is
also of prognostic significance. It has also been
demonstrated convincingly that T-cell-mediated
immunity is essential for the rejection of virally
and chemically induced tumors.5,7,44–47 For example,
with murine model tumors induced by the chemical
carcinogen methylcholanthrene (MCA), intravenous
injection of immune cells, but not of immune serum,
can transfer systemic tumor-specific immunity into
sublethally irradiated mice.5 These results are
consistent with studies showing that the protec-
tive immunity against a plasma-cell tumor was
abolished by prior depletion of T-lymphocytes via
anti-T-cell antibodies and complement.47

The importance of T cells in tumor immunity has
also been implicated in human studies, albeit with
discernable limitations. While most murine tumor
models have the advantage of utilizing antigen-
specific T cells generated from tumor-free syngeneic
mice, generating a human homolog is not feasible.
Thus, in human studies, T lymphocytes are isolated
from peripheral blood48,49 or from the tumor50 of
cancer patients. Such T cells can react in vitro with
autologous cancer cells.51 Utilizing adoptive transfer
of in vitro expanded TIL in combination with
chemotherapy, recent clinical trials have shown up
to 50% positive response rates in selected patients
with late-stage aggressive cancers.52–55

CD8þ T cells in tumor immunity

While the significance of lymphocytes in tumor
immunity is rarely disputed, the relative importance
of various T-cell subsets in tumor rejection is the
subject of great controversies.56 Broadly speaking,
since cancer is a disease caused by an array of
mutations in various types of cells, differences in
the T-cell subsets required for mediating tumor
rejection are not altogether surprising. One such
subset is the CD8þ cytotoxic T lymphocytes (CTLs).
Most tumors are positive for MHC class I but
negative for MHC class II, and CTLs are able to
induce tumor killing upon direct recognition of
peptide antigens, presented by the tumor’s MHC
class I molecules. Thus, the initial attention to
antitumor immune responses was preferentially

given to CD8þ T cells. That the CD8þ T cells are
critical effectors against tumor cells is further
supported by numerous studies in murine models.
For instance, in UV light-induced tumors the CD8þ

cytolytic T-cell subset appears to be required for
rejection.41 Murine CTLs that kill tumor targets
in vitro can be freshly isolated from mice after
repeated intraperitoneal injection of antigenic tumor
cells, or can be generated ex vivo in a 7-day mixed
lymphocyte-tumor cell culture. Elimination of CD8þ

T cells from mice—either via depleting antibodies or
using genetic knockout mice—can, at least partially,
abrogate the antitumor immunity induced by most
cancer vaccines.57–60 Consistent with the murine
models, clinical data from cancer patients uphold
the importance of CD8þ T cells in bringing forth an
antitumor response. Adoptive transfer studies of in
vitro stimulated CD8þ T-cell lines and CD8þ clones
specific for tumor antigens effectively mediate
antitumor immunity when transferred back into
tumor-bearing hosts.10,13,52 Furthermore, recent re-
ports suggest that immunization, using either ad-
juvant or dendritic cells (DCs) with pure tumor
peptides, can result in productive antitumor im-
munity that is restricted by MHC class I.61,62 Taken
together, CD8þ T cells in tumor immunity can be
unquestionably heralded as one of the principal
subsets of T cells that constructively mediate an
effective antitumor response (see Figure 1).

Helper and effector role of CD4þ T cells

Undeniably, CD4þ T cells are an integral part of
adaptive immunity, but the specific role they play in
mounting an antitumor response remains a subject
of debate. The critical function of CD4þ T cells in
promoting immunity has been consistently demon-
strated by vaccine and challenge experiments
employing antibody-mediated depletion of CD4þ T
cells, or by using CD4-knockout mice.57–60,63–68 More
importantly, similar to CD8þ T cells, tumor-specific
CD4þ T cells that can recognize tumor antigens do
exist and data show that these T cells migrate to the
tumor site in both murine and human cancers.69–71

However, complications arise when the accumula-
tion of CD4þ T cells within the tumor microenviron-
ment during tumor progression seemingly hinders
the effector function of CD8þ T cells.18,72–75 The
hallmark phenotype of the CD4þ T cell that impedes
the antitumor response seems to be attributable to a
regulatory function.16,76–79 This paradoxical dualism
of CD4þ T cells obligates further differentiation
of this subtype into helper and regulatory CD4þ

T cells.
Although CD4þ T cells have been shown to be

sufficient to eliminate tumor cells in the absence of
CD8þ T cells in some tumor models,70,80–83 it is more
often the case that both CD4þ and CD8þ are
required for effective tumor rejection to occur.84 In
part, this is due to a substantial portion of tumor
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cells expressing only class I MHC molecules, not
class II molecules, thereby limiting direct recogni-
tion by the CD4þ T cells. Moreover, the predominant
effector mechanism in tumor immunity is direct
lysis of tumor cells by the MHC class I recognizing
CD8þ CTL. The role of CD4þ T cells, in antitumor
responses is often to aid in the activation of CD8þ T
cells, leading to the destruction of the tumor by
CD8þ CTL. The CD4þ T-cell help of the CD8þ CTLs
in tumor immunity can be divided into three phases:
early induction, effector maintence, and memory.

CD4þ T cells help CTL induction

It has been debated for decades if CD4þ T cells are
required for the priming of CTL. Accumulating
evidence has indicated that for the induction of
tumor-specific CD8þ T-cell responses, cross-presen-
tation of antigens that have been captured by
professional antigen-presenting cells (APCs) such
as DCs plays a dominant role.85–89 CD4þ T-cell help
has been hinted to be essential for such cross-
priming in the induction of CTL immunity. This
requirement for CD4 help is believed at least in part
to activate APCs,90 which in turn express costimu-

latory molecules such as ICAM-1,91 CD80, and
CD86,92 or to secrete cytokines including interleukin
(IL)-12.92,93 These factors are essential for better
CD8þ T-cell activation. Most T-cell help for CTL
priming is dependent on the interaction between
CD40 ligand (CD40L) expressed by CD4þ T cells and
CD40 on APC.94–97 The CD40–CD40L interaction has
also been proven to be important in the generation of
protective T-cell-mediated tumor immunity.98,99 The
requirement for CD4þ T cells to ‘license’ APC for the
priming of CTL helps explain some scenarios in
which the induction of CTL can be achieved in the
absence of CD4þ T cells. The typical CTL priming
that is independent of CD4þ T cells is via the direct
activation of DCs by virus that provides the optimal
inflammatory signal to activate DCs,100 which can
subsequently prime antigen-specific CTL responses
in the absence of CD4þ T cells.101 CD4-independent
CTL induction via activated DC is further demon-
strated by data showing CD40-mediated activation
with soluble ligand, or activating antibodies which
‘license’ DC for cross-priming in the absence of
CD4þ T cells.98,99

However, these observations have not been con-
firmed in all experimental models. One study has
shown that injection of MHC class I-deficient tumor

Figure 1 Proposed functions of T cells in tumor immunology. The CD8þ cytotoxic lymphocyte (CTL) is a well-documented effector of
tumor immunity, interacting with tumor cells through the MHC-I receptor (not shown). CD4þ T-helper cells can help prime CTL, both
directly and through stimulation of professional antigen-presenting cells (APC). The APC, in turn, present tumor antigens to the CTL.
Both effects of CD4þ T-helper cells promote the host immune response to tumors. An additional proposed effect of CD4þ helper cells is
the maintenance of a subpopulation of CD8þ T cells as circulating ‘memory’ cells and possibly enhanced conversion of memory cells
back into functional CTL upon re-exposure to tumor antigens. However, a population of CD4þCD25þ Treg cells is capable of
downregulating the action of CTL. These Treg cells may reside within the tumor microenvironment. The role of tumor-induced
inflammation or recruitment of CD4þ T cells from the circulation in generating Treg cells is unclear. Regardless, TIL may induce both
CTL and Treg cells, making assessment of TIL a critical clinical issue.
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cells into MHC class II knockout mice resulted in the
induction of tumor cell-specific CTL responses,102

demonstrating that cross-priming can occur even in
the absence of CD4þ T cells, albeit with decreased
efficiency. Hence, it is still possible that the
requirement for CD4 help was bypassed in this
model because DCs were activated by cellular
components released during tumor cell apoptosis,
which can serve as adjuvants.103

Other evidence seems to suggest that high levels
of antigen can bypass the requirement for CD4 help
in CTL induction. For example, RMA-S cells loaded
with an MHC Class I-restricted peptide can induce
CTL responses in vitro. The observed in vitro CTL
priming was independent of CD4þ T cells or MHC
class II-expressing cells, but was dependent upon
the level of MHC class I expression on the RMA-S
cells.104 A high expression level of MHC class I
peptide complexes on the peptide-presenting cells
was the decisive requirement for the induction
of CD4þ T-cell-independent CTL response in this
model. This hypothesis would explain other obser-
vations in the vaccination experiment using MHC
Class I-restricted peptides emulsified in noninflam-
matory incomplete Freund’s adjuvant (IFA), where-
by robust CTL function was induced in mice
depleted of CD4þ T cells.105

Even with high level of antigen provided for CTL
priming, other conditions may be required for CTL
induction in the absence of CD4 help. We have
shown that CD4 help is dispensable for cross-
priming of CTL when intact draining lymph nodes
are available.88 However, in the absence of draining
lymphoid tissue, this additional ‘help’ becomes
essential for the proliferation of naı̈ve CD8þ T
cells.88

Other observations appropriately illustrate that
the CD4þ help even in the presence of activated DCs
cannot be altogether excluded or ignored, suggesting
that CD4þ T cells may play roles other than
‘licensing’ DCs in CTL induction. For example, in
experiments utilizing vaccinations with OVA-trans-
duced CD40-activated DCs, only in the presence of
CD4þ T cells was there protection against formation
of ovalbumin (OVA)-expressing tumors.106 Further-
more, in some studies, vaccination with transduced
DCs or DCs pulsed with peptides, tumor lysates, or
tumor cell-derived exosomes has been shown to be
at least partially CD4þ T cell-dependent, although it
is possible that DCs were not properly activated
prior to injection.107–110

In summary, the available data suggest that CD4þ

T cells are generally required for CTL priming when
DCs are not activated through another mechanism.
However, other conditions, such as the level of
antigen provided or the integrity of draining lym-
phoid tissues, may also impact on the requirement
for CD4 help. Nevertheless, CD4þ T-cell help has
been considered essential for the induction of
CTL responses against tumors in most cases. Given
the noninflammatory condition of the majority of

cancers in addition to the unavailability of tumor
antigens for cross-presentation,89 DCs require activa-
tion by CD4þ T cells before they can induce the full
activation and differentiation of naı̈ve CD8þ T cells
into CTLs.

CD4þ T cells help maintain a CTL
response

While the necessity of helper CD4þ T cells in the
induction of CTL remains a controversy, it is
generally accepted that CD4þ T cells are critical
for the maintenance of CTL in both virally directed
and tumor-specific immune responses.111–114 As
clearly demonstrated in human cytomegalovirus
(CMV) infection, the survival of adoptively trans-
ferred anti-CMV CTLs is dependent on the presence
of CMV-specific CD4þ T cells persisting in the
host.115 For the host to perpetually sustain an
effector CTL function to counter a persisting virus
infection, help from CD4þ T cells may be required
either through cytokine secretion or stimulation that
is independent of DC help. In certain reports, the
need for helper CD4þ T cells can be replaced by
exogenously provided IL-2,116–118 suggesting that the
requirement for CD4þ T cells may simply be to
supplement CD8þ T cells with IL-2, a cytokine
traditionally thought to be essential for promoting
growth and proliferation of T cells. Whether IL-2
is the primary mechanism or a byproduct utilized
by CD4þ to provide help for the maintenance
of CTL remains to be determined. However, the
contribution of CD4þ help in sustaining a tumor-
specific CTL response is unequivocally recognized
as an important means to an end. There is no
shortage of corroborating data from therapeutic
vaccination and adoptive transfer studies that
implicate CD4þ help in sustaining viable CTL
function.

In some murine models, while tumor growth was
prevented by vaccinations with peptide-pulsed DC-
mediated CTL induction, the same therapeutic
immunization against an established tumor (a
scenario mimicking the chronic persistence of
antigen) required CD4þ T-cell help.114 Similarly,
while adoptive transfer of tumor-specific CTLs
prevented tumor formation in CD4þ T cells depleted
or MHC class II knockout mice, systemic metastases
(a condition that may require persistence of effector
CTLs) could not be cured unless the hosts bear
CD4þ T cells.119 Thus, as the tumor matures, CD4þ

help becomes vital to the persistence of the effector
response. Published reports on clinical trials of
adoptive immunotherapy further support this con-
cept.55 Cotransfer of CD4þ T cells with CD8þ T cells
expanded from autologous tumor-infiltrating T cells
prolonged the survival of the adoptively transferred
T cells.55 Taken together, it is evident that the
longevity of a tumor-specific CTL response is
enhanced by the presence of CD4þ T cells.
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Role of CD4þ T cells in the induction
and maintenance of CD8þ T-cell memory
responses

After the clearance of antigen the majority of effector
CTLs undergo apoptosis, while a minor portion
convert into lymphocytes with a memory pheno-
type. Thus, upon a second antigen encounter, CTL
response propagates with alacrity and potency to
provide the host with ‘anamnestic’ protection. It is
generally accepted that memory cells persist in
circulation subsequent to an effector response.
However, the role of CD4þ T cells in the induction
and maintenance of memory CTLs has been contro-
versial. While recent publications seem to have
reached a consensus that CD4þ T cells are indis-
pensable for an intact CTL memory response,120–124

several studies have suggested that CD4þ T cells are
required in the primary antigenic encounter in order
to ‘program’ the CD8þ T cells to differentiate into
long-lived, functional memory cells.120,121 Others
have argued that CD4þ T cells are required after
antigen is eliminated to maintain the number or
normal functions of CD8þ memory T cells.123,124

In regard to achieving an anamnestic CTL
response, one earlier study reported a CD4þ T- and
B-cell-independent persistence of memory H-Y-
specific CTLs.125 Two other groups also found that
virus-specific peptide-tetramer-positive memory
cells persisted in CD4 or MHC class II knockout
mice using viral infection models.100,126 However,
despite the clear presence of virus-specific CD8þ

memory T cells, both groups were unable to revert
memory T cells into effector T cells in the absence of
CD4þ T cells.100,126 In other words, the memory
phenotype CD8þ T cells were nonfunctional. Simi-
lar results were obtained in the previously described
mouse H-Y model, whereby exogenous cytokine
addition was required to revert memory cells back
into CTLs in the absence of CD4þ T cells.125 These
earlier findings suggest that CD4þ T cells were
essential for the conversion of memory CTLs into
effector CTLs upon secondary antigen encounter.
Other groups have expanded on the aforementioned
studies by utilizing adoptive transfer experiments to
emphasize the necessity of CD4þ in sustaining the
memory cells in the circulation. They complemen-
ted earlier studies with MHC class II knockout mice
in adoptive transfer of memory T cells, by illustrat-
ing that, in the absence of CD4þ help, reactivation
into effector CTLs could not occur.119 While these
earlier studies did not address whether CD4þ T cells
were required in the priming phase of CLT to
‘program’ them to later develop into long-lived
functional memory cells, recent studies by Bevan’s
group revealed that CD4þ T cells are not required
during the priming of CTL, but only are required at
a later stage for the maintenance of memory CD8þ

T cells.123

However, two recent publications by Shedlock
et al121 and Janssen et al120 supported the idea that

CD4þ T cells are only essential during the primary
antigen encounter to ‘program’ the CD8þ T cells to
differentiate into long-lived, functional memory
cells. They show that adoptively transferred CTLs
can survive and function properly in an environ-
ment without CD4þ T cells after being primed in
their presence.120,121 In addition, CD4þ T cells were
not required for the secondary activation of CTLs.
Taken together, the data available suggest a general
requirement for CD4 help to generate a healthy CD8
memory. However, the stage at which CD8 T-cell
responses require CD4 help and the nature of such
help remain unresolved.

Th1 vs Th2 responses for anti-tumor
immunity

CD4þ T-cell responses can be divided into different
types depending upon their cytokine profile.127 The
defined Th1 cells are characterized especially by the
production of interferon (IFN)-g, whereas Th2 cells
produce IL-4, IL-5 and other cytokines. The balance
between Th1 and Th2 cytokines has definite
influence on the outcome of various immune
responses, as Th1 preferentially induces cellular
immunity and Th2 tends to elicit humoral immu-
nity.128 The cytokine IFN-g impacts positively on
antigen processing and presentation because MHC
class I and II—and the expression of several other
molecules such as transporter associated with
antigen processing (TAP) and proteasome compo-
nents—are under the control of this cytokine.129

Therefore, the Th1 response is generally correlated
with a better cellular and CTL response. Since a
cellular immune response is preferable for tumor
destruction, a Th1 response has been proposed to
be beneficial for antitumor immunity. Several
reports have supported this idea and demonstrated
the parallelism between the generation of a Th1
response and a stronger antitumor immunity.130–134

A Th1 response has even been shown to be essential
for antitumor immunity, and Th2 cytokines down-
regulate antitumor immunity in some reports.134–136

The concept of immune deviation, namely, a shift
from a Th1 to a Th2 cytokine profile, has been
hinted to be one of the major contributors to the
failure of T-cell-mediated immunity against tumors.
Indeed, immune deviation to Th2 cytokine produc-
tion has been reported in progressive cancer
patients.137 On the contrary, an immunization-
evoked Th2 to Th1 change was shown to induce
tumor rejection in a murine tumor model.138

Additionally, Th2 cytokines have been shown to
promote tumor growth in several experimental
models.138

However, as in most immunological situations,
one can never irrevocably conclude one way over
another. There are plenty of data supporting the
opposite: Th2 cytokines have been shown to be
helpful for cancer gene therapy,139,140 and tumor-
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specific Th2 clones have been demonstrated to
exhibit strong antitumor activity in vivo.141–144 The
mechanisms of how Th2 helper T cells destroy
tumors are not yet established, but there is some
evidence to suggest that the antitumor effect is
mediated through the activation of innate immune
cells such as eosinophils and macrophages by Th2
CD4þ T cells, which in turn secrete superoxide and
nitric oxide.145 Although an effective antitumor
immunity would be preferentially mediated through
a Th1 response resulting in a direct killing by CTL,
the results published up to this point seems to be
directed towards a cooperative balance between the
Th1 and Th2.

CD4þ regulatory T cells within the tumor
environment

Succinctly stated, the immune system is constantly
working to find a balance between Th1 and Th2,
activation and apoptosis, and proinflammatory and
anti-inflammatory conditions. It has recently come
to light that during tumor progression the tumor
microenvironment becomes host to such a balancing
event, specifically the balance between the effector
and the regulatory response. Although not much is
known regarding T-cell regulatory function pertain-
ing to the tumor immunity, there is some evidence to
suggest that the subtype of T cells responsible for
‘regulating’ the effector immune response within
the tumor site is similar to the now well-character-
ized regulatory CD4þ T cells involved in auto-
immunity.16,18,75–79

Existence of different types of CD4þ

regulatory T cells in vivo

During the past decades there has been much
speculation and some evidence suggesting the
existence of suppressor T cells, but these cells were
only recently identified phenotypically. A major
advance resulted from the discovery by Sakaguchi
and colleagues, and later confirmed by others, that
depletion of this small subset of CD4þ T cells,
distinguished from CD4þ helper T cells by the
expression of high levels of CD25 in naı̈ve mice,
could induce organ-specific autoimmunity. Adop-
tive transfer of CD4þ CD25þ T cells could prevent
the development of organ-specific autoimmunity.146–

148 These data established the regulatory nature of
these cells, now defined as naturally occurring
CD4þ CD25þ T regulatory cells. This subset of cells
has been established to be a powerful regulator of T-
cell responses in organ-specific autoimmunity and
chronic infections.149–153 However, it is becoming
increasingly clear that, in many situations,
CD4þCD25� T cells are as effective as CD4þCD25þ

T cells in controlling T-cell-mediated disease.154–156

There are other subsets of CD4þ T cells that exhibit
regulatory phenotypes, including CD4þCD45Rblow

suppressor cells that secrete large quantities of IL-10
and IL-4 (termed Tr1 cells) and CD4þ suppressor T
cells that secrete large quantities of transforming
growth factor (TGF)-b (termed Th3 cells).157,158 The
immune-regulatory potential and functional signifi-
cance of these cytokine-secreting CD4þ T cells are
supported by the findings that TGF-b-deficient mice
develop autoimmune disease159 and administration
of neutralizing antibodies to IL-4 or TGF-b abrogates
the in vivo prevention of autoimmunity or tolerance-
inducing activity of CD4þ T cells in tumor models
and some autoimmunity models.18,160,161 It remains
to be determined, however, to what extent these
subtypes of CD4þ cells diverge from naturally
occurring CD4þCD25þ T cells in regulatory function
and significance.

Markers to identify CD4þ regulatory
T cells in vivo

There are no known cell surface molecules that
uniquely distinguish the CD4þ regulatory T cells
(Treg) from conventional activated CD4þ cells. For
example, the CD25 molecule, which is the a-chain of
the IL-2 receptor, is expressed on all peripheral
antigen-reactive CD4þ T cells from one to several
days following antigen activation. Moreover, many
of the other cell-surface molecules in addition to
CD25, including the tumor necrosis factor (TNF)-
family member glucocorticoid-induced TNF recep-
tor (GITR) and cytotoxic T-lymphocyte antigen-4
(CTLA4)162,163 that seem to distinguish CD4þCD25þ

from CD4þCD25– effector cells, are upregulated on
CD4þCD25– T cells following antigen activation. In
this regard, it is of great interest that a recently
cloned transcription factor, termed Foxp3, a member
of the forkhead family of DNA-binding transcription
factors, is not expressed in naı̈ve CD4þCD25– cells,
but is highly expressed in the naturally occurring
CD4þCD25þ regulatory cells. More importantly,
mutational defects in the Foxp3 gene result in the
fatal autoimmune and inflammatory disorder of the
scurfy mouse and in the clinical and molecular
features of the immunodysregulation, polyendocri-
nopathy, enteropathy, and X-linked syndrome (IPEX
syndrome) in humans.164–166 In Foxp3-overexpres-
sing mice, both CD4þCD25– and CD4� CD8þ T cells
show suppressive activity, which suggests that
expression of Foxp3 is linked to suppressor func-
tions.167–169 Taken together, these data strongly
support the idea that Foxp3 may uniquely define
the subset of CD4þ Treg in mice167–169 and
humans.170 However, the recent findings that Foxp3
can be expressed in CD4þCD25– cells following
activation and is also expressed in activated CD8þ T
cells suggest that Foxp3 is linked to functional
suppression, but is not necessarily a specific lineage
marker.170–173 Whether a specific lineage marker
even exists for these CD4þ regulatory cells awaits
to be determined, but what can be concluded with
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little doubt is that a subset of CD4þ T cells exist
that regulate an inflammatory immune response to
cancer.

Tumor-induced CD4þ Treg

Cancers generally develop over a long period of
time. In addition, the major pathophysiologic char-
acteristics of malignant cancer, invasion across
natural tissue barriers and metastasis, are often
associated with the disruption of normal tissue
architecture leading to the initiation of inflamma-
tory responses. In this regard, cancers can very
much resembled to a chronic inflammatory re-
sponse. In view of this, one can speculate that the
anti-inflammatory mechanisms that are turned on at
the beginning of invasion coupled with the internal
mechanisms controlled by malignant cells to pro-
duce cytokines like TGF-b set off a regulatory
reaction, which may inhibit antitumor immunity.
Given such events, the loss of regulatory function
by depletion of tumor-induced CD4þ Treg may
enhance the effector response, resulting in tumor
rejection.

Recent findings specifically attest to possible
negative regulatory roles by CD4þ T cells within
the tumor environment. In some spontaneous tumor
models, the presence of CD4þ T cells seems to
promote cancer development instead of inhibiting
it.174 One study by Schreiber’s group has shown that
active immunization with antigen-specific CD4þ T
cells in cancer-prone mice carrying a germline
mutant ras oncogene resulted in immune responses
that fail to eradicate mutant oncogene-expressing
tumor cells, and instead induced a remarkable
enhancement of tumor growth.175 Similarly, the
studies by North73,74 have shown that suppression
by CD4þ T cells led to the progressive growth of an
immunogenic tumor and intravenous depletion of
these cells reversed the suppression and elicited
CD8þ T-cell-mediated antitumor immunity.72 While
the presence of CD4þ T cells in some models has
been shown to be deleterious to the onset of tumor
immunity, the necessity of CD4þ T-cell help in
mounting an effector immune response cannot be
negated. In some studies, the depleting antibody
given during the early stages of tumor growth was
damaging to the generation of an immune response
against the tumor, especially if T-cell help was
obligatory.19,21 These obsevations strongly suggest
the existence of functionally distinct CD4þ T-cell
subsets.

CD4þCD25þ Treg in mice and humans

The above studies have suggested that CD4þ CD25þ

suppressor cells are relevant to tumor immunology,
albeit more detrimental than favorable for the
host. Most studies up to recent times have utilized
depletion of the entire CD4þ population, resulting

in enhancement of immunity against tumors via the
depletion of the suppressive CD4þCD25þ T-cell
population. In vivo experiments in several murine
tumor models demonstrate that more specific deple-
tion of CD4þCD25þ T cells by anti-CD25 antibody
treatment prior to tumor challenge significantly
enhances the efficacy of vaccine-induced antitumor
immunity.20–29 Another study revealed that splenic
cells depleted of CD4þCD25þ T cells can mediate
tumor regression, presumably through promoting
autoreactivity because autoimmune diseases were
also induced.23 These studies suggest that Treg may
inhibit initial priming of CD8þ T cells, some of
which recognize tumor antigens. One study demon-
strated more clearly that the CD4þCD25þ T cells
prevented priming of CTL, as depletion of CD25þ T
cells had to be performed within the first 2 days after
tumor inoculation, suggesting that suppression was
ineffective once the priming was initiated.24 It was
also shown that elimination of these Treg, despite
causing increased autoreactivity in some cases,
could increase immune responses to tumors such
as melanomas overexpressing self-antigens.21–23,26

Even when the host bears a poorly immunogenic
cancer, concomitant immunity can be rescued by
systemic depletion of the CD4þCD25þ regulatory
T-cell subset.19 These observations in the tumor
models are consistent with the features that have
been defined for CD4þ CD25þ Treg in other disease
models.

It has been demonstrated that the equivalent of
CD4þCD25þ Treg identified in mice also exists in
humans. These cells, CD4þCD25þCD45ROþ T cells,
represent about 6% of CD4þ T cells and are present
in the blood of healthy human adults.76 Prevalence
of Treg is increased in peripheral blood and the
tumor microenvironment of patients with pancreas
or breast adenocarcinoma.77 The CD4þCD25þ

T cells possessing regulatory properties have also
been reported to be among the tumor-infiltrating
T cells in different types of human lung, ovarian,
pancreas, breast and gastrointestinal cancers, and
lymphoma.78,79,176,177 Antigen-specific activation
and cell–cell contact were required for these clones
of Treg cells to exert suppressive activity on CD4þ

effector cells. The presence of CD4þ Treg cells at
tumor sites suggests that they could have a profound
effect on the inhibition of T-cell effector responses
against some human cancers.16,18,75

Immune suppression occurrs inside
tumor tissues

It is possible that different subsets of CD4þ T cells,
either by providing ‘help’ or ‘regulation’, predomi-
nate at various stages of tumor progression. A recent
study by our group18 has shown that suppression
of immunity against tumors mainly occurs in the
effector phase at the tumor site and depletion of the
Treg at the late-stage of tumor progression did not
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mitigate the possible T-helper function. We found
that a highly antigenic tumor that expresses a
strong antigen on the surface, yet fails to regress in
the host, induced an accumulation of CD4þ Treg
within the tumor microenvironment. With tumor
persistence, there was inhibition of CD8þ T-cell
function. In this model, local intratumoral depletion
of these CD4þ Treg unmasked the immunogenicity
of tumor and reversed the CTL tolerization, leading
to the rapid rejection of well-established tumors.
From this study, we propose that CD4þ cells pre-
dominantly play an enhancing helper role during
the initial stages of tumor progression, but once
tumors become chronically persistent, the increased
accumulation of CD4þ Treg inhibits CD8þ cell
function and mask the immunogenicity of tumor.
In fact, depletion of Treg unveils the immuno-
genicity of tumor cells and provides long-term
protection against re-challenge of even poorly
immunogenic parental tumor cells. This result
suggests that the depletion of Treg promoted
immunity against previously poorly immunogenic
tumor antigens and expanded the tumor-reactive
CD8þ T-cell repertoire. Our study revealed that
the population of tumor-infiltrating cells is skewed
to favor regulatory CD4þ T cells over the helper
CD4þ T cells within the tumor tissue, especially as
tumor progresses and becomes established in the
host.

Origins of tumor-induced CD4þ Treg

It is not clear thus far whether CD4þCD25þ T cells
inhibiting antitumor immunity in mice and humans
are naturally occurring Treg or are generated in the
periphery. It is possible that the tumor microenvir-
onment preferentially recruits naturally occurring
CD4þCD25þ T cells. One study published recently
suggested that the chemokine CCL22, abundantly
expressed in ovarian cancer tissues and tumor
ascites cells, preferentially attracts the CD4þCD25þ

T cells identified in the ovarian cancers.16 These
cells were positive for the transcriptional factor
Foxp-3 and exhibited regulatory function similar
to the naturally occurring CD4þCD25þ T cells. It is
not yet clear whether these tumor-infiltrating Treg
can be defined as the counterpart of the naturally
occurring CD4þCD25þ T cells in the mouse.
Another possibility is that the tumor microenviron-
ment converts CD4þ T cells to CD4þCD25þ Treg or
expands naturally occurring CD4þCD25þ T cells.
There is evidence to indicate that tumor-specific
CD4þ T cells change their phenotype from effectors
to suppressors during cancer progression.178 Con-
version from effector cells coincided with a sub-
stantial reduction in the antigen expression level,
resulting in tumor persistence that ultimately led to
T-cell tolerance. The authors have evidence to
suggest further that these antigen-specific T cells
became CD4þCD25þ Treg.178

It may therefore be that the processes of immuno-
surveillance and tumor editing coexist with a
process in which the functional tumor-specific
T-cell repertoire is also edited by the tumor
environment, to the ultimate benefit of tumor
progression. Besides anti-inflammatory cytokines,
the CD4þCD25þ Treg inside the tumor may sup-
press antitumor immunity via other mechanisms.
For example, these ‘Tregs’ may inhibit the immune
response through their ability to control T-cell
numbers because they have been shown to regulate
T-cell proliferation in vitro.152,153 Whether the
regulatory cells that accumulate in the tumor site
are ones that naturally exist in the host, or whether
they initially arrive as helper CD4þ T cells, but
convert to regulatory cells by encountering the
suppressive tumor environment is not altogether
clear. It would be beneficial to better characterize
the nature of CD4þ T cells isolated from or present
in the tumor tissues by surface markers and cytokine
profiles, in order to utilize the CD4þ helper T cells
instead of CD4þ Treg for adoptive transfer immu-
notherapy and potentially improve the prognosis of
cancer patients.

Targeting tumor tissues to recruit and
train T cells

Tumors often form a barrier that limits T-cell
infiltration and reduces drainage of tumor antigens
to lymph nodes. Since positive roles are played by
CD8þ T cells and CD4þ helper T cells in antitumor
immunity, it is reasonable to speculate that infiltra-
tion of T lymphocytes and initiation of antitumor
immune responses inside tumor tissue at an early
phase are highly favorable. Specifically, it could
increase the T-cell repertoire and provide more
antigens to stimulate T cells inside tumor, and could
therefore be a strategy for cancer immunotherapy.
Several cytokines or chemokines have been used to
attract and activate T cells at tumor sites. In this
section, we will focus on our recent finding that
stimulation of lymphotoxin (LT) b receptor (LTbR)
inside tumor tissues promotes strong infiltration of
immune cells, leading to tumor rejection.

LTbR plays an important role in the formation of
lymphoid structures.179–181 LTbR is activated by two
members of the TNF family, membrane LT ab and
the LT-related inducible ligand that competes for
glycoprotein D binding to herpesvirus entry medi-
ator on T cells (LIGHT).182 Signaling via LTbR
regulates the expression of chemokines and adhe-
sion molecules within secondary lymphoid organs.
For example, such chemokines and adhesion mole-
cules control the migration and positioning of DCs
and lymphocytes in the spleen.183,184 Therefore, it is
possible that enhanced LTbR signaling inside tumor
tissues may promote the formation of lymphoid-like
structures for direct T-cell sequestration. TNF
receptor (TNFR) signaling may also play a similar,
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but less effective role in regulating chemokine
expression.184 However, TNFR signaling may have
a more toxic effect, as has been seen in other
systemic TNF treatments without extra costimula-
tion.185 Soluble LTa can signal through the TNFR,
resulting in the upregulation of chemokines. To
avoid such a toxic effect, recombinant LTa has been
conjugated with antibody targeted specifically to the
tumor tissues, resulting in an effective antitumor
immune response associated with the induction of
peripheral lymphoid-like tissue.186 However, LTa
lacks a costimulation function, which would result
in a less effective activation of recruited naı̈ve T
cells in the lymphoid-like structure inside tumor
tissues.

LIGHT is a ligand for LTbR and herpes virus entry
mediator (HVEM).182,187 LIGHT is predominantly
expressed in lymphoid tissues, especially on the
surface of activated DCs and T cells. LIGHT is a
strong costimulatory molecule.182,188,189 Our data
indicate that the interactions between LIGHT and
LTbR restore lymphoid structures in the spleen of
LTa�/� mice. In addition, upregulation of LIGHT
causes T-cell activation and migration into nonlym-
phoid tissues and formation of lymphoid-like
structures.190,191 Therefore, a LIGHT-mediated micro-
environment inside a tumor could be effective in
both recruiting and activating naı̈ve T cells. The
expression of LIGHT in the tumor environment
induces a massive infiltration of naı̈ve T lympho-
cytes that correlates with an upregulation of both
chemokine production and expression of adhesion
molecules. Activation and expansion of these infil-
trating T cells leads to the rejection of established,
highly progressive tumors at local and distal sites.192

Our study indicates that induction of T lymphocytes
and initiation of antitumor immune responses inside
the tumor tissue may be an effective strategy for
cancer immunotherapy.

Conclusion: incorporating two strategies
to promote tumor regression

The balance of antitumor effector T cells vs Treg may
be critically important in determining the outcome
of immune responses within tumors. Our recent
study has demonstrated that rapid recruitment of
naı̈ve lymphocytes and expansion of CD8þ T cells
inside tumors may be a way of creating a dominant
proinflammatory environment, leading to tumor
rejection at local and distal sites.192 We further
demonstrated that the depletion of Treg inside the
tumor is another efficient way of converting the
local anti-inflammatory environment to a proin-
flammatory one.18 From a clinical-therapeutic point
of the view, local treatment to eliminate Treg has
certain critical advantages over systemic treatment.
First, local treatment may avoid side effects induced
by systemic depletion of CD4þ T cells, which may
abrogate T helper-mediated protective immunity

against pathogens. Second, treatment of the local
tumor environment would not hinder effective
priming of CD8þ T cell in lymphoid tissues by
helper CD4þ T cells, since depletion remains local.
Third, the local treatment would be expected to be
more effective if suppression of CD4þCD25þ Treg
resides inside the tumor. CD4þCD25þ T cells have
been shown to be present in a variety of human
cancer tissues78,79,176,177 and these cells are nega-
tively associated with the prognosis of the ovarian
cancer patients in addition.16 Therefore, Treg within
the tumor environment represent an attractive
target, and their depletion may lead to improve-
ments in the current immunotherapy protocol in the
future clinical trials. Finally, intratumoral treatment
would reduce the dose of depleting agent, for
example, antibody, required. It is likely that a
combination treatment which would rapidly expand
the effector cells at the tumor site, while locally
depleting the regulatory cells, could constitute a
potent strategy for enhancing antitumor immunity
and promote a clinically desirable outcome for
cancer patients.

It is increasingly clear that some TILs may be
friends, while others may be foes. An increase in TIL
may not always be associated with a better prog-
nosis. Accumulation of Treg inside tumor tissue
both in animal models and in human patients
suggests that an aberrant immune response can
occur inside growing tumors. Strategies to effec-
tively reverse the immunologically suppressive
environment (eg, depleting Treg inside tumors)
may be a new way to enhance the effectiveness of
immune responses against tumors at local and distal
sites.

Further laboratory investigation is critical for us
to better understand the role of TIL. A hypothesis
to be further tested is if cancer tissue contains few
TIL, local treatment to increase TIL in tumor tissue,
especially CTL, may be advantageous. On the other
hand, depletion of T regulatory cells may be
important for patients with cancer tissues contain-
ing abundant T regulatory cells. Pathologists of the
future may play critical diagnostic roles in deter-
mining the type of TIL infiltrates, thereby providing
both prognostic information as well as guidance
in selecting an appropriate immunotherapeutic
strategy for each patient.
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