Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • State of the Art
  • Published:

State-of-the-Art

Respiratory consequences of prematurity: evolution of a diagnosis and development of a comprehensive approach

Abstract

Bronchopulmonary dysplasia (BPD) is the most common respiratory consequence of premature birth and contributes to significant short- and long-term morbidity, mortality and resource utilization. Initially defined as a radiographic, clinical and histopathological entity, the chronic lung disease known as BPD has evolved as obstetrical and neonatal care have improved the survival of lower gestational age infants. Now, definitions based on the need for supplementary oxygen at 28 days and/or 36 weeks provide a useful reference point in the neonatal intensive-care unit (NICU), but are no longer based on histopathological findings, and are neither designed to predict longer term respiratory consequences nor to study the evolution of a multifactorial disease. The aims of this review are to critically examine the evolution of the diagnosis of BPD and the challenges inherent to current classifications. We found that the increasing use of respiratory support strategies that administer ambient air without supplementary oxygen confounds oxygen-based definitions of BPD. Furthermore, lack of reproducible, genetic, biochemical and physiological biomarkers limits the ability to identify an impending BPD for early intervention, quantify disease severity for standardized classification and approaches and reliably predict the long-term outcomes. More comprehensive, multidisciplinary approaches to overcome these challenges involve longitudinal observation of extremely preterm infants, not only those with BPD, using genetic, environmental, physiological and clinical data as well as large databases of patient samples. The Prematurity and Respiratory Outcomes Program (PROP) will provide such a framework to address these challenges through high-resolution characterization of both NICU and post-NICU discharge outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

References

  1. Services USDoHaH, Martin JA, Hamilton BE, Ventura SJ, Osterman MJK, Mathews TJ . Births: final data for 2011. National Vital Statistics Reports. In: Services USDoHaH (eds). National Center of Health Statistics: Hyattsville, MD, 2013, pp 1–69.

    Google Scholar 

  2. Vom Hove M, Prenzel F, Uhlig HH, Robel-Tillig E . Pulmonary outcome in former preterm, very low birth weight children with bronchopulmonary dysplasia: a case-control follow-up at school age. J Pediatr 2014; 164 (1): 40–45, e44.

    Article  PubMed  Google Scholar 

  3. Halterman JS, Lynch KA, Conn KM, Hernandez TE, Perry TT, Stevens TP . Environmental exposures and respiratory morbidity among very low birth weight infants at 1 year of life. Arch Dis Child 2009; 94 (1): 28–32.

    Article  CAS  PubMed  Google Scholar 

  4. Peacock JL, Marston L, Marlow N, Calvert SA, Greenough A . Neonatal and infant outcome in boys and girls born very prematurely. Pediatr Res 2012; 71 (3): 305–310.

    Article  PubMed  Google Scholar 

  5. Walsh MC, Wilson-Costello D, Zadell A, Newman N, Fanaroff A . Safety, reliability, and validity of a physiologic definition of bronchopulmonary dysplasia. J Perinatol 2003; 23 (6): 451–456.

    Article  PubMed  Google Scholar 

  6. Lovering AT, Elliott JE, Laurie SS, Beasley KM, Gust CE, Mangum TS et al. Ventilatory and sensory responses in adult survivors of preterm birth and bronchopulmonary dysplasia with reduced exercise capacity. Ann Am Thorac Soc 2014; 11 (10): 1528–1537.

    Article  PubMed  Google Scholar 

  7. Clemm HH, Vollsaeter M, Roksund OD, Eide GE, Markestad T, Halvorsen T . Exercise capacity after extremely preterm birth. Development from adolescence to adulthood. Ann Am Thorac Soc 2014; 11 (4): 537–545.

    Article  PubMed  Google Scholar 

  8. Greenough A, Limb E, Marston L, Marlow N, Calvert S, Peacock J . Risk factors for respiratory morbidity in infancy after very premature birth. Arch Dis Child Fetal Neonatal Ed 2005; 90 (4): F320–F323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. NHLBI. Division of Lung Diseases and Office of Prevention, Education and Control, Publication No. 98-4081, 1998.

  10. Underwood MA, Danielsen B, Gilbert WM . Cost, causes and rates of rehospitalization of preterm infants. J Perinatol 2007; 27: 614–619.

    Article  CAS  PubMed  Google Scholar 

  11. Doyle LW, Faber B, Callanan C, Freezer N, Ford GW, Davis NM . Bronchopulmonary dysplasia in very low birth weight subjects and lung function in late adolescence. Pediatrics 2006; 118 (1): 108–113.

    Article  PubMed  Google Scholar 

  12. Stroustrup A, Trasande L . Epidemiological characteristics and resource use in neonates with bronchopulmonary dysplasia: 1993–2006. Pediatrics 2010; 126 (2): 291–297.

    Article  PubMed  Google Scholar 

  13. Northway WH Jr., Rosan RC, Porter DY . Pulmonary disease following respirator therapy of hyaline-membrane disease. Bronchopulmonary dysplasia. N Engl J Med 1967; 276 (7): 357–368.

    Article  PubMed  Google Scholar 

  14. Tooley WH . Epidemiology of bronchopulmonary dysplasia. J Pediatr 1979; 95 (5 Pt 2): 851–858.

    Article  CAS  PubMed  Google Scholar 

  15. Shennan AT, Dunn MS, Ohlsson A, Lennox K, Hoskins EM . Abnormal pulmonary outcomes in premature infants: prediction from oxygen requirement in the neonatal period. Pediatrics 1988; 82 (4): 527–532.

    CAS  PubMed  Google Scholar 

  16. Jobe AJ . The new BPD: an arrest of lung development. Pediatr Res 1999; 46 (6): 641–643.

    Article  CAS  PubMed  Google Scholar 

  17. Jobe AH, Bancalari E . Bronchopulmonary dysplasia. Am J Respir Crit Care Med 2001; 163 (7): 1723–1729.

    Article  CAS  PubMed  Google Scholar 

  18. Walsh MC, Yao Q, Gettner P, Hale E, Collins M, Hensman A et al. Impact of a physiologic definition on bronchopulmonary dysplasia rates. Pediatrics 2004; 114 (5): 1305–1311.

    Article  PubMed  Google Scholar 

  19. Natarajan G, Pappas A, Shankaran S, Kendrick DE, Das A, Higgins RD et al. Outcomes of extremely low birth weight infants with bronchopulmonary dysplasia: impact of the physiologic definition. Early Hum Dev 2012; 88 (7): 509–515.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ryan RM . A new look at bronchopulmonary dysplasia classification. J Perinatol 2006; 26 (4): 207–209.

    Article  PubMed  Google Scholar 

  21. Beam KS, Aliaga S, Ahlfeld SK, Cohen-Wolkowiez M, Smith PB, Laughon MM . A systematic review of randomized controlled trials for the prevention of bronchopulmonary dysplasia in infants. J Perinatol 2014; 34 (9): 705–710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ehrenkranz RA, Walsh MC, Vohr BR, Jobe AH, Wright LL, Fanaroff AA et al. Validation of the National Institutes of Health consensus definition of bronchopulmonary dysplasia. Pediatrics 2005; 116 (6): 1353–1360.

    Article  PubMed  Google Scholar 

  23. Lefkowitz W, Rosenberg SH . Bronchopulmonary dysplasia: pathway from disease to long-term outcome. J Perinatol 2008; 28 (12): 837–840.

    Article  CAS  PubMed  Google Scholar 

  24. Kaplan E, Bar-Yishay E, Prais D, Klinger G, Mei-Zahav M, Mussaffi H et al. Encouraging pulmonary outcome for surviving, neurologically intact, extremely premature infants in the postsurfactant era. Chest 2012; 142 (3): 725–733.

    Article  PubMed  Google Scholar 

  25. Cazzato S, Ridolfi L, Bernardi F, Faldella G, Bertelli L . Lung function outcome at school age in very low birth weight children. Pediatr Pulmonol 2013; 48 (8): 830–837.

    Article  PubMed  Google Scholar 

  26. Landry JS, Chan T, Lands L, Menzies D . Long-term impact of bronchopulmonary dysplasia on pulmonary function. Can Respir J 2011; 18 (5): 265–270.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Drysdale SB, Alcazar M, Wilson T, Smith M, Zuckerman M, Lauinger IL et al. Respiratory outcome of prematurely born infants following human rhinovirus A and C infections. Eur J Pediatr 2014; 173 (7): 913–919.

    Article  PubMed  Google Scholar 

  28. Drysdale SB, Lo J, Prendergast M, Alcazar M, Wilson T, Zuckerman M et al. Lung function of preterm infants before and after viral infections. Eur J Pediatr 2014; 173 (11): 1497–1504.

    Article  PubMed  Google Scholar 

  29. Bhattacharya S, Go D, Krenitsky DL, Huyck HL, Solleti SK, Lunger VA et al. Genome-wide transcriptional profiling reveals connective tissue mast cell accumulation in bronchopulmonary dysplasia. Am J Respir Crit Care Med 2012; 186 (4): 349–358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. O'Reilly M, Harding R, Sozo F . Altered small airways in aged mice following neonatal exposure to hyperoxic gas. Neonatology 2014; 105 (1): 39–45.

    Article  CAS  PubMed  Google Scholar 

  31. Albertine KH . Progress in understanding the pathogenesis of BPD using the baboon and sheep models. Semin Perinatol 2013; 37 (2): 60–68.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Collins JJ, Kunzmann S, Kuypers E, Kemp MW, Speer CP, Newnham JP et al. Antenatal glucocorticoids counteract LPS changes in TGF-beta pathway and caveolin-1 in ovine fetal lung. Am J Physiol Lung Cell Mol Physiol 2013; 304 (6): L438–L444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Maniscalco WM, Watkins RH, Roper JM, Staversky R, O'Reilly MA . Hyperoxic ventilated premature baboons have increased p53, oxidant DNA damage and decreased VEGF expression. Pediatr Res 2005; 58 (3): 549–556.

    Article  CAS  PubMed  Google Scholar 

  34. Backstrom E, Hogmalm A, Lappalainen U, Bry K . Developmental stage is a major determinant of lung injury in a murine model of bronchopulmonary dysplasia. Pediatr Res 2011; 69 (4): 312–318.

    Article  PubMed  Google Scholar 

  35. Choo-Wing R, Syed MA, Harijith A, Bowen B, Pryhuber G, Janer C et al. Hyperoxia and interferon-gamma-induced injury in developing lungs occur via cyclooxygenase-2 and the endoplasmic reticulum stress-dependent pathway. Am J Respir Cell Mol Biol 2013; 48 (6): 749–757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Madurga A, Mizikova I, Ruiz-Camp J, Morty RE . Recent advances in late lung development and the pathogenesis of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2013; 305 (12): L893–L905.

    Article  CAS  PubMed  Google Scholar 

  37. Hilgendorff A, Reiss I, Ehrhardt H, Eickelberg O, Alvira CM . Chronic lung disease in the preterm infant. Lessons learned from animal models. Am J Respir Cell Mol Biol 2014; 50 (2): 233–245.

    PubMed  PubMed Central  Google Scholar 

  38. O'Reilly MA, Marr SH, Yee M, McGrath-Morrow SA, Lawrence BP . Neonatal hyperoxia enhances the inflammatory response in adult mice infected with influenza A virus. Am J Respir Crit Care Med 2008; 177 (10): 1103–1110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bose CL, Dammann CE, Laughon MM . Bronchopulmonary dysplasia and inflammatory biomarkers in the premature neonate. Arch Dis Child Fetal Neonatal Ed 2008; 93 (6): F455–F461.

    Article  CAS  PubMed  Google Scholar 

  40. Ambalavanan N, Carlo WA, D'Angio CT, McDonald SA, Das A, Schendel D et al. Cytokines associated with bronchopulmonary dysplasia or death in extremely low birth weight infants. Pediatrics 2009; 123 (4): 1132–1141.

    Article  PubMed  Google Scholar 

  41. Schneibel KR, Fitzpatrick AM, Ping XD, Brown LA, Gauthier TW . Inflammatory mediator patterns in tracheal aspirate and their association with bronchopulmonary dysplasia in very low birth weight neonates. J Perinatol 2013; 33 (5): 383–387.

    Article  CAS  PubMed  Google Scholar 

  42. Speer CP . Pulmonary inflammation and bronchopulmonary dysplasia. J Perinatol 2006; 26 (Suppl 1): S57–S62.

    Article  CAS  PubMed  Google Scholar 

  43. Bhandari A, Bhandari V . Biomarkers in bronchopulmonary dysplasia. Paediatr Respir Rev 2013; 14 (3): 173–179.

    PubMed  Google Scholar 

  44. Bhandari A, Bhandari V . Pitfalls, problems, and progress in bronchopulmonary dysplasia. Pediatrics 2009; 123 (6): 1562–1573.

    Article  PubMed  Google Scholar 

  45. Drysdale SB, Prendergast M, Alcazar M, Wilson T, Smith M, Zuckerman M et al. Genetic predisposition of RSV infection-related respiratory morbidity in preterm infants. Eur J Pediatr 2014; 173 (7): 905–912.

    Article  PubMed  Google Scholar 

  46. Hadchouel A, Franco-Montoya ML, Delacourt C . Altered lung development in bronchopulmonary dysplasia. Birth Defects Res A Clin Mol Teratol 2014; 100 (3): 158–167.

    Article  CAS  PubMed  Google Scholar 

  47. Schmolzer GM, Kumar M, Pichler G, Aziz K, O'Reilly M, Cheung PY . Non-invasive versus invasive respiratory support in preterm infants at birth: systematic review and meta-analysis. BMJ 2013; 347: f5980.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Bhandari V . The potential of non-invasive ventilation to decrease BPD. Semin Perinatol 2013; 37 (2): 108–114.

    Article  PubMed  Google Scholar 

  49. Carroll JL, Agarwal A . Development of ventilatory control in infants. Paediatr Respir Rev 2010; 11 (4): 199–207.

    Article  PubMed  Google Scholar 

  50. Bates ML, Pillers DA, Palta M, Farrell ET, Eldridge MW . Ventilatory control in infants, children, and adults with bronchopulmonary dysplasia. Respir Physiol Neurobiol 2013; 189 (2): 329–337.

    Article  PubMed  Google Scholar 

  51. Kim DH, Kim HS, Choi CW, Kim EK, Kim BI, Choi JH . Risk factors for pulmonary artery hypertension in preterm infants with moderate or severe bronchopulmonary dysplasia. Neonatology 2012; 101 (1): 40–46.

    Article  PubMed  Google Scholar 

  52. Rhein LM, Dobson NR, Darnall RA, Corwin MJ, Heeren TC, Poets CF et al. Effects of caffeine on intermittent hypoxia in infants born prematurely: a randomized clinical trial. JAMA Pediatr 2014; 168 (3): 250–257.

    Article  PubMed  Google Scholar 

  53. Heldt GP . Development of stability of the respiratory system in preterm infants. J Appl Physiol (1985) 1988; 65 (1): 441–444.

    Article  CAS  Google Scholar 

  54. Davis PG, Thorpe K, Roberts R, Schmidt B, Doyle LW, Kirpalani H et al. Evaluating "old" definitions for the "new" bronchopulmonary dysplasia. J Pediatr 2002; 140 (5): 555–560.

    Article  PubMed  Google Scholar 

  55. Hjalmarson O, Brynjarsson H, Nilsson S, Sandberg KL . Persisting hypoxaemia is an insufficient measure of adverse lung function in very immature infants. Arch Dis Child Fetal Neonatal Ed 2014; 99: F257–F262.

    Article  PubMed  Google Scholar 

  56. Bhandari A, Panitch HB . Pulmonary outcomes in bronchopulmonary dysplasia. Semin Perinatol 2006; 30 (4): 219–226.

    Article  PubMed  Google Scholar 

  57. Robin B, Kim YJ, Huth J, Klocksieben J, Torres M, Tepper RS et al. Pulmonary function in bronchopulmonary dysplasia. Pediatr Pulmonol 2004; 37 (3): 236–242.

    Article  PubMed  Google Scholar 

  58. Sanchez-Solis M, Garcia-Marcos L, Bosch-Gimenez V, Perez-Fernandez V, Pastor-Vivero MD, Mondejar-Lopez P . Lung function among infants born preterm, with or without bronchopulmonary dysplasia. Pediatr Pulmonol 2012; 47 (7): 674–681.

    Article  PubMed  Google Scholar 

  59. Friedrich L, Pitrez PM, Stein RT, Goldani M, Tepper R, Jones MH . Growth rate of lung function in healthy preterm infants. Am J Respir Crit Care Med 2007; 176 (12): 1269–1273.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Been JV, Lugtenberg MJ, Smets E, van Schayck CP, Kramer BW, Mommers M et al. Preterm birth and childhood wheezing disorders: a systematic review and meta-analysis. PLoS Med 2014; 11 (1): e1001596.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Schuh S, Coates AL, Binnie R, Allin T, Goia C, Corey M et al. Efficacy of oral dexamethasone in outpatients with acute bronchiolitis. J Pediatr 2002; 140 (1): 27–32.

    Article  CAS  PubMed  Google Scholar 

  62. Hoo AF, Dezateux C, Henschen M, Costeloe K, Stocks J . Development of airway function in infancy after preterm delivery. J Pediatr 2002; 141 (5): 652–658.

    Article  PubMed  Google Scholar 

  63. Friedrich L, Stein RT, Pitrez PM, Corso AL, Jones MH . Reduced lung function in healthy preterm infants in the first months of life. Am J Respir Crit Care Med 2006; 173 (4): 442–447.

    Article  PubMed  Google Scholar 

  64. American Thoracic S European Respiratory S. ATS/ERS statement: raised volume forced expirations in infants: guidelines for current practice. Am J Respir Crit Care Med 2005; 172 (11): 1463–1471.

    Article  Google Scholar 

  65. Broughton S, Sylvester KP, Fox G, Zuckerman M, Smith M, Milner AD et al. Lung function in prematurely born infants after viral lower respiratory tract infections. Pediatr Infect Dis J 2007; 26 (11): 1019–1024.

    Article  PubMed  Google Scholar 

  66. Davis SD, Rosenfeld M, Kerby GS, Brumback L, Kloster MH, Acton JD et al. Multicenter evaluation of infant lung function tests as cystic fibrosis clinical trial endpoints. Am J Respir Crit Care Med 2010; 182 (11): 1387–1397.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Supported by U01 HL101794 to B Schmidt, U01 HL101456 to JL Aschner, U01 HL101798 to PL Ballard and RL Keller, U01 HL101813 to GS Pryhuber, R Ryan and T Mariani, U01 HL101465 to A Hamvas and T Ferkol, U01 HL101800 to AH Jobe and CA Chougnet and 5R01HL105702 to CM Cotton, SD Davis and JA Voynow. In addition to the Principal Investigators, We acknowledge the following PROP Investigators for input into the manuscript: James Kemp, MD and Clement Ren, MD. We also acknowledge Carol J. Blaisdell, MD of NHLBI for her guidance and review of the manuscript and Lynn Taussig for his contributions as Chair of the PROP Steering Committee.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to N L Maitre.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Appendix 1

Appendix 1

Investigators and Research Staff

Cincinnati Children's Hospital Medical Center

Investigators

Claire Chougnet, PhD

Robert Frenk, MD

James M. Greenberg, MD

William Hardie, MD

Alan H. Jobe, MD, PhD

Karen McDowell, MD

Research Staff

Barbara Alexander, RN

Tari Gratton, PA

Cathy Grigsby, BSN, CCRC

Beth Koch, BHS, RRT, RPFT

Kelly Thornton, BS

Washington University School of Medicine site

Investigators

Thomas Ferkol, MD

Aaron Hamvas, MD2

Mark R. Holland, PhD

James Kemp, MD

Philip T. Levy, MD

Phillip Tarr, MD

Gautam K. Singh, MD

Barbara Warner, MD

Research Staff

Pamela Bates, CRT, RPFT, RPSGT

Claudia Cleveland, RRT

Julie Hoffmann, RN

Laura Linneman, RN

Jayne Sicard-Su, RN

Gina Simpson, RRT, CPFT

2Northwestern University Feinberg School of Medicine

University of California San Francisco site

Investigators

Philip L. Ballard, MD, PhD

Roberta A. Ballard, MD

David J. Durand, MD2

Eric C. Eichenwald, MD4

Roberta L. Keller, MD

Amir M. Khan, MD4

Leslie Lusk, MD

Jeffrey D. Merrill, MD3

Dennis W. Nielson, MD, PhD

Elizabeth E. Rogers, MD

Research Staff

Jeanette M. Asselin, MS RRT-NPS2

Samantha Balan

Katrina Burson, RN, BSN4

Cheryl Chapin

Erna Josiah-Davis, RN, NP3

Carmen Garcia, RN, CCRP4

Hart Horneman

Rick Hinojosa, BSRT, RRT, CPFT-NPS4

Christopher Johnson, MBA, RRT4

Susan Kelley, RRT

Karin L. Knowles

M. Layne Lillie, RN, BSN4

Karen Martin, RN4

Sarah Martin, RN, BSN;

Julie Arldt-McAlister, RN, BSN4

Georgia E. McDavid, RN4

Lori Pacello, RCP2

Shawna Rodgers, RN, BSN4

Daniel K. Sperry, RN4

2Children's Hospital and Research Center Oakland, Oakland, CA

3Alta Bates Summit Medical Center, Berkeley, CA

4University of Texas Health Science Center- Houston, Houston, TX

Vanderbilt University Medical Center site

Investigators

Judy Aschner, MD2

Candice Fike, MD

Scott Guthrie, MD3

Tina Hartert, MD

Nathalie Maitre, MD

Paul Moore, MD

Marshall Summar, MD4

Research Staff

Amy B Beller, BSN

Mark O’ Hunt

Theresa J. Rogers, RN

Odessa L. Settles, RN, MSN, CM

Steven Steele, RN

Sharon Wadley, BSN, RN, CLS3

2Albert Einstein College of Medicine, Bronx, NY

3Jackson-Madison County General Hospital, Jackson, TN

4Children’s National Health System, Washington, DC

University of Rochester Medical Center/University of Buffalo NY site

Investigators

Carl D’Angio, MD

Vasanth Kumar, MD

Tom Mariani, PhD

Gloria Pryhuber, MD

Clement Ren, MD

Anne Marie Reynolds, MD, MPH

Rita M. Ryan, MD1

Kristin Scheible, MD

Timothy Stevens, MD, MPH

Research Staff

Shannon Castiglione, RN

Aimee Horan, LPN

Deanna Maffet, RN

Jane O’Donnell, PNP

Michael Sacilowski, MAT

Tanya Scalise, RN, BSN

Elizabeth Werner, MPH

Jason Zayac, BS

Heidie Huyck, BS

Valerie Lunger, MS

Kim Bordeaux, RRT

Pam Brown, RRT

Julia Epping, AAS, RT

Lisa Flattery-Walsh, RRT

Donna Germuga, RRT, CPFT

Nancy Jenks, RN

Mary Platt, RN

Eileen Popplewell, RRT

Sandra Prentice, CRT

1Medical University of South Carolina, Charleston, SC

Duke Investigators

C. Michael Cotten, MD

Kim Fisher, PhD

Jack Sharp, MD

Judith A. Voynow, MD2Research Staff

Kim Ciccio, RN

2Virginia Commonwealth University

Indiana Investigators

Stephanie Davis, MD

Brenda Poindexter, MD, MS2Research Staff

Charles Clem, RRT

Susan Gunn, NNP, CCRC

Lauren Jewett, RN, CCRC

2Cincinnati Children's Hospital Medical Center

University of Pennsylvania, Perelman School of Medicine, DCC site

Investigators

Jonas Ellenberg, PhD

Rui Feng, PhD

Melissa Fernando, MPH

Howard Panitch, MD

Barbara Schmidt, MD, MSc

Pamela Shaw, PhD

Research Staff

Ann Tierney, BA, MS

Maria Blanco, BS

Denise Cifelli, MS

Sara DeMauro, MD

University of Denver, Steering Committee Chair

Lynn M. Taussig, MD

NHLBI Program Officer

Carol J. Blaisdell, MD

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maitre, N., Ballard, R., Ellenberg, J. et al. Respiratory consequences of prematurity: evolution of a diagnosis and development of a comprehensive approach. J Perinatol 35, 313–321 (2015). https://doi.org/10.1038/jp.2015.19

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jp.2015.19

This article is cited by

Search

Quick links