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Sepsis is the systemic immune response to severe bacterial infection. The innate immune recognition of
bacterial and viral products is mediated by a family of transmembrane receptors known as Toll-like receptors
(TLRs). In endothelial cells, exposure to lipopolysaccharide (LPS), a major cell wall constituent of Gram-
negative bacteria, results in endothelial activation through a receptor complex consisting of TLR4, CD14 and
MD2. Recruitment of the adaptor protein myeloid differentiation factor (MyD88) initiates an MyD88-dependent
pathway that culminates in the early activation of nuclear factor-xB (NF-xB) and the mitogen-activated protein
kinases. In parallel, a MyD88-independent pathway results in a late-phase activation of NF-xB. The outcome is
the production of various proinflammatory mediators and ultimately cellular injury, leading to the various
vascular sequelae of sepsis. This review will focus on the signaling pathways initiated by LPS binding to the
TLR4 receptor in endothelial cells and the coordinated regulation of this pathway.
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Sepsis is the leading cause of mortality in critically
ill patients.” The development of sepsis occurs as a
result of a systemic inflammatory response to a
severe bacterial infection.? Under normal condi-
tions, a controlled cellular response to bacterial
products protects the host from infection. In
sepsis, hyperactivation of the immune response
leads to the excessive production of various
proinflammatory cytokines and cellular injury.”
In mammals, the innate immune system is the
first line of host defense involved in detecting
the wide variety of invading microbial pathogens.?
Receptors of the innate immune system are activated
by microbial components such as lipopolysacchar-
ide (LPS) (also known as endotoxin), which is a
key molecule involved in the initiation of the
sepsis syndrome.®
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Endothelial dysfunction in sepsis

The endothelium plays a major role in the patho-
genesis of sepsis. Endothelial cells line the inner
wall of blood vessels, lying at the interface between
circulating blood and the surrounding tissue.*
Although these cells are potentially highly suscep-
tible to injury given that they are the first cells
exposed to invading pathogens circulating in the
bloodstream, endothelial cells have a remarkable
capacity to protect themselves.* The endothelium
serves a multitude of functions that help to maintain
organ homeostasis, including vasoregulation, selec-
tive vascular permeability and providing an anti-
coagulant surface.” However, during infection, the
normal physiological functions of the endothelium
are perturbed, contributing to the organ failure
characteristic of sepsis.® Although there is debate
on the extent of vascular dysfunction that is due to
the direct effects of LPS on the endothelium, relative
to the effects that are secondary to the release of
inflammatory mediators, such as tumor necrosis
factor o (TNFa), interleukin-1f8 (IL-1f), interferons
(IFNs) and others, from macrophages and immune
cells,” this review will concentrate on the direct
cellular and molecular effects of LPS on the
endothelium.



LPS signaling in endothelial cells
SM Dauphinee and A Karsan

10

Vasoregulation

The endothelium secretes a diversity of paracrine
agents that mediate vascular tone.? Vasodilating
compounds such as nitric oxide (NO) and prostacy-
clin increase the diameter of the intravascular space
by relaxing adjacent smooth muscle cells within the
vessel wall.® These mediators counteract vasocon-
strictors such as angiotensin to maintain a balance
in vascular resistance.’® Upon exposure to LPS,
endothelial cells upregulate the expression of
inducible NO synthase (NOS2), which leads to an
increase in the production of NO." The use of
pharmacological NOS inhibitors in patients with
septic shock increases blood pressure and restores
vascular resistance.'? Furthermore, NOS2-deficient
mice do not experience the impaired vasoconstric-
tion associated with endotoxemia."® This excessive
production of vasoactive mediators, such as NO,
results in the impaired vasoconstriction and asso-
ciated hypotension seen in patients with sepsis.™

Vascular Permeability

Endothelial cells serve as a selective barrier for the
exchange of fluid and macromolecules from the
vascular compartment to the tissue.® An increase in
vascular permeability is mediated by retraction of
the endothelium and phosphorylation of the light
chain of nonmuscle myosin."® This phosphorylation
event induces a conformational change in the
myosin light chain that promotes the interaction of
actin and myosin, thereby supporting the contractile
state.”™ A recombinant form of LPS derived from
the horseshoe crab, Limulus polyphemus, that is
designed to neutralize endotoxin action, has been
shown to prevent LPS-induced actin depolymeriza-
tion, thereby preventing an LPS-induced increase in
endothelial permeability.’® LPS also directly con-
tributes to endothelial barrier dysfunction through a
caspase-mediated cleavage of junctional proteins
involved in regulating transport of material between
the vascular space and tissue."”

Leukocyte Recruitment and Adhesion

During the healing process, circulating leukocytes
are recruited to the endothelium, where they adhere
and traverse between the endothelial cells to enter
the site of inflammation."® The initial step in this
process involves recruitment of the leukocyte to the
endothelial surface through the association between
selectin molecules, which are found on the surface
of both the circulating leukocytes (L-selectin) and
the endothelium (E- and P-selectin), and sialylated,
carbohydrate moieties on the contacting cell.’® The
initial selectin-mediated rolling followed by tighter
adhesion to the endothelium is also mediated by the
integrin family. Integrins are heterodimeric mole-
cules expressed on the surface of leukocytes that

Laboratory Investigation (2006) 86, 9—22

facilitate a strong association with cell-adhesion
molecules (CAMs) on the surface of cytokine-
stimulated endothelial cells (ICAM-1, VCAM-1).*®
LPS directly increases expression of E-selectin and
integrin counter receptors,”® and the upregulation of
this adhesion molecule expression requires the
nuclear localization of nuclear factor-kappa B (NF-
kB).>"** In septic patients, elevated levels of endo-
thelial selectins correlate with poor prognosis.”®
Furthermore, mice deficient for endothelial selec-
tins show increased survival in an animal model of
sepsis.**

Hemostasis

Under normal physiological conditions, the en-
dothelium is maintained in an anticoagulatory state
by the action of thrombin on the surface of the
endothelial cell.?® Thrombin, bound to thrombomo-
dulin, cleaves protein C into its active form,
activated protein C, which inhibits the activated
coagulation factors, Va and VIIIa.”® During sepsis,
the endothelium shifts from an anticoagulant sur-
face to a procoagulant surface by reduced expression
of anticoagulatory molecules such as thrombo-
modulin, thereby shifting the action of thrombin
towards the cleavage of fibrinogen and the genera-
tion of fibrin clots.*”*® Furthermore, LPS may
directly induce the prothrombotic state by upregu-
lating the endothelial expression of tissue factor
through an NF-xB-dependent mechanism.*® These
changes contribute to the disseminated intravascu-
lar coagulation characteristic of sepsis.

Toll-like receptor (TLR)4 signaling

LPS is a key component of the cell wall of Gram-
negative bacteria.*® It is composed of three structural
elements: a core oligosaccharide, an O-specific
chain made up of repeating sequences of polysac-
charides and a lipid A component, which is
responsible for the proinflammatory properties of
LPS.** The binding of LPS to the surface of
endothelial cells results in endothelial activation,
as demonstrated by the expression of proinflamma-
tory cytokines and adhesion molecules, and, in
some cases, endothelial apoptosis.®>* LPS also acti-
vates monocytes and macrophages to stimulate the
production of proinflammatory mediators, which in
turn modulate endothelial function. Collectively,
this initiates a parallel cascade of events that
contribute to the clinical manifestations of sepsis.
The TLRs are a family of pattern recognition
receptors that are classified on the basis of homology
of the cytoplasmic domain with that of the inter-
leukin-1 receptor (IL-1R) family, which is known as
the Toll/IL-1R (TIR) domain.** To date, there have
been 12 TLRs identified in mice® and 10 TLRs in
humans.>*?® TLR4 was established as the LPS
signaling receptor based on genetic evidence from



the LPS-insensitive mouse strain, C3H/HeJ, which
has a single point mutation in the TIR domain of
TLR4. In addition, the C57BL/10ScCr strain of mice
has a null mutation in the TLR4 gene that also
confers resistance to LPS.?” However, it should be
noted that LPS from some bacterial species, such as
Porphyromonas gingivalis, activate cells through
TLR2.%®

The first host protein involved in the recognition
of LPS is LPS-binding protein (LBP).*® LBP is an
acute-phase protein, the role of which is to bring
LPS to the cell surface by binding to LPS and
forming a ternary complex with the LPS receptor
molecule, CD14.%° In endothelial cells, LBP also
serves to enhance LPS uptake.*® Formation of the
complex between LPS and CD14 facilitates the
transfer of LPS to the LPS receptor complex
composed of TLR4 and MD2.** CD14 is found in two
forms: a membrane-bound glycosylphosphatidyl-
inositol (GPI)-anchored protein (mCD14) and as a
soluble proteolytic fragment lacking the GPI anchor
(sCD14).** Endothelial cells lack mCD14 found on
many cell types, such as macrophages and mono-
cytes, and thus require sCD14 cleaved off cells
bearing mCD14 and found circulating in the plas-
ma.*® In addition to the production of sCD14 by
proteolysis of the membrane-bound receptor, mono-
cytic cell lines also secrete sCD14 molecules that
never acquire a GPI anchor.** Although it is widely
accepted that endothelial cells do not express
mCD14, early-passage human umbilical vein endo-
thelial cells (HUVECs) have been reported to
synthesize and express mCD14 at levels that are
capable of supporting LPS-induced cell activation.*
However, LPS activation of endothelial cells is
primarily achieved using sCD14.*° Nevertheless,
in vivo expression of mCD14 on endothelial cells
has not been examined. Since CD14 lacks a trans-
membrane domain, it does not have the capability
to initiate intracellular signaling events.** Concerted
efforts over several years have led to the discovery of
the TLR4/MD2 receptor complex as the signaling
entity for LPS. MD2 is a secreted glycoprotein that
functions as an indispensable extracellular adaptor
molecule for LPS-initiated signaling events,*” per-
haps by aiding in ligand recognition.*®

In addition to CD14, TLR4 and MD2, Triantifilou
et al***° have proposed that other molecules may be
involved in CD14-independent signal initiation in
macrophages. Studies using affinity chromatogra-
phy, and later confirmed by fluorescence resonance
energy transfer (FRET), revealed that LPS associates
with the heat shock proteins, Hsp70 and Hsp90,
chemokine receptor 4 (CXCR4) and growth differ-
entiation factor 5 (GDF5).49:%°

In human coronary artery endothelial cells, TLR4
functions intracellularly,”® suggesting that LPS
uptake may be necessary for optimal signal trans-
duction. Similarly, TLR4 colocalizes with LPS
within the Golgi of intestinal epithelial cells®* and
functions within this intracellular compartment to
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recognize internalized LPS.°® Indeed, TLR4 is the
primary receptor for transduction of the LPS signal,
but it is not responsible for the internalization of
LPS, pointing to the existence of another receptor for
the uptake of LPS.*° LPS internalization in endothe-
lial cells via scavenger receptor-dependent path-
ways is suggested to be important in the clearance of
LPS.>* However, overexpression of a fluorescent
TLR4 in human embryonic kidney (HEK293) cells
showed that TLR4 cycled between the plasma
membrane and the Golgi complex, but the initiation
of LPS signaling occurred at the membrane, as
evidenced by an inability to disrupt signaling
using brefeldin A, a pharmacological agent that
disrupts the Golgi.®® Thus, further studies are
required to definitively elucidate the subcellular
location in which LPS activates endothelial cells.
In contrast, in mononcytes that express mCD14,
TLR4 is found exclusively on the cell surface
localized within discrete lipid microdomains
following LPS stimulation.>®

The TLR4 signaling cascade initiated following
LPS binding is enhanced by homodimerization of
the receptor and subsequent recruitment of TIR-
domain-containing adaptor molecules (TIRAP) to
the cytoplasmic domain of the receptor.>”*® These
adaptors include myeloid differentiation factor 88
(MyD88), MyD88 adaptor-like protein (Mal), also
called TIRAP, TIR-containing adaptor inducing
IFNS (TRIF), also known as TIRAP-1 (TICAM-1),
and TRIF-related adaptor molecule (TRAM), also
called TIRAP-2 (TICAM-2).%°

Activation of TLR4 leads to stimulation of both a
MyD88-dependent and a MyD88-independent path-
way.®® The major players involved in eliciting the
functional effects of LPS within endothelial cells are
activated through the NF-xB, mitogen-activated
protein kinase (MAPK) and phosphatidylinositol
3-kinase (PI3K)/Akt pathways. These pathways reg-
ulate the balance between cell viability and inflam-
mation.

MyD88-Dependent Signaling

NF-xB activation

MyD88 was originally cloned as an adaptor mole-
cule within the IL-1R complex and shown to possess
a C-terminal TIR domain and an N-terminal death
domain (DD) that recruits the serine/threonine
kinase, IL-1 receptor-associated kinase (IRAK).%!
During MyD88-dependent signaling, MyD88 is
recruited to the TLR4 receptor through interaction
with the TIR domain of TLR4.°* This complex in
turn facilitates the recruitment of IRAK1 and IRAK4
via a DD present in both molecules.®>* Upon LPS
stimulation, TIRAP also associates with TLR4 via a
TIR-TIR interaction, and is essential for MyD88-
dependent signaling.®* This is apparent in TIRAP-
deficient mice, which exhibit delayed kinetics
with respect to NF-kB and MAPK activation.®® In
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endothelial cells, TIRAP has been shown to mediate
LPS-induced NF-xB activation and apoptosis.®®
However, the precise role of TIRAP has not been
fully elucidated. The binding of IRAK4 to the
receptor complex facilitates the transphosphoryla-
tion of IRAK1, inducing IRAK1 kinase activity.®”
Ectopic expression of a kinase-deficient IRAK4
dramatically reduced both IRAK1 phosphorylation
and downstream NF-xB activation.®® Furthermore,
IRAK4 knockout mice have severely impaired TLR
signaling, indicating that IRAK4 kinase activity is
essential for LPS signaling.®® The autophosphoryla-
tion and activation of IRAK1 results in the ability to
bind TNF receptor-associated factor-6 (TRAF6).°
TRAF6 contains an N-terminal domain comprised
of a RING finger and several zinc fingers, which
mediate downstream signaling, and a C-terminal
domain involved in self-association and hetero-
logous protein interactions.”®

The complex of IRAK1 and TRAF6 dissociates
from the receptor to form a complex at the
membrane with transforming growth factor-p (TGF-
p)-activated kinase 1 (TAK1) and the adaptor
molecules, TAK1-binding protein 1 and 2 (TAB1
and TAB2).”* TAB1 functions as an activator of
TAK1,”? while TAB2 links TAK1 to TRAF6 and
facilitates the ubiquitination of TRAF6.7>7* More
recently, a third adaptor molecule has been identi-
fied, TAB3, which also interacts with TAK1 and
mediates activation of NF-«B.”® Although TAK1
phosphorylation occurs at the membrane and is
dependent on the formation of the TRAF6-TAK1-
TAB1-TAB2-TAB3 complex, it does not become
active until the complex translocates to the cyto-
plasm.” Here, it forms a complex with the ubiquitin
conjugating enzyme Ubc13 and the Ubc-like protein,
Uev1A, to catalyze the formation of a polyubiquitin
chain linked through lysine 63 (K63) of ubiquitin.”®
When TAK1 is activated, IRAK1 is released from the
complex and eventually degraded by the ubiquitin—
proteasome system.”” TRAF6 is recycled through
the process of deubiquitination.”® The formation
of K63-linked polyubiquitin chains on TRAF6
results in TAK1-mediated phosphorylation of the
IxB kinase (IKK) complex, composed of two catalytic
subunits, IKKe and IKKf, and a regulatory subunit,
IKKy, also known as NF-xkB essential modulator
(NEMO).”® Activation of IKK involves the TRAF-
interacting protein with a forkhead-associated
(FHA) domain (TIFA) protein.?® TIFA promotes the
oligomerization of TRAF6 and enhances the auto-
ubiquitinating activity of TRAFS6, thereby facilitat-
ing downstream activation of NF-«B and JNK.?°
Activation of the IKKs leads to downstream phos-
phorylation of members of the inhibitor of NF-«B
(IxB) family, resulting in ubiquitin-directed protea-
some-mediated degradation of the IxB members,
thus permitting the release and nuclear transloca-
tion of the transcription factor, NF-«xB.?' In endothe-
lial cells, degradation of the IxB protein is
dependent on its tyrosine phosphorylation and is
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specific to the IxBo isoform, while IxBf and IxBy
protein levels remain unchanged following LPS
stimulation.?? As will be discussed below, several
other parallel pathways have an impact on TLR4-
mediated NF-xB activation, including PI3K, recep-
tor-interacting protein (RIP) and the MAPKSs. In non-
endothelial cells, various PKC isoforms have also
been implicated in NF-«B activation®-** (Figure 1).

PI3K activation

PI3Ks are a family of kinases that catalyze the
phosphorylation of phosphoinositides.?® The phos-
phorylated lipid products, phosphatidylinositol
(PtdIns) 3,4-bisphosphate and PtdIns 3,4,5-tripho-
sphate, then act as second messengers to activate
downstream events, including activation of Akt.?° B
cells isolated from PI3K-deficient mice fail to
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Figure 1 MyD88-dependent signaling pathway. In endothelial
cells, LPS binds to the TLR4 receptor complex consisting of
soluble CD14 (sCD14) and MD2. This results in the recruitment of
the adaptor molecules MyD88 and TIRAP. Then, IRAK1 and 4 are
recruited to the receptor complex via interactions between the
DDs of MyD88 and IRAKSs. IRAK1 recruits and activates TRAFS,
leading to the downstream activation of the IKK complex and the
MAPKs. Activation of the IKK complex results in phosphoryla-
tion and degradation of IxB, permitting the nuclear translocation
of the transcription factor, NF-xB. This results in the expression
of proinflammatory molecules. Concurrently, activation of the
MAPKs, predominantly JNK, results in activation of the trans-
cription factor AP-1, leading to a proapoptotic state. PI3K,
through association with MyD88 or TRAFS®, is also involved in
NF-kB activation through an Akt-dependent mechanism. Mole-
cules which are known to be involved in endothelial TLR4-
mediated signaling are highlighted in red.



proliferate in response to LPS, indicating that PI3K
plays a role in LPS-induced signaling events.?”
Following LPS challenge, PI3K has been shown to
exist in a complex with TLR4 and MyD88 in murine
macrophages.®® Consistent with this, enforced
expression of various dominant negative mutants
has shown that PI3K activation is downstream of
MyD88/IRAK/TRAF6, but not TIRAP.**®° Further,
PI3K and its downstream target kinase, Akt, appear
to be an important component of LPS-induced
NF-kB activity following its translocation to the
nucleus.?®%°

RIP is a serine/threonine kinase that plays a
critical role in LPS-induced activation of NF-xB.**
RIP~/~ splenocytes exhibit decreased LPS-induced
Akt phosphorylation, suggesting that RIP also
connects TLR4 signaling to PI3K activation.® RIP2
is a kinase related to RIP that contains a caspase
recruitment domain (CARD) at its N-terminus.®?
RIP2 knockout mice are resistant to the lethal
effects of LPS-induced septic shock® and RIP2
participates in LPS signaling in a kinase indepen-
dent manner, likely functioning as an adaptor
molecule® (Figure 1).

Mitogen-activated protein kinases

In addition to the activation of NF-xB and PI3K,
activation of TAK1 also leads to activation of a
family of MAPKs consisting of p38, extracellular
signal-regulated kinase (ERK) and c-jun NH,-termi-
nal kinase (JNK)”® (Figure 1). Activation of the
MAPKs by TLR4 involves MyD88 and TIRAP.®?
However, both MyD88 and TIRAP knockout mice
are able to activate MAPKs albeit with delayed
kinetics, pointing to the existence of a MyD88/
TIRAP-independent pathway for the activation of
MAPKSs.%® The mechanism of TLR4-mediated activa-
tion of MAPKs is not fully understood but it has
been recognized that their activation occurs differ-
entially during exposure to LPS.

Activation of p38 is critically dependent on
MEKK3.?®* MEKK3 activates both NF-«B and p38
kinase, but not ERK, by binding to TRAF6 in mouse
embryonic fibroblasts (MEFs).”® However, a domi-
nant negative mutant of TRAF6 does not inhibit LPS
activation of p38 in endothelial cells, suggesting that
p38 does not lie downstream of TRAF6.°® Similarly,
TRAFS is not required for LPS-induced activation of
ERK in endothelial cells.®® Nonetheless, in immune
cells, the activation of p38 involves TRAF6 and
apoptosis signal-regulating kinase 1 (ASK1).°” LPS-
induced intracellular reactive oxygen species (ROS)
mediate the formation of a complex between TRAF6
and ASK1 to facilitate activation of p38 but not
JNK.?” Furthermore, ASK1 is required for LPS-
induced cytokine production and ASK1-null mice
are resistant to endotoxic shock.®”

The activation of ERK in response to LPS has not
been well characterized. However, the MAP kinase
kinase, Tpl2 (also known as Cot) has been impli-
cated in LPS-induced ERK activation in macro-
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phages.”® Tpl2 has been shown to coordinate with
the Ras pathway to induce activation of ERK in COS-
1 monkey kidney cells®® and the Ras pathway has
been implicated in LPS-induced ERK activation.'®°
In endothelial cells, JNK activation has been
shown to require TRAF6 activation.’® In macro-
phages, however, activation of JNK is dependent on
interaction of the scaffolding protein JNK-interact-
ing protein 3 (JIP3) with the cytoplasmic domain of
TLR4.'°" Inhibition of JIP3 function, either by
expression of a dominant negative form of the
protein or using RNA interference, inhibits JNK
activation in macrophages.’®* JIP3 is physically
associated with MEKK1 in RAW264.7 cells.’ In
neutrophils, LPS-induced JNK activation involves
the participation of the protein tyrosine kinase, Syk,
and PI3K.'°* Taken together, these findings suggest
that the receptor complex may include many more
proteins than that shown in Figures 1 and 2.

Functional effects of MyD88/TIRAP-dependent
signaling

LPS activates both NF-xB and JNK through TRAF®6,
leading to proinflammatory and apoptotic signaling
pathways, respectively.”® TRAF6 is also the bifurca-
tion point, downstream of which both death and
survival signals are induced.? We have shown that
LPS induces a proapoptotic signal through TRAF6-
mediated activation of JNK, which in turn leads to
caspase activation following mitochondrial depolari-
zation.”® Additionally, PI3K-dependent survival
signals are mediated downstream of TRAF6 in
endothelial cells.” The TRAF6-interacting protein,
RIP, is essential for cell survival following LPS
stimulation in splenocytes and provides a link
between TLR4 and the PI3K-Akt survival pathway.**
LPS has also been shown to directly stimulate
endothelial sprouting in vitro and angiogenesis
in vivo.'®® The initiation of angiogenesis mediated
by LPS is dependent on TRAF6 and the downstream
effector molecules, NF-kB and JNK.'*®* The balance
between endothelial survival and death pathways is
crucial in the pathogenesis of sepsis as endothelial
cell apoptosis could potentially lead to severe
vascular collapse, as demonstrated by the dissemi-
nated endothelial apoptosis seen in C57BL/6 mice
challenged with LPS*** (Figure 2).

MyD88-Independent Signaling

The MyD88-independent signaling pathway was
identified in studies using MyD88 deficient mice.'®®
Although MyD88 /- mice were resistant to LPS-
induced death, delayed activation of both NF-«xB
and MAPK pathways was observed.'®® Furthermore,
MyD88-deficient cells failed to release proinflam-
matory cytokines in response to LPS suggesting
direct activation of NF-xB and the MAPKs by LPS.**®
Collectively, these results suggested the existence
of a MyD88-independent pathway downstream of
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Figure 2 LPS-induced signaling events in endothelial cells.
Stimulation of endothelial cells with LPS results in the activation
of TRAF6, leading to activation of several downstream signaling
pathways, including activation of JNK and NF-«B, leading to the
production of proinflammatory signaling molecules. Activation of
TRAFS6 also results in endothelial sprouting through JNK and NF-
kB-dependent signaling pathways. Furthermore, activation of
TRAF6 also results in the activation of PI3K and Akt, which
results in stimulation of inflammation, but inhibition of apopto-
sis. The activation of ERK in endothelial cells is TRAF6-
independent.

ligand engagement of the TLR4 receptor. The
MyD88-dependent pathway is largely responsible
for controlling the expression of inflammatory
cytokines, such as TNFq, IL-6 and IL-12, through
activation of NF-xB, whereas the MyD88-indepen-
dent pathway induces expression of IFN-inducible
genes, such as IP10 and glucocorticoid-attenuated
response gene 16 (GARG16), through activation of
the transcription factor, IFN regulatory factor 3
(IRF3)."°” MyD88-independent signaling begins with
recruitment of the adaptor molecule, TRAM, to the
cytoplasmic domain of TLR4."*® TRAM is specific to
the TLR4 signaling pathway and was cloned as a
TLR4-binding protein in yeast that facilitates the
binding of TRIF to the receptor complex by forming
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Figure 3 MyD88-independent signaling pathway. The late-phase
activation of NF-«B occurs through the MyD88-independent
pathway involving the adaptor molecules, TRIF and TRAM. TRIF
associates with TRAF6 and RIP1, as well as NAP1 and TBK1, to
lead to the activation of the transcription factors, NF-xB and IRF3,
respectively. MyD88-independent signaling has not been exten-
sively studied in endothelial cells.

heterodimers with TRIF.*°®%° TRIF has been shown
to play an essential role in IRF3 activation and
production of IFNS."'® The recruitment of these
adaptor molecules to the receptor complex results in
binding of TRAF6 and RIP1 to TRIF, leading to the
late-phase activation of NF-«B, which contributes to
the induction of IFNf.»" In a parallel pathway,
TRAF family member-associated NF-xB activator
(TANK) binding kinase 1 (TBK1) and IKKe (also
known as IKKi) interact with TRIF and mediate
activation of IRF3, leading to the induction of
IFNB.*** IRF3 is a member of a family of transcrip-
tion factors that are involved in the induction of
type I IFNs that translocate to the nucleus upon
phosphorylation and dimerization.”*® Once inside
the nucleus, IRF3 controls IFNf transcription by
recruiting the coactivators, p300 and CBP.** NF-xB-
activating kinase associating protein (NAP1) also
interacts with TRIF and TBK1 to stimulate IFNf
production through activation of IRF3.'** Although
MyD88-independent pathways have not been di-
rectly studied in the endothelium, recent studies
have demonstrated LPS-dependent induction of
MyD88-independent genes (eg, IFNp, IP10, IL-6
and iNOS) in endothelial cells*® (Figure 3).

Negative regulation of TLR4 signaling

Modulation of signaling cascades involved in
immune regulation is imperative for the prevention
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Figure 4 Modulation of TLR4-mediated signaling pathway. TLR4
signaling is regulated by several molecules. In endothelial cells,
A20 functions as a deubiquitinase enzyme to inhibit activation
of TRAF6 upstream of NF-«B. A1 also inhibits NF-«xB activa-
tion through an unknown mechanism. Both A1 and A20 are
upregulated by LPS through NF-«xB, suggesting a negative feed-
back loop to reduce the signaling by LPS. SHIP inhibits PI3K
activity. PI3K itself plays a dual role in regulating LPS-induced
signaling events, acting as both a positive and a negative
regulator. FADD attenuates the activation of NF-«B, perhaps by
sequestering MyD88 or IRAK to prevent downstream signaling.
ST2, an orphan receptor expressed in endothelial cells, sequesters
the adaptor molecules MyD88 and TIRAP, preventing down-
stream signaling. In nonendothelial cells, a splice variant of
MyD88, MyD88s, inhibits the association of MyD88 and IRAK.
IRAKM prevents the association of IRAK and TRAF6. The orphan
receptor, SIGIRR, negatively regulates TLR signaling, possibly by
attenuating the recruitment of downstream signaling molecules.
Dok1 and Dok2 inhibit LPS-induced ERK activation. Molecules
that are involved in endothelial TLR4-mediated signaling, or
implicated in the regulation of this pathway, are highlighted
in red.
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of an aberrant inflammatory response. Several
molecules have been identified that regulate the
TLR4 signaling pathway (Figure 4).

Downstream of Tyrosine Kinases (Dok)

Dok proteins are a family of adaptor proteins,
consisting of Dok-1-5."*"""" Dokl and Dok2 have
been reported to be involved in the negative
regulation of LPS signaling."*® Mice that are defi-
cient in Dok1 and Dok2 show an increase in TNFo
and NO production in peritoneal and bone-marrow
derived macrophages, as compared to wild-type
cells.’?® Furthermore, these mice exhibit an in-
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creased sensitivity to LPS, as demonstrated by an
increase in TNFo production and increased lethality
compared to wild-type mice."® Overexpression of
Dokl or Dok2 inhibits LPS-induced ERK activa-
tion."*® Dok4 is highly expressed in endothelial
cells’" and has recently been implicated as a
positive regulator of TNFaz-mediated NF-«xB activa-
tion in endothelial cells.’** However, the Dok family
has not been studied in the LPS response of
endothelial cells.

Phosphatidylinositol 3-Kinase

PI3K plays a dual role in LPS signaling events as it is
both positively and negatively involved in TLR
signal transduction. PI3K has been shown to
negatively regulate the production of inflammatory
mediators important in the pathogenesis of sepsis,
such as proinflammatory cytokines and NO."**'** In
endothelial cells and monocytes, inhibition of the
PI3K-Akt pathway has been shown to enhance LPS-
induced cytokine production, suggesting a negative
regulatory role for PI3K.'*® Activation of PI3K also
reduces MyD88-dependent production of the pro-
inflammatory molecules IL-12 in dendritic cells and
TNFo in monocytes.*?®**” In C6 glial cells stimulated
with LPS, inhibition of PI3K results in the induction
of NOS."** Moreover, the enforced expression of a
constitutively active form of PI3K has been shown to
inhibit the expression of NOS2 in human astro-
cytes."?® Collectively, these results demonstrate that
PI3K is a negative regulator of NO production in
several cell types.

Conversely, PI3K has been shown to positively
regulate MyD88-dependent signaling through the
TLR2 receptor, although whether this is true in
endothelial cells has not been studied. Inhibition of
PI3K leads to a reduction in the activation of NF-«xB
and the MAPKs, p38 and p44/42."*° PI3K also plays
arole in MyD88-independent signaling. In the TRIF-
dependent signaling cascade, PI3K physically asso-
ciates with TRIF in response to LPS and inhibits
TRIF-dependent NF-«B transcriptional activity, but
has no effect on IRF3 activation in dendritic cells.*®°

A20

A20 is a zinc-finger protein that was initially
identified as an antiapoptotic protein, but has
subsequently been shown to have both ubiquitinase
and deubiquitinase activities.”®*** In endothelial
cells, expression of A20 is induced by LPS in a
sCD14- and NF-«xB-dependent manner."** Mice that
are deficient for the expression of A20 exhibit
increased responsiveness to LPS and develop severe
inflammation."®® Expression of A20 inhibits TLR4-
mediated NF-«B activation by regulating MEKK-1
kinase activity."*® The regulatory action imparted
by A20 is dependent on its ability to act as a
TRAF6 deubiquitinase, thereby reversing TRAF6
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activation."” A20 also acts as a negative regulator of
TNFo-induced NF-«B activation through ubiquitina-
tion of RIP, targeting RIP for degradation."” Whether
A20 also regulates LPS signaling by ubiquitinating
RIP remains to be shown. The upregulation of A20
by LPS suggests that A20 functions as part of a
negative feedback mechanism to regulate the innate
immune response to LPS.

A1l

A1 is a homolog of the antiapoptotic molecule, Bcl-
2, that also functions as a cytoprotective protein
in response to TNF stimulation.'**'*® Similar to
A20, LPS upregulates mRNA expression of A1l
in endothelial cells through an NF-xB-dependent
mechanism,”* and protects cells from LPS-induced
apoptosis. In addition to the antiapoptotic effects of
A1, it has also been shown that the Bcl homology 4
(BH4) domain of A1 inhibits endothelial activation
by inhibiting NF-xB activity, and thus one of the
major proinflammatory pathways activated by
LPS.*?14 Thus, the NF-xkB-dependent upregulation
of A1 by LPS acts as a negative regulator in a
feedback loop to dampen the LPS signal.

Fas-Associated Death Domain (FADD)

FADD is a proapoptotic adaptor molecule that
couples the cytoplasmic domain of death receptor
molecules to effector caspases.’ Prior to identifica-
tion of mammalian TLRs, we had shown that LPS
regulates apoptosis through a FADD-dependent
pathway that was independent of death receptor
signaling."** More recently, FADD has been shown
to play an inhibitory role in LPS-induced NF-xB-
dependent gene expression. FADD '~ MEFs stimu-
lated with LPS demonstrate increased IxB-f degra-
dation compared to FADD*/* cells, indicating that
the role of FADD is upstream of IxB degradation."*?
Although a definitive role for FADD in LPS signal-
ing has been established, the mechanism through
which FADD exerts its effects remains unclear.
MyD88 is a mediator of TLR2-induced apoptosis
through a FADD-dependent pathway through the
binding of FADD to the DD of MyD88 and sub-
sequent recruitment of caspase 8.** As such, it has
been suggested that, during LPS signaling, FADD
may bind to the DD of MyD88 and thereby prevent
the obligatory interaction between MyD88 and
IRAK.™® Similarly, it is also possible that FADD
binds to IRAK to sequester it in the cytosol, thus
preventing the interaction with MyD88 and subse-
quently abrogating downstream signaling events.

Toll-Interacting Protein (Tollip)

Tollip was identified as a protein partner of the IL-
1R complex following IL-1 stimulation. In unstimu-

Laboratory Investigation (2006) 86, 9—22

lated cells, Tollip forms a complex with IRAK and is
recruited to the receptor following stimulation.™*®
Tollip has also been shown to associate with TLR4
and is phosphorylated by IRAK following stimula-
tion with LPS." Tollip plays a negative role in LPS
signaling in macrophages by suppressing the acti-
vity of IRAK before receptor activation.*® Further-
more, overexpression of Tollip results in the inhibi-
tion of NF-«B activity downstream of IRAK.*** Tollip
is expressed in human dermal endothelial cells and
ectopic expression of Tollip in these cells inhibits
LPS-induced NF-xB activation.™”

Src Homology 2 Domain-Containing
Inositol-5-Phosphate (SHIP)

SHIP is a cellular phosphatase that catalyzes the
removal of a phosphate group from PtdIns 3,4,5-
triphosphate, a product of PI3K activity."*® Upon
initial exposure to LPS, intracellular levels of SHIP
are increased, which promotes endotoxin toler-
ance.® SHIP1 negatively regulates LPS-induced
activation of Akt downstream of PI3K. In addition,
SHIP1 also inhibits LPS-induced MAPK activation
and IxkB-« degradation, although this is independent
of PI3K involvement. However, this function is
thought to occur by SHIP inhibiting formation of a
complex between TLR4 and MyD88.'*° SHIP1 is
expressed in endothelial cells,”" and thus may play
a role in the regulation of LPS signaling in these
cells.

ST2

ST2 (also known as T1) is a TIR-domain-containing
orphan receptor expressed on TH2 cells and mast
cells.”*"3 Mice that are deficient for ST2 exhibit an
increase in LPS-induced cytokine production.™*
Although ST2 contains a TIR domain and is able
to activate JNK, ERK and p38, it is unable to activate
NF-xB."** Forced overexpression of ST2 in HEK293
cells results in a decrease in LPS-induced NF-«xB
activation." The inhibitory effect of ST2 is the
result of the interaction between its TIR domain
and the TIR domains of MyD88 and TIRAP, thus
sequestering these critical adaptors during LPS
signaling.”®* A soluble ST2 receptor was immuno-
precipitated from endothelial cells, indicating that
ST2 is expressed in these cells."® The presence of
ST2 in endothelial cells suggests that this molecule
may also be involved in the regulation of TLR4-
mediated signaling in these cells.

Additional Inhibitors of TLR4 Signaling

The suppressors of cytokine signaling are a family of
intracellular proteins that regulate cytokine signal-
ing in a classical feedback mechanism.'®” LPS-
induced upregulation of the SOCS1 protein has



been observed in a macrophage cell line and
SOCS1~/~ mice are hyperresponsive to LPS, show-
ing increased serum TNFo levels and increased
lethality.’®® Furthermore, ectopic expression of
SOCS1 in a macrophage cell line inhibits LPS-
induced NF-«B activation.*®®"° SOCS1 is expressed
in endothelial cells,’®® but its involvement in
regulating LPS signaling in these cells has not been
examined.

RP105 is a TLR homolog that lacks an intracellular
TIR domain.’® Expression of RP105 is induced in
the presence of the MD2 homolog, MD1.'%* The
complex of RP105 and MD1 interacts with TLR4/
MD2, impairing its ability to bind LPS."** Moreover,
dendritic cells derived from RP105-deficient mice
produce higher levels of proinflammatory cytokines
following LPS stimulation, compared to wild-type
controls.’® Enforced expression of TLR4, MD1 and
MD2 in HEK293 cells showed that RP105-mediated
inhibition of IL-8 production was the result of
inhibition of NF-xB activity.’®® RP105 expression
in endothelial cells is low, suggesting that RP105
may play only a minor role in TLR4-mediated
signaling in the endothelium."®

The chemokine receptor CXCR4 plays a putative
role in LPS signaling as part of a proposed LPS
activation cluster.*® Inhibition of CXCR4 in HEK293
cells expressing TLR4, MD2 and CD14, using anti-
CXCR4 antibodies, resulted in an increase in NF-xB
luciferase activity in response to LPS, suggesting
that CXCR4 inhibits signaling through TLR4.'®*
CXCR4 is expressed in endothelial cells'®® and thus
may be involved in regulating endothelial responses
to LPS.

Single immunoglobulin IL-1 receptor-related
molecule (SIGIRR) (also known as TIR8) is another
member of the TIR-domain-containing receptor
family that is unable to induce inflammatory
responses. SIGIRR is thought to play a role in
regulation of inflammatory events as its expression
is downregulated in tissues of mice injected with
LPS.*%¢ Furthermore, the role of SIGIRR in LPS
signaling is thought to be negative, since it interacts
with both TLR4 and TRAF6."°® SIGIRR has recently
been shown to interact with TLR4 through its TIR
domain to attenuate recruitment of downstream
signaling molecules.’®” Although SIGIRR functions
as a modulator of TLR signaling, expression of
SIGIRR is relatively low in endothelial compared
with epithelial cell lines, suggesting that it may play
only a minimal role in signaling in the endothe-
lium."*®

Using a yeast two-hybrid approach, TRIAD3 was
identified as a RING-finger protein that interacts
with the cytoplasmic tail of several TLRs, including
TLR4."%® The most abundant isoform identified in a
range of cell lines is TRIAD3A, which contains
structural features reminiscent of an E3 ubiquitin-
protein ligase and promotes degradation of the
receptor by targeting the receptor for ubiquitination
and proteolytic degradation.’®® Furthermore, deple-
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tion of intracellular TRIAD3A results in an increase
in TLR4-stimulated NF-«B luciferase activity.'®®
TRIAD3A expression has not been examined in
endothelial cells.

MyD88s is a splice variant of MyD88 that lacks the
intermediate domain required for recruitment of
IRAK4."%® MyD88s inhibits TLR4 signaling by pre-
venting the recruitment of IRAK4 to MyD88 in the
receptor complex, thus abolishing phosphorylation
and activation of IRAK1.°” As a result, MyD88s
functions as a dominant-negative inhibitor and is
unable to activate NF-xB. However, activation of
JNK is unaffected by MyD88s expression, suggesting
that pathways leading to NF-xB and MAPK activa-
tion may diverge at the level of MyD88.'”° MyD88s
expression has not been determined in endothelial
cells.

IRAK-M is a functional member of the IRAK/Pelle
family that is expressed exclusively in monocytic
cell lines. IRAK-M can interact with both MyD88
and TRAF6 and possesses intrinsic kinase activity,
although it is incapable of autophosphorylation."”*
IRAK-M plays a negative role in TLR4 signaling by
preventing the dissociation of IRAK4 and MyD88
and thus preventing the formation of the IRAK-
TRAF6 complex. Furthermore, IRAK-M knockout
mice show an increased responsiveness to bacterial
LPS.'72

Conclusion

The mechanism of LPS-induced signaling events
mediated by TLR4 has been extensively studied over
recent years. Much work has been carried out to
elucidate the role of specific molecules comprising
the signaling pathways and to identify the negative
regulators of the LPS signaling cascades such that
therapeutic approaches may be derived from these
discoveries. Novel players involved in TLR4 signal
transduction, such as Nod1 and Nod2,'”® as well as
the demonstration of crosstalk interactions with
other signaling pathways, such as those seen
between TGFf'7* and TLR4 signaling cascades, will
provide further insight into the molecular mecha-
nisms of innate immunity.

Although research in the field of TLR signaling
has predominantly focused on the pathways in-
itiated in macrophages and monocytes, it is evident
that the endothelium plays a critical role during
sepsis. A deeper understanding of the regulatory
elements of TLR4-mediated survival and death
pathways in endothelial cells may facilitate the
development of novel therapies to avoid the patho-
logical events associated with endothelial injury
during sepsis.
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