Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Why do four NICUs using identical RBC transfusion guidelines have different gestational age-adjusted RBC transfusion rates?

Abstract

Objective:

To compare neonatal red blood cell (RBC) transfusion rates in four large Intermountain Healthcare NICUs, all of which adhere to the same RBC transfusion guidelines.

Study Design:

This retrospective analysis was part of a transfusion-management quality-improvement project. De-identified data included RBC transfusions, clinical and laboratory findings, the anemia-prevention strategies in place in each NICU, and specific costs and outcomes.

Result:

Of 2389 NICU RBC transfusions given during the 4-year period studied, 98.9±2.1% (mean±s.d.) were compliant with our transfusion guidelines, with no difference in compliance between any of the four NICUs. However, RBC transfusion rates varied widely between the four, with averages ranging from 4.6 transfusions/1000 NICU days to 21.7/1000 NICU days (P<0.00001). Gestational age-adjusted transfusion rates were correspondingly discordant (P<0.00001). The lower-transfusing NICUs had written anemia-preventing guidelines, such as umbilical cord milking at very low birth weight delivery, use of cord blood for admission laboratory studies, and darbepoetin dosing for selected neonates. Rates of Bell stage2 necrotizing enterocolitis and grade3 intraventricular hemorrhage were lowest in the two lower-transfusing NICUs (P<0.0002 and P<0.0016). Average pharmacy costs for darbepoetin were $84/dose, with an average pharmacy cost of $269 per transfusion averted. With a cost of $900/RBC transfusion, the anemia-preventing strategies resulted in an estimated cost savings to Intermountain Healthcare of about $6970 per 1000 NICU days, or about $282 300 annually.

Conclusion:

Using transfusion guidelines has been shown previously to reduce practice variability, lower transfusion rates and diminish transfusion costs. Based on our present findings, we maintain that even when transfusion guidelines are in place and adhered to rigorously, RBC transfusion rates are reduced further if anemia-preventing strategies are also in place.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Baer VL, Lambert DK, Schmutz N, Henry E, Stoddard RA, Miner C et al. Adherence to NICU transfusion guidelines: data from a multihospital healthcare system. J Perinatol 2008; 28 (7): 492–497.

    Article  CAS  Google Scholar 

  2. Baer VL, Henry E, Lambert DK, Stoddard RA, Wiedmeier SE, Eggert LD et al. Implementing a program to improve compliance with neonatal intensive care unit transfusion guidelines was accompanied by a reduction in transfusion rate: a pre-post analysis within a multihospital health care system. Transfusion 2011; 51 (2): 264–269.

    Article  Google Scholar 

  3. Christensen RD, Henry E, Ilstrup S, Baer VL . A high rate of compliance with neonatal intensive care unit transfusion guidelines persists even after a program to improve transfusion guideline compliance ended. Transfusion 2011; 51 (11): 2519–2520.

    Article  Google Scholar 

  4. Christensen RD, Baer VL, Lambert DK, Ilstrup SJ, Eggert LD, Henry E . Association, among very-low-birth weight neonates, between red blood cell transfusions in the week after birth and severe intraventricular hemorrhage. Transfusion 2014; 54 (1): 104–108.

    Article  Google Scholar 

  5. Rashid N, Al-Sufayan F, Seshia MM, Baier RJ . Post transfusion lung injury in the neonatal population. J Perinatol 2013; 33 (4): 292–296.

    Article  CAS  Google Scholar 

  6. von Lindern JS, Lopriore E . Management and prevention of neonatal anemia: current evidence and guidelines. Expert Rev Hematol 2014; 7 (2): 195–202.

    Article  CAS  Google Scholar 

  7. Christensen RD, Ilstrup S . Recent advances toward defining the benefits and risks of erythrocyte transfusions in neonates. Arch Dis Child Fetal Neonatal Ed 2013; 98 (4): F365–F372.

    Article  Google Scholar 

  8. Christensen RD, Carroll PD, Josephson CD . Evidence-based advances in NICU transfusion practice. Neonatology 2014; 106 (4).

  9. Bifano EM, Curran TR . Minimizing donor blood exposure in the neonatal intensive care unit. Current trends and future prospects. Clin Perinatol 1995; 22 (3): 657–669.

    Article  CAS  Google Scholar 

  10. Calhoun DA, Christensen RD, Edstrom CS, Juul SE, Ohls RK, Schibler KR et al. Consistent approaches to procedures and practices in neonatal hematology. Clin Perinatol 2000; 27 (3): 733–753.

    Article  CAS  Google Scholar 

  11. Venkatesh V, Khan R, Curley A, New H, Stanworth S . How we decide when a neonate needs a transfusion. Br J Haematol 2013; 160 (4): 421–433.

    Article  CAS  Google Scholar 

  12. dos Santos AM, Guinsburg R, de Almeida MF, Procianoy RS, Leone CR, Marba ST et al. Red blood cell transfusions are independently associated with intra-hospital mortality in very low birth weight preterm infants. J Pediatr 2011; 159 (3): 371–376.

    Article  Google Scholar 

  13. Shannon KM, Keith JF 3rd, Mentzer WC, Ehrenkranz RA, Brown MS, Widness JA et al. Recombinant human erythropoietin stimulates erythropoiesis and reduces erythrocyte transfusions in very low birth weight preterm infants. Pediatrics 1995; 95 (1): 1–8.

    CAS  Google Scholar 

  14. Strauss RG . Anaemia of prematurity: pathophysiology and treatment. Blood Rev 2010; 24 (6): 221–225.

    Article  CAS  Google Scholar 

  15. Carroll PD, Widness JA . Nonpharmacological, blood conservation techniques for preventing neonatal anemia—effective and promising strategies for reducing transfusion. Semin Perinatol 2012; 36 (4): 232–243.

    Article  Google Scholar 

  16. Backes CH, Rivera BK, Haque U, Bridge JA, Smith CV, Hutchon DJR et al. Placental transfusion strategies in very preterm neonates. Obstet Gynecol 2014; 124: 47–56.

    Article  Google Scholar 

  17. Ohls RK, Harcum J, Li Y, Davila G, Christensen RD . Serum erythropoietin concentrations fail to increase after significant phlebotomy losses in ill preterm infants. J Perinatol 1997; 17 (6): 465–467.

    CAS  PubMed  Google Scholar 

  18. Rosebraugh MR, Widness JA, Nalbant D, Cress G, Veng-Pedersen P . Pharmacodynamically optimized erythropoietin treatment combined with phlebotomy reduction predicted to eliminate blood transfusions in selected preterm infants. Pediatr Res 2014; 75 (2): 336–342.

    Article  CAS  Google Scholar 

  19. Saleh MI, Nalbant D, Widness JA, Veng-Pedersen P . Population pharmacodynamic analysis of erythropoiesis in preterm infants for determining the anemia treatment potential of erythropoietin. Am J Physiol Regul Integr Comp Physiol 2013; 304 (9): R772–R781.

    Article  CAS  Google Scholar 

  20. Rosebraugh MR, Widness JA, Veng-Pedersen P . Multidose optimization simulation of erythropoietin treatment in preterm infants. Pediatr Res 2012; 71 (4 Pt 1): 332–337.

    Article  CAS  Google Scholar 

  21. Freise KJ, Widness JA, Veng-Pedersen P . Erythropoietic response to endogenous erythropoietin in premature very low birth weight infants. J Pharmacol Exp Ther 2010; 332 (1): 229–237.

    Article  CAS  Google Scholar 

  22. Neelakantan S, Widness JA, Schmidt RL, Veng-Pedersen P . Erythropoietin pharmacokinetic/pharmacodynamic analysis suggests higher doses in treating neonatal anemia. Pediatr Int 2009; 51 (1): 25–32.

    Article  CAS  Google Scholar 

  23. Ohlsson A, Aher SM . Early erythropoietin for preventing red blood cell transfusion in preterm and/or low birth weight infants. Cochrane Database Syst Rev 2014 CD004863. pub4.

  24. Aher SM, Ohlsson A . Late erythropoietin for preventing red blood cell transfusion in preterm and/or low birth weight infants. Cochrane Database Syst Rev 2014 CD004868. pub4.

  25. Baer VL, Lambert DK, Henry E, Snow GL, Butler A, Christensen RD . Among very-low-birth-weight neonates is red blood cell transfusion an independent risk factor for subsequently developing a severe intraventricular hemorrhage? Transfusion 2011; 51 (6): 1170–1178.

    Article  Google Scholar 

  26. Baer VL, Lambert DK, Henry E, Snow GL, Christensen RD . Red blood cell transfusion of preterm neonates with a Grade 1 intraventricular hemorrhage is associated with extension to a Grade 3 or 4 hemorrhage. Transfusion 2011; 51 (9): 1933–1939.

    Article  Google Scholar 

  27. Baxi AC, Josephson CD, Iannucci GJ, Mahle WT . Necrotizing enterocolitis in infants with congenital heart disease: The role of red blood cell transfusions. Pediatr Cardiol 2014; 35 (6): 1024–1029.

    Article  Google Scholar 

  28. Miner CA, Fullmer S, Eggett DL, Christensen RD . Factors affecting the severity of necrotizing enterocolitis. J Matern Fetal Neonatal Med 2013; 26 (17): 1715–1719.

    Article  Google Scholar 

  29. Marin T, Moore J, Kosmetatos N, Roback JD, Weiss P, Higgins M et al. Red blood cell transfusion-related necrotizing enterocolitis in very-low-birthweight infants: a near-infrared spectroscopy investigation. Transfusion 2013; 53 (11): 2650–2658.

    Article  CAS  Google Scholar 

  30. Singh R, Visintainer PF, Frantz ID 3rd, Shah BL, Meyer KM, Favila SA et al. Association of necrotizing enterocolitis with anemia and packed red blood cell transfusions in preterm infants. J Perinatol 2011; 31 (3): 176–182.

    Article  CAS  Google Scholar 

  31. Singh R, Shah BL, Frantz ID 3rd . Necrotizing enterocolitis and the role of anemia of prematurity. Semin Perinatol 2012; 36 (4): 277–282.

    Article  Google Scholar 

  32. La Gamma EF, Blau J . Transfusion-related acute gut injury: feeding, flora, flow, and barrier defense. Semin Perinatol 2012; 36 (4): 294–305.

    Article  Google Scholar 

  33. Paul DA, Mackley A, Novitsky A, Zhao Y, Brooks A, Locke RG . Increased odds of necrotizing enterocolitis after transfusion of red blood cells in premature infants. Pediatrics 2011; 127 (4): 635–641.

    Article  Google Scholar 

  34. Josephson CD, Wesolowski A, Bao G, Sola-Visner MC, Dudell G, Castillejo MI et al. Do red cell transfusions increase the risk of necrotizing enterocolitis in premature infants? J Pediatr 2010; 157 (6): 972–978.

    Article  Google Scholar 

  35. Christensen RD, Lambert DK, Henry E, Wiedmeier SE, Snow GL, Baer VL et al. Is ‘transfusion-associated necrotizing enterocolitis’ an authentic pathogenic entity? Transfusion 2010; 50 (5): 1106–1112.

    Article  Google Scholar 

  36. McCoy TE, Conrad AL, Richman LC, Brumbaugh JE, Magnotta VA, Bell EF et al. The relationship between brain structure and cognition in transfused preterm children at school age. Dev Neuropsychol 2014; 39 (3): 226–332.

    Article  Google Scholar 

  37. Nopoulos PC, Conrad AL, Bell EF, Strauss RG, Widness JA, Magnotta VA et al. Long-term outcome of brain structure in premature infants: effects of liberal vs restricted red blood cell transfusions. Arch Pediatr Adolesc Med 2011; 165 (5): 443–450.

    Article  Google Scholar 

  38. McCoy TE, Conrad AL, Richman LC, Lindgren SD, Nopoulos PC, Bell EF . Neurocognitive profiles of preterm infants randomly assigned to lower or higher hematocrit thresholds for transfusion. Child Neuropsychol 2011; 17 (4): 347–367.

    Article  Google Scholar 

  39. Rohde JM, Dimcheff DE, Blumberg N, Saint S, Langa KM, Kuhn L et al. Health care-associated infection after red blood cell transfusion: a systematic review and meta-analysis. JAMA 2014; 311: 1317–1326.

    Article  CAS  Google Scholar 

  40. Ohls RK, Christensen RD, Kamath-Rayne BD, Rosenberg A, Wiedmeier SE, Roohi M et al. A randomized, masked, placebo-controlled study of darbepoetin alfa in preterm infants. Pediatrics 2013; 132 (1): e119–e127.

    Article  Google Scholar 

  41. Ohls RK, Kamath-Rayne BD, Christensen RD, Wiedmeier SE, Rosenberg A, Fuller J et al. Cognitive outcomes of preterm infants randomized to darbepoetin, erythropoietin, or placebo. Pediatrics 2014; 133 (6): 1023–1030.

    Article  Google Scholar 

  42. Warwood TL, Ohls RK, Lambert DK, Leve EA, Veng-Pedersen P, Christensen RD . Urinary excretion of darbepoetin after intravenous vs subcutaneous administration to preterm neonates. J Perinatol 2006; 26 (10): 636–639.

    Article  CAS  Google Scholar 

  43. Warwood TL, Ohls RK, Lambert DK, Jones C, Scoffield SH, Gupta N et al. Intravenous administration of darbepoetin to NICU patients. J Perinatol 2006; 26 (5): 296–300.

    Article  CAS  Google Scholar 

  44. Warwood TL, Ohls RK, Wiedmeier SE, Lambert DK, Jones C, Scoffield SH et al. Single-dose darbepoetin administration to anemic preterm neonates. J Perinatol 2005; 25 (11): 725–730.

    Article  CAS  Google Scholar 

  45. Warwood TL, Lambert DK, Henry E, Christensen RD . Very low birth weight infants qualifying for a 'late' erythrocyte transfusion: does giving darbepoetin along with the transfusion counteract the transfusion's erythropoietic suppression? J Perinatol 2011; 31 (Suppl 1): S17–S21.

    Article  CAS  Google Scholar 

  46. Widness JA, Seward VJ, Kromer IJ, Burmeister LF, Bell EF, Strauss RG . Changing patterns of red blood cell transfusion in very low birth weight infants. J Pediatr 1996; 129 (5): 680–687.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R D Christensen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henry, E., Christensen, R., Sheffield, M. et al. Why do four NICUs using identical RBC transfusion guidelines have different gestational age-adjusted RBC transfusion rates?. J Perinatol 35, 132–136 (2015). https://doi.org/10.1038/jp.2014.171

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jp.2014.171

This article is cited by

Search

Quick links